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Background: Crohn’s disease (CD) is highly heterogenous and may be complicated by stricturing behavior. Personalized prediction of stricturing 
will inform management. We aimed to create a stricturing risk stratification model using genomic/clinical data.
Methods: Exome sequencing was performed on CD patients, and phenotype data retrieved. Biallelic variants in NOD2 were identified. NOD2 
was converted into a per-patient deleteriousness metric (“GenePy”). Using training data, patients were stratified into risk groups for fibrotic 
stricturing using NOD2. Findings were validated in a testing data set. Models were modified to include disease location at diagnosis. Cox pro-
portional hazards assessed performance.
Results: Six hundred forty-five patients were included (373 children and 272 adults); 48 patients fulfilled criteria for monogenic NOD2-related 
disease (7.4%), 24 of whom had strictures. NOD2 GenePy scores stratified patients in training data into 2 risk groups. Within testing data, 30 
of 161 patients (18.6%) were classified as high-risk based on the NOD2 biomarker, with stricturing in 17 of 30 (56.7%). In the low-risk group, 
28 of 131 (21.4%) had stricturing behavior. Cox proportional hazards using the NOD2 risk groups demonstrated a hazard ratio (HR) of 2.092 
(P = 2.4 × 10-5), between risk groups. Limiting analysis to patients diagnosed aged < 18-years improved performance (HR-3.164, P = 1 × 10-6). 
Models were modified to include disease location, such as terminal ileal (TI) disease or not. Inclusion of NOD2 risk groups added significant 
additional utility to prediction models. High-risk group pediatric patients presenting with TI disease had a HR of 4.89 (P = 2.3 × 10-5) compared 
with the low-risk group patients without TI disease.
Conclusions: A NOD2 genomic biomarker predicts stricturing risk, with prognostic power improved in pediatric-onset CD. Implementation into 
a clinical setting can help personalize management.

Lay Summary 
NOD2 is a well-established risk gene for development of Crohn’s disease and stricturing behavior. Here we demonstrate NOD2 can be utilized 
as a genomic biomarker, stratifying patients into 2 stricturing risk groups. Further refinement using disease location at diagnosis improved risk 
stratification.
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Introduction
Crohn’s disease is a chronic, relapsing, and remitting con-
dition characterized by inflammatory change throughout 
the gastrointestinal tract, commonly seen in the terminal 
ileum. Prediction of disease severity and behavior is ex-
tremely challenging at the point of diagnosis. Differentiating 
between patients who will develop inflammatory, pene-
trating, and stricturing phenotypes could potentially enable 
targeted therapy to impact disease course.1 The interplay 
between genetic risk and environmental exposure leads to 
disease pathogenesis, something which appears increasingly 
likely to be specific to a patient or family.2 Specific disease 

traits and responses to therapy have been linked to genetic 
defects, gene expression modules, or microbiome profiles.3–5 
Previous attempts to translate molecular data to predict clin-
ical outcomes have produced promising results, although no 
testing has routinely entered clinical practice to date.6,7

NOD2 is the best characterized risk gene for development 
of Crohn’s disease, coding for a vital intracellular microbial 
pattern recognition and response protein, triggering down-
stream innate immune response.8,9 Recent data have pointed 
towards a potential monogenic role for NOD2 in a subset 
of Crohn’s disease patients who appear to be at high risk of 
developing a stricturing disease phenotype.10,11 Despite this, 
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NOD2 is largely viewed as a risk gene without a clear clinical 
role for routine genotyping.12 Previous studies have largely 
focused on the 3 most common risk variants within NOD2 
(R702W, G908R, and 1007fs) and have failed to account for 
the role of a rarer variation, epistasis, or accumulation of 
multiple variants with modest deleteriousness.13 Data from 
our group utilizing GenePy, a contemporary in silico muta-
tional burden tool across the whole gene, has demonstrated 
additional NOD2 variation playing a role in Crohn’s disease 
phenotype.11 Accounting for cumulative burden of patho-
genic variation within genes is likely to have a discovery uplift 
when considering non-Mendelian complex disease.14 The role 
of pathogenic variation throughout NOD2 as a single-gene 
contributor to adult onset disease is also poorly elucidated. 
Although NOD2 is the strongest genetic signal for Crohn’s 
disease and stricturing disease, additional genetic risk loci 
have been identified for fibrostenotic disease, including genes 
within the NOD2-signaling pathway such as ATG16L1.15 It 
increasingly appears that the role of NOD2 in Crohn’s dis-
ease is not yet fully understood.

