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Background. This phase 3 trial assessed AZD7442 (tixagevimab/cilgavimab) for post-exposure prophylaxis against 
symptomatic coronavirus disease 2019 (COVID-19).

Methods. Adults without prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or COVID-19 
vaccination were enrolled within 8 days of exposure to a SARS-CoV-2–infected individual and randomized 2:1 to a single 
300-mg AZD7442 dose (one 1.5-mL intramuscular injection each of tixagevimab and cilgavimab) or placebo. Primary end 
points were safety and first post-dose SARS-CoV-2 reverse-transcription polymerase chain reaction (RT-PCR)–positive 
symptomatic COVID-19 event before day 183.

Results. A total of 1121 participants were randomized and dosed (AZD7442, n = 749; placebo, n = 372). Median (range) follow-up 
was 49 (5–115) and 48 (20–113) days for AZD7442 and placebo, respectively. Adverse events occurred in 162 of 749 (21.6%) and 111 of 
372 (29.8%) participants with AZD7442 and placebo, respectively, mostly mild/moderate. RT-PCR–positive symptomatic COVID-19 
occurred in 23 of 749 (3.1%) and 17 of 372 (4.6%) AZD7442- and placebo-treated participants, respectively (relative risk reduction, 
33.3%; 95% confidence interval [CI], −25.9 to 64.7; P = .21). In predefined subgroup analyses of 1073 (96%) participants who were 
SARS-CoV-2 RT-PCR–negative (n = 974, 87%) or missing an RT-PCR result (n = 99, 9%) at baseline, AZD7442 reduced RT-PCR– 
positive symptomatic COVID-19 by 73.2% (95% CI, 27.1 to 90.1) vs placebo.

Conclusions. This study did not meet the primary efficacy end point of post-exposure prevention of symptomatic COVID-19. 
However, analysis of participants who were SARS-CoV-2 RT-PCR–negative or missing an RT-PCR result at baseline support a role 
for AZD7442 in preventing symptomatic COVID-19.
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Post-exposure prophylaxis comprises interventions aimed at 
reducing the risk of developing symptomatic disease or disease 
progression, as well as transmission, after pathogen exposure. 
Post-exposure prophylaxis is routinely recommended follow-
ing exposure to viruses including influenza virus [1], human 
immunodeficiency virus [2], varicella-zoster virus [3], and hep-
atitis B virus [4].

Despite effectiveness of coronavirus disease 2019 
(COVID-19) vaccines in reducing symptomatic disease, hospi-
talization, and mortality [5, 6], severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) transmission continues, 
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particularly with the emergence of highly transmissible variants 
[7, 8]. The risk of SARS-CoV-2 outbreak and exposure is high 
in settings where close indoor contact is common, such as long- 
term care facilities (LTCFs), healthcare facilities, and industrial 
and military settings, where such outbreaks have been reported 
even among populations with high vaccination uptake [9–11]. 
In these instances, additional interventions to rapidly protect in-
dividuals following SARS-CoV-2 exposure are needed, particu-
larly for unvaccinated individuals and those at high risk of 
developing severe disease following infection. The median incu-
bation period of wild-type SARS-CoV-2, from exposure to symp-
tom onset, is estimated to be 5.1 days, and 97.5% of those who 
develop symptoms will do so within 11.5 days of infection [12], 
although this timing is likely shorter for the Omicron variant (ap-
proximately 3 days) [13]. The post-exposure period represents a 
potential opportunity for post-exposure prophylaxis to prevent 
symptomatic COVID-19.

SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) 
represent a potential option for rapid, passive immunoprophy-
laxis. AZD7442 is a combination of 2 extended half-life 
SARS-CoV-2–neutralizing mAbs (tixagevimab and cilgavi-
mab) derived from potent antibodies isolated from B cells 
from SARS-CoV-2–infected individuals. Tixagevimab and cil-
gavimab bind to distinct epitopes of the viral spike protein 
receptor-binding domain [14–17]. AZD7442 neutralizes 
SARS-CoV-2 and variants including Omicron [18–20] in vitro. 
AZD7442 significantly prevented development of symptomatic 
COVID-19 when used as pre-exposure prophylaxis in the 
phase 3 prophylaxis prevention (PROVENT) trial, protected 
against severe disease and death as treatment for mild to mod-
erate COVID-19 in the phase 3 treating acute COVID-19 con-
dition with a long half-life engineeredantibody (TACKLE) trial, 
and showed a 30% reduction in all-cause mortality as treatment 
for severe COVID-19 in the phase 3 ACTIV-3 (Therapeutics 
for Inpatients with COVID-19; TICO) trial, and was well toler-
ated across trials [21–23]. The phase 3 COVID-19 Study to 
Optimally Reduce Morbidity in CareHomes and Sites with 
Enhanced Risk (STORM CHASER) trial was conducted to as-
sess AZD7442 for post-exposure prevention of symptomatic 
COVID-19 in adults within 8 days of exposure to an individual 
with laboratory-confirmed SARS-CoV-2 infection.

METHODS

Study Design and Participants

STORM CHASER is an ongoing, 15-month, phase 3, random-
ized, double-blind, placebo-controlled, multicenter study, per-
formed at 59 sites across the United States and the United 
Kingdom. Data are presented from the primary analysis, as-
sessed 30 days after the 25th primary end point event had oc-
curred (data cutoff, 7 April 2021) and from an extended data 
cutoff (19 August 2021) for primary and key secondary efficacy 

end points, safety end points, and characterization of variants 
of concern.

The trial was conducted in accordance with the ethical princi-
ples derived from international guidelines, including the 
Declaration of Helsinki (7th revision, 2013), Council for 
International Organizations of Medical Sciences International 
Ethical Guidelines, applicable International Council for 
Harmonisation Good Clinical Practice Guidelines, and all appli-
cable laws and regulations. The protocol and amendments were 
reviewed and approved by an institutional review board or ethics 
committee. All participants provided written informed consent.

Participants were aged ≥18 years with potential exposure 
within 8 days to a symptomatic or asymptomatic individual 
with laboratory-confirmed SARS-CoV-2 infection and who 
were at appreciable risk of imminently developing COVID-19 
based on available risk assessment at time of enrollment, within 
a high SARS-CoV-2 exposure risk setting (Supplementary 
Material). Participants must not have had COVID-19 symp-
toms (Supplementary Table 1) within 10 days before dosing. 
Participants with previous laboratory-confirmed SARS-CoV-2 
infection or seropositivity (based on rapid point-of-care test) 
at screening or receipt of COVID-19 vaccination were excluded. 
Full eligibility criteria are provided in the Supplementary 
Material. A nasopharyngeal swab was collected at screening 
for SARS-CoV-2 by central laboratory reverse-transcription po-
lymerase chain reaction (RT-PCR) for future analysis.

Randomization and Masking

Participants were randomized 2:1 to a single 300-mg AZD7442 
dose (one 1.5-mL injection of each mAb consecutively) or saline 
placebo (two 1.5-mL injections consecutively) intramuscularly 
on day 1 and monitored for safety for 1–4 hours post dosing. 
Participants were initially stratified into cohort 1 (aged ≥60 
years living in LTCFs with occurrence of SARS-CoV-2 infection 
in another resident or staff member) or cohort 2 (aged ≥18 years 
exposed to SARS-CoV-2 within a prespecified high exposure 
risk setting; Supplementary Material). A protocol amendment 
(v6.0, 12 March 2021) removed caps for cohorts 1 and 2 not 
to exceed 80% of the total participants, as recruitment of partic-
ipants from LTCFs was judged no longer feasible with the avail-
ability of COVID-19 vaccines.

Participants who received study intervention and became el-
igible for a COVID-19 vaccine could request to be unblinded 
(at any time) to consider COVID-19 vaccination and remain 
in the study (Supplementary Material).

