Skip to main content
. Author manuscript; available in PMC: 2024 Jan 21.
Published in final edited form as: Lancet. 2022 Dec 20;401(10372):215–225. doi: 10.1016/S0140-6736(22)02079-7

Table 2.

Classification performance and predictive values of the machine learning model for the detection of coronary artery disease (CAD) in the validation, holdout, and external test datasets.

Dataset Total no. CAD control, no. (%) CAD case, no. (%) AUROC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) NPV (95% CI) PPV (95% CI)
Validation dataset 20,497 17,828 (87) 2,669 (13) 0.95 (0.94 – 0.95) 0.94 (0.94 – 0.95) 0.82 (0.81 – 0.83) 0.88 (0.87 – 0.89) 0.93 (0.93 – 0.94) 0.84 (0.83 – 0.85)
Holdout dataset 15,252 12,791 (84) 2,461 (16) 0.93 (0.92 – 0.93) 0.90 (0.89 –0.90) 0.88 (0.87 – 0.88) 0.89 (0.89 – 0.89) 0.89 (0.89 –0.89) 0.88 (0.88 –0.88)
External test dataset 60,186 52,058 (86) 8,128 (14) 0.91 (0.91 – 0.91) 0.84 (0.83 – 0.84) 0.83 (0.82 – 0.83) 0.85 (0.85 – 0.85) 0.84 (0.83 – 0.84) 0.83 (0.82 – 0.83)

No., number; AUROC, area under the receiver-operating-characteristic curve; NPV, negative predictive value; PPV, positive predictive value.