Utilizing genomic biomarkers—measurable genomic char-
acteristics that predict a specific clinical outcome or response 
to treatment—is an exciting avenue of personalized medi-
cine. This study aimed to develop and optimize NOD2 as a 
genomic biomarker capable of stratifying Crohn’s disease 
patients into high- and low-risk groups for development of fi-
brotic stricturing disease, providing a tool for translation into 
clinical practice. Additionally, we aimed to characterize NOD2 
genotypes in both pediatric and adult patients and determine 
the prevalence of deleterious variants across the age spectrum.

Methods
Recruitment
Patients were included from the Wessex regional pediatric 
inflammatory bowel disease (IBD) service at Southampton 
Children’s Hospital and the adult IBD service at University 
Hospital Southampton. Patients were recruited from 2010 to 
the present. All patients within the cohort had a confirmed 
histological diagnosis of either Crohn’s disease, ulcerative 
colitis, or IBD-unclassified, in line with the Porto criteria or 

British Society of Gastroenterology guidelines.16 Patients with 
Crohn’s disease were extracted for this analysis. There are no 
exclusion criteria, if a patient has a confirmed diagnosis of 
IBD and is able to give informed consent.

Longitudinal Data Collection
Endoscopy, small bowel magnetic resonance imaging (MRI), 
abdominal ultrasound, and computed tomography (CT) ab-
domen scan reports were retrieved from the electronic patient 
records (EHRs) of the University Hospital Southampton. These 
records, including clinic letters, imaging reports, and endoscopy 
reports, were searched for stricturing keywords (fibrosis, fi-
brotic, stricture, stricturing, narrowing, narrowed, pre-stenotic 
dilatation, stenotic, reduced diameter) to reduce the number 
of reports requiring clinical curation. Records without key 
words were recorded as a nonstricturing phenotype, and the 
remaining were manually checked by 2 clinicians (J.J.A. and 
M.K.) to assign patients as having stricturing or nonstricturing 
phenotypes. Where there was uncertainty, a further clinician 
(R.M.B.) was consulted to give a final classification. As this 
study was focused on fibrotic or predominately fibrotic dis-
ease, strictures that resolved without surgery or dilatation were 
presumed to be purely inflammatory; and these patients were 
assigned as having a nonstricturing phenotype. As described 
previously, we used the strict definition of fibrotic stricturing 
as “histologically proven, or narrowing demonstrable on 2 
consecutive MRIs, with prestenotic dilatation” to define a spe-
cific disease phenotype.11 Date of stricturing was recorded, and 
time from diagnosis to stricture was calculated. Duration of 
follow-up was calculated for all patients. During the follow-up 
period (diagnosis to most recent clinical contact), all patients 
were assessed for occurrence of fibrotic strictures if they had 
narrowing initially assigned as inflammatory and grouped ac-
cordingly. Presence of terminal ileal disease at diagnosis was 
retrieved from endoscopy and imaging reports.

Whole Exome Sequencing Data Processing
DNA was extracted from blood samples collected in 
ethylenediaminetetraacetic using the salting-out method, or 
from saliva, as previously described.17 An estimated 20 µg of 
DNA was used for whole exome sequencing.

Raw fastq sequencing data from patients in the cohort 
were processed using our in-house pipeline in line with 
the Genome Analysis Tool Kit 4 (GATK 4) best practice 
(https://github.com/UoS-HGIG/WES_2022_QC_pipeline).18 
Alignment was performed against the human reference ge-
nome (GRCh38 assembly with decoy human leucocyte an-
tigen [HLA] regions) using BWA-mem (version 0.7.15).19 
Joint variant calling of all samples in the cohort was re-
stricted to the 150 bp padded union of the Agilent SureSelect 
All Exon V5 and V6 capture kits.

VerifyBamID was utilized to check the presence of DNA 
contamination across the cohort.20 We applied our in-house 
fingerprint panel to confirm sample identity and provenance.21 
In addition, following the GATK built-in Variant Quality 
Score Recalibration, data were assessed for sequencing depth, 
genotyping quality, and variant allele frequency (AF).

Variant called format (VCF) file annotation was performed 
using Ensembl-VEP (v.103),22 using default databases, 
deleteriousness scores databases (dbnsfp35c, CADD 
v.1.6),23 dbSNP147, and the human genetic mutation data-
base (HGMD Pro 2021).24 Variant allele frequencies were 

Key messages

What is already known?
• NOD2 is highly implicated in Crohn’s disease and has 

been linked to a stricturing phenotype.
What is new here?

• By using NOD2 as a genomic biomarker, we are able to 
predict high-risk stricturing patients; disease location 
data also further improved prediction.

• In those diagnosed at younger than 18 years of age, the 
high-risk group had a 5x increased risk of stricturing 
compared with low-risk patients.

How can this study help patient care?
• Routine utilisation of NOD2 as a genomic biomarker 

may allow risk stratification of Crohn’s disease patients 
at diagnosis.

• Personalizing management based stricturing risk may 
be possible.