Outcomes

The primary safety end point was safety and tolerability of a sin-
gle intramuscular dose of AZD7442 vs placebo, assessed by ad-
verse events (AEs), serious AEs (SAEs), medically attended AEs 
(MAAEs), and AEs of special interest (AESIs). The primary ef-
ficacy end point was first incidence of post-dose SARS-CoV-2 
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RT-PCR–positive symptomatic illness (hereafter referred to as 
symptomatic COVID-19) occurring before day 183, assessed 
30 days after the 25th event had occurred. The day 183 time 
point was selected to coincide with the expected duration of 
the effect of AZD7442, based on modeling analyses [17].

Further details of end points and the analysis methods are 
provided in the Supplementary Material.

Statistical Analyses

For analysis of the primary efficacy end point, a study popula-
tion of approximately 1125 participants randomized in a 2:1 ra-
tio, assuming a 4.5% attack rate with placebo and 75% true 
efficacy (equating to an attack rate of 1.1% with AZD7442), 
was estimated to provide approximately 90% power to demon-
strate the lower bound of the 2-sided 95% confidence interval 
(CI) for efficacy to be >0. Based on these assumptions, a mini-
mum of 25 cases was required to demonstrate efficacy.

The primary efficacy analysis was performed using a Poisson 
regression model with robust variance with log of follow-up 
time as an offset to estimate relative risk of symptomatic 
COVID-19 with AZD7442 vs placebo. Efficacy was calculated 
as relative risk reduction (RRR) for symptomatic COVID-19. 
Efficacy is presented with a 2-sided CI, with statistical significance 
achieved if the 95% CI lower bound was >0. To support the pri-
mary analysis, a Cox proportional hazard model was fitted to the 
data and Kaplan–Meier curves presented for active and control 

groups. Deaths caused by COVID-19 and hospitalizations char-
acterized as severe COVID-19 (Supplementary Table 2) were 
also considered within the definition of a primary efficacy event. 
Further information is detailed in the Supplementary Material.

The key secondary efficacy end point and the other secondary 
efficacy end points were analyzed following the same methodol-
ogy as for the primary efficacy end point. Subgroup analyses are 
detailed in the Supplementary Material. Missing data were not 
imputed for the efficacy end points (Supplementary Material).

Data from participants who were unblinded to consider 
COVID-19 vaccination or vaccinated prior to the primary effi-
cacy end point were included in the efficacy and safety analyses.

RESULTS

Between 2 December 2020 and 19 March 2021, 1305 partici-
pants were screened. Of these, 1131 participants had exposure 
to SARS-CoV-2 within 8 days and were randomized 2:1 to 
AZD7442 or placebo; 10 participants were not dosed, resulting 
in 749 participants receiving AZD7442 and 372 receiving place-
bo (Figure 1).

In the full analysis set, mean (standard deviation) age was 46 
(16) years with 20% of participants aged ≥60 years and 99.4% in 
cohort 2 (Table 1). Most participants were SARS-CoV-2 
RT-PCR–negative (n = 974, 87%) or had a missing RT-PCR 
status (n = 99, 9%) at baseline; 34 (4.5%) participants in the 

Screened (n  =  1305)

AZD7442 (n = 756)
Did not receive dose
(n = 7)

Discontinued early from study
(n = 15)

Included in full analysis set (n = 749)
Included in safety analysis set (n = 749)
Participant unblinded (n = 62)b

Participant subsequently received COVID-19
vaccine (n = 26)

Included in full analysis set (n = 372)
Included in safety analysis set (n = 372)
Participant unblinded (n = 53)b

Participant subsequently received COVID-19
vaccine (n = 47)

•   Lost to follow-up (n = 2)
•   Physician decision (n = 1)
•   Withdrawal by participant (n = 7)
•   Other (n = 5)

Did not receive dose
(n = 3)

Discontinued early from study
(n = 6)
•   Protocol deviation (n = 1)
•   Withdrawal by participant (n = 3)
•   Other (n = 2)

Failed screening (n = 174)
•   Entry criteria not met (n = 153)
•   Participant withdrawal (n = 6)
•   Sponsor decision (n = 1)
•   Adverse event (n = 1)a

•   Other (n = 13)

Placebo (n = 375)

AZD7442 (n = 749) Placebo (n = 372)