• Stratified randomized trials of high-risk patients will be 
important.

https://github.com/UoS-HGIG/WES_2022_QC_pipeline
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sourced through the genome aggregation exome database 
(gnomAD),25 v2.1.1. We referred to the canonical NOD2 
transcript ENST00000300589 (GENCODE) for the annota-
tion of coding variants unless otherwise specified.

Lollipop plot of NOD2 coding variants was generated using 
the MutationMapper tool of cBioPortal,26 and variants were 
mapped to the Pfam domains of NOD2 (Figure 1) to visualize 
the distribution of variants with respect to deleteriousness 
metrics (CADD v.1.6) and allele frequency (gnomAD) within 
our cohort.

Application of GenePy
GenePy provides a per gene, per individual single metric of 
deleteriousness, facilitating genes to be incorporated into down-
stream risk stratification modeling. Whole exome sequencing 
data were transformed into GenePy scores for patient stratifica-
tion (https://github.com/UoS-HGIG/GenePy-1.4).14 Firstly, the 
joint called aggregated cohort VCF underwent recommended 
quality control filtration steps,27 such that only good quality 
biallelic variants were retained in a VCF for annotation as 
described previously. The GenePy score algorithm was applied 
to exonic variants, with a CADD Phred score >15 (as per de-
veloper guidance for determining deleterious variants), and 
GenePy scores were retrieved for analysis.23

Monogenic NOD2 Disease
To stratify the risk of stricturing in individuals based on 
NOD2 genotype, all patients were screened for biallelic 

NOD2 variants. Variants were initially annotated with func-
tional evidence from the literature, as previously described.11 
Variants that were functionally demonstrated to impact 
NOD2 function, including reduced/absent protein function, 
impact downstream signaling, nonsense mediated decay or 
deletions, were included in line with American College of 
Medical Genetics guidelines (ACMG) for “pathogenic” or 
“likely pathogenic” variants.28 Patients who were homozy-
gous, or had 2 or more heterozygous variants, were denoted 
“NOD2-related disease.”

We determined the number of patients with putative dele-
terious NOD2 variation but without functional evidence to 
meet ACMG criteria to be in silico NOD2-related disease. 
These patients were homozygous or had 2 or more heter-
ozygous variants, where the variants met in silico criteria 
for deleteriousness-allele frequency (gnomAD) <0.05 and a 
CADD-PHRED score of >15.23

We have previously demonstrated that all potential NOD2 
compound heterozygous variants in pediatric-onset patients 
had confirmed variant segregation and were biallelic.23 In 
this study, it was not possible to perform segregation anal-
ysis in patients with adult-onset disease due to lack of pa-
rental DNA.

Incidence of stricturing disease in patients was 
retrieved, and we assessed enrichment for a stricturing vs 
nonstricturing phenotype in each group through a Chi-
squared test. Data were visualized using a dumbbell plot. A 
summary of the methodology can be seen in Supplementary 
Figure 1.

Figure 1. A, Lollipop plots showing homozygous variants in NOD2 identified in our cohort. B. All variants identified in the cohort and (C) variants with 
CADD scores >15 (deleterious variants) within the cohort. C, An area of 171 amino acids in the NOD domain are free from variants predicted to be 
deleterious. In all figures, variants are shown by position within NOD2 (x axis) and frequency (y axis).

https://github.com/UoS-HGIG/GenePy-1.4
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Stricturing Disease Prediction Modeling
Receiver operator curve analysis
To determine the stricturing disease classification ability of 
NOD2 mutation burden, we performed an area under re-
ceiver operator curve (AUROC) analysis (SPSS, IBM v27). 
NOD2 GenePy score was the test variable. The analyses were 
performed on all patients, and then separately on the sub-
group of patients diagnosed <18 years of age.

Group Optimization: Training and Testing Data Sets
Patients were split into training and testing (validation) sets 
for risk-group determination utilizing the caTools R package 
(training proportion = 0.75). Utilising Cutoff Finder,29 a bio-
marker optimization software, an iterative Fisher exact test 
was used to determine the optimal number of risk groups and 
NOD2 GenePy score boundaries. All groups and boundaries 
were initially determined on the training data, with assess-
ment of model performance on the testing data using a 2 test.

Survival Analysis and Model Performance
Following confirmation of valid group boundaries, all data 
were combined to determine model performance metrics. To 
account for variable follow-up duration between patients, 
survival analysis was performed using a Cox proportional 
hazards (CPH) model to give final model performance metrics. 
Survival analysis was performed on all patients. Additionally, 
analysis was performed on patients diagnosed younger than 
18 years of age to determine if prediction was improved in 
patients with a presumed higher heritable component to their 
disease. All statistical analyses were performed in SPSS (IBM 
v27).

Inclusion of Disease Location Data
NOD2 variants are known to predispose to terminal ileal (TI) 
inflammation. To assess the independent role of NOD2 in 
the prediction of stricturing disease, we determined whether 
adding the presence or absence of TI inflammation as a var-
iable to the risk stratification model improved or negated 
the predictive ability of NOD2 risk groups. Previously de-
termined NOD2 risk groups were further stratified into the 
following groups: group 1, low-risk NOD2 group and no TI 
disease; group 2, low-risk NOD2 group and TI disease; group 
3, high-risk NOD2 group and no TI disease; and group 4, 
high-risk NOD2 group and TI disease. Survival modeling was 
performed on these groups, including separate analysis for 
pediatric-onset patients.

Non-NOD2 Genetic Determinants of Stricturing 
Disease
We hypothesized that in patients who developed strictures 
in the absence of significant NOD2 variation, an alterna-
tive genetic driver may be identified to further stratify these 
individuals. In patients stratified to a low-risk group based 
on NOD2 as a biomarker, we performed a logistic regression 
with the GenePy scores (calculated for each gene as described 
previously) of ATG16L1 and 15 additional genes identified 
through literature review to impact stricturing disease risk 
(ie, CX3CR1, FUT2, IL12B, IL23R, JAK2, MAGI1, MMP3, 
TGFB1, SLC22A4, ICAM1, SELP, SELL, IL10, TNFSF15, 
and WWOX), as independent variables, and stricturing dis-
ease status as the dependant variable.

Patient and Public Involvement
Patients and families were involved in the design and con-
duct of this research. Patient priorities for research have de-
termined priority analyses and dissemination.

Ethics
This study has University of Southampton category A ‘ERGO’ 
2 ethics approval (30630) and research ethics committee 
approval from Southampton and South West Hampshire 
Research Ethics Committee (09/H0504/125).

Results
Six hundred forty-five patients with a confirmed diagnosis of 
Crohn’s disease were included. Of these, 373 were diagnosed 
younger than 18 years of age, and 272 were diagnosed as 
adults.

Within the cohort, we identified 112 distinct variants 
within NOD2. Of these variants, 15 had functional evi-
dence impacting protein function or downstream signaling, 
identified through review of the literature (Supplementary 
Data 1). There were 11 NOD2 variants with functional evi-
dence and a further 32 variants fulfilling in silico criteria for 
deleteriousness (CADD >15 and AF <0.05). Characteristics 
of these variants are summarized in Supplementary Data 1.

Variant location within the NOD2 gene were assessed 
and visualized (Figure 1). Pathogenic, likely pathogenic, and 
in silico deleterious variants were present throughout the 
gene, apart from a 171 amino acid region (positions 441-
612, GENCODE transcript ENST00000300589) within the 
nucleotide binding domain (NOD) in which no deleterious 
variants were found. Variants were observed in both caspase 
recruitment domains and throughout the remaining NOD 
and leucine-rich repeat domains.

Monogenic NOD2-Related Disease
In adult-onset patients, we were unable to segregate variants 
due to lack of parental DNA; however, all potential com-
pound heterozygote NOD2 pediatric-onset patients were 
previously confirmed to be biallelic.11 We treated all potential 
compound heterozygote variants in the cohort as presumed 
compound heterozygote.

ACMG Pathogenic or Likely Pathogenic Criteria for 
NOD2-Related Disease
To stratify patient risk of structuring, we considered NOD2 as 
an autosomal recessive cause of Crohn’s disease. We identified 
patients who fulfilled ACMG criteria for harboring causative 
variants (pathogenic or likely pathogenic). Across the en-
tire cohort, 48 patients (7.4%) fulfilled ACMG criteria for 
NOD2-related disease, including 19 patients who were ho-
mozygote and 29 patients who were (presumed) compound 
heterozygote for a variant with functional evidence. Table 1.

We stratified patients by age at diagnosis. Of those younger 
than 18 years of age at diagnosis, 30 of 373 patients (8%) 
had NOD2-related disease compared with 18 of 272 patients 
(6.6%) diagnosed when older than 18 years of age (P = .5).

In Silico NOD2-Related Disease
We characterized patients with deleterious variation within 
NOD2 but insufficient functional evidence to fulfil ACMG 
pathogenic or likely pathogenic criteria. No patients were 

http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac205#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac205#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac205#supplementary-data
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homozygous for deleterious in silico NOD2 variants. We 
identified 24 patients (3.7%) with either 1 variant with 
published evidence for functional impact NOD2 function 
and 1 variant assessed to have in silico evidence of poten-
tial functional impact (an AF [gnomAD] <0.05 and a CADD 
PHRED score of >15) or 2 variants with an AF (gnomAD) 
<0.05 and a CADD PHRED score of >15 (Table 1).