Ongoing in study (n = 741) Ongoing in study (n = 369)

Total randomized 2:1 
(n  =  1131)

Figure 1. Participant disposition. aThis potential participant experienced elevated blood pressure during screening and was not included in the study. bParticipants who 
received study intervention and became eligible for a COVID-19 vaccine could request to be unblinded to consider vaccination for COVID-19 and remain in the study. For 
participants who were unblinded before the primary efficacy end point, data were collected and analyzed regardless. Abbreviations: AZD7442, tixagevimab/cilgavimab; 
COVID-19, coronavirus disease 2019.
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AZD7442 group and 14 (3.8%) in the placebo group were 
SARS-CoV-2 RT-PCR–positive. A small proportion in the 
AZD7442 and placebo groups (8.7% and 8.1%, respectively) 
were subsequently determined to be SARS-CoV-2–seropositive 
at baseline (based on central laboratory serum antinucleocapsid 
testing). Overall, 736 (66%) participants had ≥1 risk factor for 

severe COVID-19 (Table 1). Median (range) duration of 
follow-up at primary data cutoff was 49 (5–115) and 48 (20– 
113) days for AZD7442 and placebo, respectively. Median 
(range) duration of follow-up at extended data cutoff (19 
August 2021) was 182 (5–249) and 178 (11–247) days for 
AZD7442 and placebo, respectively.

Table 1. Participant Demographics and Baseline Clinical Characteristics: Full Analysis Set

Characteristic

AZD7442 (Tixagevimab/ 
Cilgavimab) 

(n = 749)
Placebo 
(n = 372)

Total 
(N = 1121)

Cohort, n (%)

1 (aged ≥60 y, living in long-term care facility) 5 (0.7) 2 (0.5) 7 (0.6)

2 (other adults aged ≥18 y, exposed to SARS-CoV-2 within prespecified high exposure risk 
settings)

744 (99.3) 370 (99.5) 1114 (99.4)

Age, mean (SD), y 46.6 (15.7) 46.0 (16.2) 46.4 (15.9)

Age group, n (%), y

≥60 149 (19.9) 75 (20.2) 224 (20.0)

≥65 91 (12.1) 43 (11.6) 134 (12.0)

≥75 23 (3.1) 16 (4.3) 39 (3.5)

Female, n (%) 373 (49.8) 181 (48.7) 554 (49.4)

Ethnicity, n (%)

Not Hispanic or Latino 299 (39.9) 159 (42.7) 458 (40.9)

Hispanic or Latino 435 (58.1) 210 (56.5) 645 (57.5)

Unknown/Not reported 15 (2.0) 3 (0.8) 18 (1.6)

Race, n (%)

White 628 (83.8) 315 (84.7) 943 (84.1)

Black or African American 76 (10.1) 36 (9.7) 112 (10.0)

Asian 15 (2.0) 13 (3.5) 28 (2.5)

American Indian/Alaska Native 6 (0.8) 1 (0.3) 7 (0.6)

Native Hawaiian/Pacific Islander 2 (0.3) 1 (0.3) 3 (0.3)

Unknown/Not reported/Multiple 22 (2.9) 6 (1.6) 28 (2.5)

BMI, mean (SD), kg/m2 29.7 (6.7) 29.9 (6.7) 29.7 (6.7)

SARS-CoV-2 reverse-transcription polymerase chain reaction status, n (%)

Negative 646 (86.2) 328 (88.2) 974 (86.9)

Positive 34 (4.5) 14 (3.8) 48 (4.3)

Missing data 69 (9.2) 30 (8.1) 99 (8.8)

SARS-CoV-2 nucleocapsid antibodies serostatus at baseline, n (%)

Negative 444 (59.3) 231 (62.1) 675 (60.2)

Positive 65 (8.7) 30 (8.1) 95 (8.5)

Missing data 240 (32.0) 111 (29.8) 351 (31.3)

At risk for severe coronavirus disease 2019, n (%)

Any risk factor 492 (65.7) 244 (65.6) 736 (65.7)