In patients aged younger than 18 at diagnosis, 15 of 373 
patients (4%) had in silico NOD2-related disease compared 
with 9 of 272 patients (3.3%) diagnosed 18 years of age and 
older (P = .6).

Stricturing Phenotype-Genotype Assessment
We assessed the relationship between NOD2-genotype and 
stricturing phenotype (Table 1). In patients fulfilling ACMG 
pathogenic or likely pathogenic criteria, 24 of 48 patients 
(50%) had strictures compared with 156 of 597 patients 
(26.1%) not fulfilling these criteria (P = .0004). When consid-
ering the in silico NOD2-genotype group, 10 of 24 patients 
(41.7%) had strictures.

Combining the 2 groups (NOD2-related disease and 
in silico NOD2-related disease) demonstrated 34 of 
70 (48.6%) patients had developed stricturing disease 
compared with 147 of 575 (25.5%) patients not ful-
filling either criterion for a deleterious NOD2-genotype  
(P = .00005).

NOD2 as a Genomic Biomarker for Stricturing 
Phenotype
We assessed the ability of NOD2 GenePy score to classify 
all patients by stricturing outcome using an AUROC anal-
ysis. For all patients (N = 645), NOD2 showed modest power 
to discriminate stricturing disease behavior (AUROC, 0.586;  
P = .001; Supplementary Figure 2A). Performance improved 
when considering only patients diagnosed younger than 

18 years of age (n = 373; AUROC, 0.654; P = .000024; 
Supplementary Figure 2B).

To better utilize NOD2 as a genomic biomarker in a clin-
ical setting, we stratified patients into high- and low-risk 
groups for stricturing disease using an easily automatable bi-
oinformatic process.

Group Number and Cutoff Optimization
To determine optimal risk groups, patients were split into 
training (484 patients) and testing (161 patients) sets. The 
training and testing data sets were balanced according to the 
number of stricturing patients (the minority class). We em-
ployed an iterative Fisher exact test within the training set to 
determine the number of risk groups and GenePy score cutoff 
values.

This analysis identified 2 risk groups derived from the 
training data (Table 2). The absolute GenePy cutoff values 
were then applied to the testing set of patients, where 
≥1.078 indicated high risk and <1.078 indicated low risk 
for stricturing disease. Within the testing set of patients, 
the high-risk group demonstrated a 56.7% stricturing rate 
compared with 21.4% stricturing risk in the low-risk group 
(P = .0001).

Survival Analysis
To assess model performance, all patients were combined for 
survival modeling. We employed a CPH model to account for 
variable follow-up duration.

Considering all patients, the risk groups demonstrated 
ability to stratify patients by stricturing risk, based only on 
NOD2 genomic data, Figure 2A. Patients in the high-risk 
group (n = 89), as determined by NOD2, had higher rates of 
stricturing at all timepoints from diagnosis, with 44 patients 
stricturing over this time (49.4%), β = 2.092, P = .000024. 
At maximal follow-up, over 80% of high-risk group patients 

Table 1. Number of patients with harboring NOD2 variants fulfilling American College of Medical Genetics criteria for Likely Pathogenic or Pathogenic, 
and variants predicted to be deleterious but with no functional evidence. For functional evidence refer to Supplementary Data 1. Prevalence of 
stricturing disease within each group is reported.

 All Patients (N = 645) Patients Diagnosed Younger than 18 Years 
Only (n = 373)

Patients Diagnosed 18 Years or Older 
Only (n = 272)

NOD2-Related 
Diseasea (number 
with stricturing 
phenotype, %) 

In silico NOD2-Related 
Diseaseb (number with 
stricturing phenotype, 
%) 

NOD2-Related 
Diseasea (number 
with stricturing 
phenotype, %) 

In silico NOD2-Related 
Diseaseb (number with 
stricturing phenotype, 
%) 

NOD2-Related 
Diseasea (number 
with stricturing 
phenotype, %) 

In silico NOD2-Related 
Diseaseb (number with 
stricturing phenotype, 
%) 

Homozygote 19 (9 patients, 
47.4%)

0 (0 patients) 13 (5 patients, 
38.5%)

0 (0 patients) 6 (4 patients, 
66.7%)

0 (0 patients)

Presumed 
compound 
heterozygote

29 (15 patients, 
51.7%)

15c (5 patients, 33.3%) 17 (9 patients, 
52.9%)

10c (3 patients, 30%) 12 (6 patients, 
50%)

5c (2 patients, 40%)

9 d (5 patients, 55.6%) 5 d (3 patients, 60%) 4 d (2 patients, 50%)

Total 
patients

48 (24 patients, 
50%)

24 (10 patients, 
41.7%)

30 (14 patients, 
46.7%)

15 (6 patients, 40%) 18 (10 patients, 
55.6%)

9 (4 patients, 44.4%)

a Two or more variants that functionally impact NOD2 function, including reduced/absent protein function, impact downstream signaling, nonsense 
mediated decay or deletions, in line with American College of Medical Genetics guidelines.
b Either, one variant that functionally impacts NOD2 function including reduced/absent protein function, impact downstream signaling, nonsense-mediated 
decay or deletions, in line with American College of Medical Genetics guidelines AND one variant had a minor allele frequency (MAF) (gnomAD_AF) 
<0.05 and a CADD-PHRED 1.6 score of >15, OR 2 variants had a MAF (gnomAD_AF) <0.05 and a CADD-PHRED 1.6 score of >15.
c Patients with one variant that functionally impacts on NOD2 function, including reduced/absent protein function, impact downstream signaling, nonsense 
mediated decay or deletions, in line with American College of Medical Genetics guidelines AND one variant with a MAF (gnomAD_AF) <0.05 and a 
CADD-PHRED 1.6 score of >15.
d Patients with 2 variants of a MAF (gnomAD_AF) <0.05 and a CADD-PHRED 1.6 score of >15.

http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac205#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac205#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac205#supplementary-data
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had stricturing disease compared with less than 60% of low-
risk group patients.

Paediatric-Onset Patients
We hypothesized that genetic determinants of disease would be 
more prominent in patients with younger age of onset. Survival 
modeling using only patients diagnosed < 18 years (n = 373) 
was performed. Analysis demonstrated improved performance, 
with 27 of 57 (47.4%) patients in the high-risk group having 
stricturing disease compared with only 53 of 315 (16.8%) of 
patients in the low-risk group, β = 3.164, P = .000001. Figure 
2B. At maximal follow-up, nearly 80% of high-risk patients had 
strictures compared with an estimated 35% of low-risk patients.

Refinement of Prediction Using Disease Location 
Data
Disease location data, at the point of diagnosis, were available 
for 585 patients including 340 pediatric-onset individuals. 
Patients were split into those with TI disease and those without. 
As expected, presence of TI disease at diagnosis was associated 
with stricturing phenotype, odds ratio 2.5, P = .00018.

To determine the impact of NOD2-risk group combined 
with disease location, we performed a CPH survival model. 
Patients were stratified into combined NOD2 and disease loca-
tion risk groups (group 1-4). Considering patients diagnosed as 
adults and children, the addition of NOD2-risk group, derived 
from whole exome sequencing data to disease location, resulted 
in a significant increase in predictive ability. When compared 
with group 1 (low-risk NOD2 and no TI disease), the hazard 
ratio (HR) increased from 1.66 (P = .028) for group 2 (low-risk 
NOD2 and TI disease) to 3.19 (P = .00001) for group 4 (TI 
disease plus NOD2 high-risk group; Figure 3A). Only a small 
number of patients were in group 3, which included the high 
risk-NOD2 group with no TI disease involvement (n = 7).

We performed the same analysis for patients diagnosed 
younger than 18 years of age, given the previous data 
indicating a stronger predictive value of NOD2 in younger 
patients. There was further improvement in predictive ability. 
There was no significant difference between group 1 and 2 
(HR, 1.67; P = .146). However, when comparing group 1 with 
group 4, the HR was 4.89 (P = .000023; Figure 3B). Again, 
only a very small number of patients were in group 3 (ie, high 
risk-NOD2 group) and had no TI disease involvement (n = 6).

Identification of Additional Genomic Factors 
Implicated in Stricturing Disease
We attempted to determine whether patients who did 
not harbor a high burden of NOD2 variants but still had 

stricturing disease had an alternative genetic driver of this 
disease behavior. Patients defined as high-risk of stricturing 
according to GenePy NOD2 biomarker stratification were 
excluded from further analysis, leaving 556 patients defined 
as low-risk for stricturing according to NOD2. Of these 
patients, 136 (24.5%) still developed stricturing disease.

All 556 patients were included in a logistic regression 
model, which did not reveal any significant relationships be-
tween the GenePy score of any gene previously implicated 
in development of stricturing phenotype by literature re-
view (Supplementary Table 1). Despite this, ATG16L1 
approached statistical significance for a positive association 
with stricturing phenotype (β = 3.434; P = .064).