Obesity (BMI ≥30 kg/m2) 295 (39.4) 162 (43.5) 457 (40.8)

Hypertension 184 (24.6) 84 (22.6) 268 (23.9)

Smoking 144 (19.2) 71 (19.1) 215 (19.2)

Diabetes 90 (12.0) 38 (10.2) 128 (11.4)

Asthma 49 (6.5) 27 (7.3) 76 (6.8)

Cancer 24 (3.2) 10 (2.7) 34 (3.0)

Cardiovascular disease 19 (2.5) 14 (3.8) 33 (2.9)

Chronic kidney disease 14 (1.9) 7 (1.9) 21 (1.9)

Chronic obstructive pulmonary disease 7 (0.9) 11 (3.0) 18 (1.6)

Chronic liver disease 8 (1.1) 2 (0.5) 10 (0.9)

Immunosuppressive treatment 7 (0.9) 2 (0.5) 9 (0.8)

Sickle cell disease 1 (0.1) 0 1 (0.1)

Immunosuppressive disease 0 0 0

Data cutoff, 7 April 2021.  

Abbreviations: BMI, body mass index; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SD, standard deviation.
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In the safety analysis, at the primary data cutoff, ≥ 1 AE was 
reported by 162 of 749 (21.6%) and 111 of 372 (29.8%) partic-
ipants in the AZD7442 and placebo groups, respectively, with 
95% reporting mild or moderate AEs (Table 2). The most com-
mon AEs included headache, fatigue, and cough 
(Supplementary Table 3). SAEs were reported by 5 (0.7%) 
and 3 (0.8%) participants in the AZD7442 and placebo groups, 
respectively; none were considered related to study interven-
tion (Table 2, Supplementary Table 4). AESIs were reported 
by 4 (0.5%) and 5 (1.3%) participants in the AZD7442 and pla-
cebo groups, respectively, mostly injection site reactions 
(Table 2). No AEs led to study withdrawal or death.

Safety at the extended data cutoff was generally consistent 
with the primary data cutoff (Supplementary Table 5). There 
were 3 deaths: 2 (0.3%) participants in the AZD7442 group 
(metastatic lung cancer, cerebral ischemia) and 1 (0.3%) partic-
ipant in the placebo group (unexplained death); none were con-
sidered related to study intervention.

In the efficacy analysis, at the primary data cutoff, sympto-
matic COVID-19 developed in 23 of 749 (3.1%) participants 
in the AZD7442 group vs 17 of 372 (4.6%) in the placebo group 
(Figure 2A). The treatment difference was not statistically 

significant (RRR, 33.3%; 95% CI, −25.9 to 64.7; P = .21; absolute 
risk reduction 1.50; 95% CI, −.76 to 4.32; P = .23). Time to first 
post-dose symptomatic COVID-19 before day 183 is shown in 
Figure 2A. Most (87.5%) events occurred within the expected 
post-exposure SARS-CoV-2 incubation period (11 days post- 
dose); all 23 events in the AZD7442 group (17 events in baseline 
SARS-CoV-2 RT-PCR–positive participants) and 12 events 
with placebo (70.6% of total events observed with placebo; 5 
events in baseline SARS-CoV-2 RT-PCR–positive participants), 
with an additional 5 events occurring with placebo after day 11.

By the extended data cutoff, symptomatic COVID-19 devel-
oped in 27 of 749 (3.6%) participants in the AZD7442 group vs 
23 of 372 (6.2%) in the placebo group (RRR, 43.2%; 95% CI, .1 
to 67.7; nominal P = .049). Time to first post-dose symptomatic 
COVID-19 at the extended data cutoff is shown in Figure 2A.

In predefined subgroup analyses among 1073 (96%) participants 
who were SARS-CoV-2 RT-PCR–negative or missing an RT-PCR 
result at baseline, symptomatic COVID-19 developed in 6 of 715 
(0.8%) participants in the AZD7442 group vs 11 of 358 (3.1%) in 
the placebo group, resulting in an RRR of 73.2% (95% CI, 27.1 to 
90.1; Figures 2B and 3) at primary data cutoff, with consistent re-
sults at the extended data cutoff (RRR, 71.5%; 95% CI, 37.5 to 
87.0; Figure 2B). Findings for other subgroup analyses at primary 
data cutoff were generally consistent with the overall primary anal-
ysis population (Figure 3, Supplementary Figure 1).