Discussion
These data demonstrate the potential utility of NOD2 as a 
genomic biomarker for the prediction of stricturing pheno-
type in patients with Crohn’s disease. We were able to stratify 
patients into highly significant high- and low-risk groups for 
development of stricturing disease. This could be a clinically 
useful tool that complements clinician decision-making for 
individual patient management. When combined with disease 
location data, we are able to refine predictive ability whilst 
demonstrating the additional utility of the NOD2 biomarker. 
Although NOD2 is a well-established risk locus for Crohn’s 
disease, a patient’s distinct genetic variation in this gene is 
not currently utilized in the clinical setting. These data also 
add additional weight to the hypothesis that for some patients 
there is an autosomal recessive inheritance of NOD2 variants, 
leading to disease.10,11

Recent functional work has pointed to a mechanism by 
which impaired NOD2 function may lead directly to fibrotic 
disease.30 Our data provide a bridge between this elegant 
functional work and a clinically applicable tool that can be 
used to stratify patients at diagnosis by the risk of stricturing 
disease. Additionally, contemporary data have pointed 
towards the importance of genetic variation within the wider 
NOD-signaling pathway, with direct impact on transcription 
levels in patients with pediatric-onset inflammatory bowel 
disease.31 There is the possibility that in some patients, a 
stricturing disease phenotypes will be associated with rare 
genetic defects across the NOD-signaling pathway, and fur-
ther refinement of predictive models may be possible with 
future integration. Data from genome wide association study 
have pointed towards stricturing disease in relation to NOD2 
purely being a function of its predisposition to trigger ter-
minal ileal disease.32 However, these analyses fail to account 

Table 2. Training and testing data for identification of predictive risk groups for stricturing disease using summed deleteriousness across the whole 
gene (GenePy score). Performance of the cutoffs derived from training data is shown in the test data.

Groupsa NOD2 CADD >15 Variants (training set = 484) NOD2 CADD >15 Variants (testing set = 161)

Absolute Cut Off 
Value of GenePy Scorea 

Number of Patients 
in Group (%) 

Number of Stricturing 
Patients in Group 

Absolute 
Cutoff Values 

Number of Patients 
in Group (%) 

Number of Stricturing 
Patients in Group 

Group 1 
(high risk)

≥1.078 59 (12.2%) 27 (45.7%) ≥1.078 30 (18.6%) 17 (56.7%)

Group 2 
(low risk)

<1.078 425 (87.8%) 108 (25.4%) <1.078 131 (81.4%) 28 (21.4%)

aGroups determined by Fisher exact test.

http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izac205#supplementary-data
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for any rare variation and are limited to association with 
phenotype derived from single nucleotide polymorphism 
data. Newer evidence from whole exome sequencing would 
appear to suggest that NOD2 leads to stricturing disease, 

regardless of disease location at diagnosis.10,11 Furthermore, 
NOD2 genomic data alone still predict stricturing disease 
occurrence at the point of diagnosis, regardless of any clin-
ical features at diagnosis. It appears increasingly likely that 

Figure 2. A, Cox proportional hazard survival plot for all patients. Patients are divided into high risk of stricturing (group 1) and low risk of stricturing 
(group 2). High risk compared with low risk, hazard ratio of 2.092. B, Restriction of survival analysis to patients diagnosed younger than 18 years of age. 
High risk compared with low risk, hazard ratio of 3.164.
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Figure 3. A, Cox proportional hazard survival plot for all patients. Patients are divided into 4 groups. When comparing the lowest risk patients in group 
1 to both group 2 and group 4, there are significant increases in the risk of developing stricturing disease. B, Restriction of survival analysis to patients 
diagnosed younger than 18 years of age. The highest risk of stricturing disease occurred in group 4, with a hazard ratio of 4.89 (P = .000023) compared 
with group 1.
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the full role of NOD2 in the development of Crohn’s disease 
is not yet understood.

Construction of predictive models for complicated Crohn’s 
disease have proven challenging. Kugathasan and colleagues 
previously detailed a joint model for stricturing and pene-
trating complications, performing with borderline signifi-
cance (specificity 63%, sensitivity 66%).7 Interestingly, an 
NOD2 genotype (analysis of the 3 common variants only—
rs2066844, rs2066845, and rs2066847) was not a signifi-
cant predictor in the competing-risk model, whereas CBir1 
seropositivity and an extracellular matrix gene expression 
signature were positively associated with a B2 disease phe-
notype. Our data point to the importance of analysis of del-
eterious variation across the whole NOD2 gene, rather than 
limiting this to specific, more frequent variants. Additional 
predictive models for Crohn’s disease have taken alterna-
tive approaches, including T-cell specific transcription and 
microbiome signatures.5,33 Although yielding impressive 
results in a research setting, these data have not yet moved 
into routine practice. Furthermore, the prediction of long-
term disease activity is heavily restricted by the lack of a lon-
gitudinal disease activity metric.

Long-range sequencing of NOD2 presents an opportu-
nity to refine any predictive model, providing additional data 
on regulatory, promotor, and intronic regions. It is possible 
that some of the missing predictive power for stricturing dis-
ease will be accounted for within these NOD2 noncoding 
regions. Refinement of our predictive model was possible 
by limiting to patients diagnosed younger 18 years of age. 
Previous data have pointed to higher heritability in patients 
diagnosed as children.34 However, the long-term phenotype 
of Crohn’s disease does not appear to significantly differ be-
tween adults and children.35 This points to additional, yet 
unknown, factors in the development of stricturing disease, 
with NOD2 variation being the most common in early-onset 
disease.

Translating genomic data into clinical practice within IBD 
has huge potential. The importance of integration of genomic 
data with longitudinal and well-phenotyped data sets, such 
as our own, has recently been highlighted specifically in re-
lation to preventing tissue remodeling and fibrosis.36 To date, 
the use of next generation sequencing has yielded signifi-
cant advances in the diagnosis and management of patients 
with monogenic forms of IBD; however, these only account 
for a very small number of the total number of patients.37 
Our data point to the importance of inclusion of clinical 
data to aid refinement of genomic prediction tools. Utilizing 
these technologies for wider patient benefit has lagged sig-
nificantly behind. Limited pharmacogenomic testing is now 
starting to emerge, with the opportunity for routine screening 
of TPMT,38 NUDT15,39 and HLA-DQA1*0540 to prevent 
thiopurine toxicity, myelosuppression, and formation of anti-
tumour necrosis factor antibodies, respectively. Our model 
requires either targeted NOD2 sequencing or whole exome 
or whole genome sequencing, which would incur an addi-
tional cost. However, preventing complications, or treating 
them early, is likely to have a net saving over the lifetime of 
a patient. We envisage that our prediction model could en-
able routine monitoring through regular small bowel im-
aging, alongside the potential for preemptive monoclonal 
therapy and randomized control trials of established and new 
therapies, based on genomic risk stratification.

To better utilize genomic data in clinical practice, there is 
likely to be an increased need to employ powerful machine-
learning algorithms to make sense of genomic and big clin-
ical data.41 These tools have already been widely employed 
for autoimmune diseases, including IBD; however, the results 
are variable.42,43 Recent studies seem to indicate a shift in 
applications from diagnostics to prediction of outcomes. 
There is an accompanying increase in the number of studies 
being published, but the clinical translation of these data, in-
cluding from complex algorithms such as neural networks, is 
currently limited.41

This study has several key strengths. The genomic data 
are high quality with stringent quality control processing. 
Longitudinal phenotyping data is extracted and processed in 
a standardized fashion from a single institution’s electronic 
health record. The integration of data follows a novel meth-
odology, revealing new predictive power of genomic data. We 
acknowledge limitations in this work. There was a necessity 
for retrospective phenotyping of patients, although this was 
performed in a systematic way with structured clinician val-
idation. Due to the strict definition of fibrotic stricturing dis-
ease, it is possible that some patients may be misassigned to 
a nonstricturing category if they were early in their disease 
course. It appears likely that with improved follow-up dura-
tion, the performance of the model in predicting tructuring 
disease would improve. In patients diagnosed as adults, we 
were unable to perform segregation analysis to determine 
phase of variants or analyze noncoding variants—both areas 
that would be bolstered by long-range sequencing. We ac-
cept that although patients in the high-risk NOD2 group are 
at up to a 3-fold increased risk of developing fibrostenotic 
stricturing disease, this group only accounts for 25% of all 
stricturing cases. We hypothesize that additional factors in-
cluding genetic and environmental variables are contributing 
to the development of strictures in the remaining patients, 
which we are currently unable to integrate into the model 
to improve its performance. Future research must focus 
on identification of risk and protective factors that can be 
used to further refine these models, including extended 
sequencing of the NOD2 region to determine the impact of 
noncoding sequences. Whether NOD2 variants predispose 
to fibrostenotic stricturing or whether variants predispose 
to ileal inflammation, leading to strictures, has been raised 
as a potential confounder of utilizing NOD2 as a predictive 
tool.44 Data present here and previously published from our 
group indicate that NOD2 is significantly associated with 
stricturing disease, even when accounting for presence (or 
absence) of ileal inflammation.11 Utilization of NOD2 as a 
predictive biomarker has the additional advantage that it is 
not limited by aging or by technical difficulties at endoscopy 
to identify disease location. Combining genomic and clinical 
predictors appears to be a highly useful strategy for future 
modeling.

Conclusions
NOD2 is a powerful predictive tool for stratification of 
patients by their risk of stricturing disease. Further refine-
ment of the model through addition of disease location 
improved performance. Future improvement may be pos-
sible with the addition of long-range phased sequencing 
data. The next steps are construction of predictive tools 
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for additional complications and diseases behaviors. 
Translation of these methods into a clinical application and 
accessible tool is an important step towards personalized 
medicine in IBD.

Supplementary Data
Supplementary data is available at Inflammatory Bowel 
Diseases online.
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