For the key secondary end point at the primary data cutoff, 
severe or critical COVID-19 developed in 0 of 749 (0%) partic-
ipants in the AZD7442 group and 1 of 372 (0.3%) in the placebo 
group (RRR not evaluable). No additional severe or critical 
events were reported during the extended follow-up.

Findings for the following secondary and exploratory end 
points are reported for the primary data cutoff only. As no 
deaths occurred by primary data cutoff, COVID-19–related 
death and all-cause mortality could not be analyzed. One 
(0.1%) and 2 (0.5%) participants in the AZD7442 and placebo 
groups, respectively, had COVID-19–related emergency de-
partment visits. There were no significant differences in post- 
dose seroconversion between groups, regardless of symptom 
status, suggesting that AZD7442 did not prevent asymptomatic 
SARS-CoV-2 infection (Supplementary Table 6).

SARS-CoV-2 sequencing data were available from 16 of 27 
(59.2%) and 11 of 23 (47.8%) participants in the AZD7442 
and placebo groups, respectively, who had symptomatic 
SARS-CoV-2 infection at extended follow-up. Sequencing 
data indicated that 12 participants were infected with the 
Alpha variant, and few cases (n = 3) of the Delta variant were 
identified (Supplementary Table 7).

In the pharmacokinetic analysis, AZD7442 reached and 
maintained high concentrations following dosing, as shown 
by geometric mean (± geometric standard deviation) serum 
concentrations of 18.7 (±2.0) µg/mL at day 8 and 24.9 (±1.5) 
µg/mL at day 58 (Supplementary Figure 2).

Table 2. Adverse Events at the Primary Data Cutoff: Safety Analysis Set

Participants With ≥1 Event, 
n (%)

AZD7442 
(Tixagevimab/ 
Cilgavimab) 

(n = 749)
Placebo 
(n = 372)

Total 
(N = 

1121)

AE 162 (21.6) 111 (29.8) 273 (24.4)

Mild 103 (13.8) 74 (19.9) 177 (15.8)

Moderate 51 (6.8) 31 (8.3) 82 (7.3)

Severe 7 (0.9) 6 (1.6) 13 (1.2)

Potentially 
life-threatening

1 (0.1)a 0 1 (0.1)

SAE 5 (0.7) 3 (0.8) 8 (0.7)

Intervention-related SAEb 0 0 0

AE leading to study 
withdrawal

0 0 0

Medically attended AE 32 (4.3) 16 (4.3) 48 (4.3)

AE of special interest 4 (0.5) 5 (1.3) 9 (0.8)

Injection-site reactionc 4 (0.5) 4 (1.1) 8 (0.7)

Other 0 1 (0.3) 1 (0.1)

General pruritus 0 1 (0.3) 1 (0.1)

Intervention-related AE of 
special interestb

3 (0.4) 5 (1.3) 8 (0.7)

AE with outcome death 0 0 0

Data cutoff, 7 April 2021. AEs were defined as any AE that started or worsened in severity 
on or after the first dose of study intervention. AEs were coded using the Medical Dictionary 
for Regulatory Activities, version 24.0. Participants with >1 event within a preferred term 
were counted once for that preferred term. Percentages are based on the number of 
participants in the analysis set by study intervention group (N).  

Abbreviations: AE, adverse event; SAE, serious adverse event.  
aPotentially life-threatening event reported as overdose, not considered related to study 
intervention.  
bAEs were determined to be related to study intervention or study procedures by the 
investigators based on their judgment.  
cIncludes events of injection-site pain, injection-site pruritus, other injection-site reaction, 
and pruritus.
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DISCUSSION

STORM CHASER did not meet the primary efficacy end point 
of reducing symptomatic COVID-19 with post-exposure pro-
phylaxis of AZD7442 vs placebo among the full study popula-
tion. However, AZD7442 was effective in preventing 

symptomatic COVID-19 in participants who were 
SARS-CoV-2 RT-PCR–negative or missing an RT-PCR result 
at baseline, and results suggested a protective effect over 6 
months, consistent with an equivalent population in the 
PROVENT pre-exposure prevention study [21]. AZD7442 
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Events occurring >11 days after study entry likely reflect new (post-baseline) SARS-CoV-2 exposures

Events occurring >11 days after study entry likely reflect new (post-baseline) SARS-CoV-2 exposures

Figure 2. Time to first post-dose SARS-CoV-2 reverse-transcription polymerase chain reaction (RT-PCR)–positive symptomatic illness before day 183. A, The full analysis 
set. B, Predefined analysis of participants who were SARS-CoV-2 RT-PCR–negative or missing an RT-PCR result at baseline. + Indicates a censored observation. Dashed line 
represents the primary data cutoff. HR is from the proportional hazard model with the Efron method. The 95% CI for the HR was obtained by taking 95% profile likelihood CI of 
the HR from the proportional hazard model. Abbreviations: AZD7442, tixagevimab/cilgavimab; CI, confidence interval; HR, hazard ratio; SARS-CoV-2, severe acute respiratory 
syndrome coronavirus 2.
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demonstrated a favorable safety profile and was well tolerated 
in STORM CHASER, consistent with other phase 3 studies, in-
cluding those evaluating AZD7442 for treatment of mild to 
moderate COVID-19 (TACKLE) and severe COVID-19 
(ACTIV-3) [21–23].

Although the impact of AZD7442 as post-exposure prophy-
laxis on development of severe COVID-19 (including hospital-
ization, respiratory failure, and death) could not be assessed in 
STORM CHASER due to the low number of events (1 case of 
severe disease in the placebo arm), the potential of AZD7442 
to prevent development of severe COVID-19 was demonstrat-
ed in the phase 3 TACKLE trial, in which AZD7442 reduced the 
risk of developing severe COVID-19 or death vs placebo by 
50.5%, 66.9%, and 88.0% among participants with 
mild-to-moderate COVID-19 who had been symptomatic for 
≤7, ≤ 5, and ≤3 days, respectively [22]. These data also support 
the premise that treating earlier in the course of infection is 
more effective.

Eligible participants in STORM CHASER had SARS-CoV-2 
exposure within 8 days of randomization, and time from 
SARS-CoV-2 exposure to AZD7442 administration likely im-
pacted the primary efficacy results. At baseline, 4.5% and 
3.8% of participants in the AZD7442 and placebo groups, 

respectively, were already SARS-CoV-2 RT-PCR–positive. 
However, as the date of initial SARS-CoV-2 exposure was par-
ticipant reported, time from SARS-CoV-2 exposure to dosing 
could not be objectively confirmed or further explored. The 
study included a highly exposed population, so it is possible 
that participants may have had continuous exposure following 
randomization and had not started incubating prior to dosing. 
Furthermore, some participants had already seroconverted at 
baseline, based on more sensitive central laboratory serology 
testing for which results were not immediately available. This 
may be suggestive of a later disease course, though we cannot 
rule out the possibility that participants had a previous infec-
tion, and this likely further impacted the efficacy analysis. 
Analyses of early post-exposure prophylaxis within 4 days of 
exposure with another SARS-CoV-2 neutralizing mAb combi-
nation found greater reductions in COVID-19 among partici-
pants who were RT-PCR–negative vs RT-PCR–positive at 
baseline (RRRs of 81.4% and 31.5%, respectively) [24, 25]. 
Comparison of these studies supports that earlier treatment is 
more effective in preventing symptomatic COVID-19.

While this study was primarily designed to assess AZD7442 
against development of COVID-19 symptoms following a re-
ported exposure event (ie, post-exposure), the design (which 
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Figure 3. Key predefined subgroup analysis of incidence of first post-dose SARS-CoV-2 RT-PCR–positive symptomatic illness before day 183. Data cutoff, 7 April 2021. 
Estimates are based on Poisson regression with robust variance or exact Poisson regression or exact conditional method for Poisson. The model includes the log of the 
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respiratory syndrome coronavirus 2.
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assessed events up to day 183, capturing events after the expect-
ed 11-day incubation period) enabled an assessment of 
AZD7442 in pre-exposure prevention. Symptomatic 
COVID-19 events that occurred >11 days after study entry 
likely reflect new post-baseline exposures, and the reduction 
in these events with AZD7442 vs placebo over the 6-month 
follow-up supports a protective effect against new 
SARS-CoV-2 exposures owing to the extended half-life of 
AZD7442 [17], consistent with the results of the PROVENT 
study [21].

Participants could request to be unblinded to consider 
COVID-19 vaccination. Following unblinding, a greater pro-
portion of participants in the placebo group than the 
AZD7442 group subsequently received COVID-19 vaccine 
(12.6% vs 3.5%, respectively). This imbalance may have biased 
the efficacy analysis in the assessment of pre-exposure preven-
tion (ie, against events occurring later in the study). Therefore, 
the reported protective effect of AZD7442 against new 
SARS-CoV-2 exposures after the index exposure may be 
underestimated.

This study had several limitations. Efficacy results were likely 
affected by the period of up to 8 days allowed between exposure 
and randomization, which resulted in a large proportion of 
events in participants who were already SARS-CoV-2 
RT-PCR–positive at baseline. There was a low number of 
symptomatic COVID-19 cases overall following index expo-
sure, potentially due to the exclusion of the LTCFs cohort 
and subsequent enrollment of a younger, healthier population 
than was planned. Individuals living in LTCFs still remain an 
at-risk population in which further evaluation of post-exposure 
prophylaxis may be warranted, especially in the context of wan-
ing COVID-19 vaccine effectiveness, emergence of new vari-
ants, and continued SARS-CoV-2 transmission [26]. 
Individuals with prior receipt of a COVID-19 vaccination 
were not eligible to participate in STORM CHASER. 
However, AZD7442 has been shown to not interfere with 
COVID-19 vaccine immunogenicity [27], and initial evidence 
suggests that AZD7442 may augment pre-existing protection 
against SARS-CoV-2 infection in immunocompromised indi-
viduals who are fully vaccinated [28, 29]. Although efficacy of 
AZD7442 against Omicron could not be assessed in the present 
study, in vitro studies have demonstrated that AZD7442 retains 
neutralizing activity against the BA.1, BA.1.1, BA.2, BA.2.12.1, 
BA.3, BA.4, and BA.5 Omicron subvariants, with resultant po-
tency within the half maximal inhibitory concentration (IC50) 
geometric mean concentration range of 4.0–806.0 ng/mL 
[18–20, 30–33]. Following AZD7442 administration, the resul-
tant anti–SARS-CoV-2 neutralizing antibody titer in sera is 
higher than that of convalescent serum and is therefore expect-
ed to be clinically effective against these Omicron subvariants 
[17]. Importantly, AZD7442 retains potency against the BA.2 
Omicron subvariant (IC50 of 10 ng/mL vs 4.0–9.8 ng/mL for 

ancestral strain vs BA.2, respectively) [20, 30], as well against 
BA.4/5 (IC50 40–65 ng/mL) [31, 34]. Finally, this study used a 
300-mg intramuscular dose of AZD7442. To provide optimal 
protection against emerging variants for vulnerable popula-
tions, a revised dosage regimen of 600 mg AZD7442 (300 mg 
each of tixagevimab and cilgavimab) every 6 months is now 
recommended for pre-exposure prophylaxis of COVID-19 
[30].

CONCLUSIONS

AZD7442 300 mg intramuscular administration in participants 
with index exposure to SARS-CoV-2 within 8 days showed fa-
vorable safety but did not meet the primary efficacy end point 
of reduction in symptomatic COVID-19 cases. Findings among 
participants from high exposure risk environments who were 
SARS-CoV-2 RT-PCR–negative or missing an RT-PCR result 
at baseline support a role for AZD7442 in prevention of symp-
tomatic COVID-19.
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