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Abstract
In photosynthetic tissues in the light, the function of energy production is associated primarily with chloroplasts, while 
mitochondrial metabolism adjusts to balance ATP supply, regulate the reduction level of pyridine nucleotides, and op-
timize major metabolic fluxes. The tricarboxylic acid cycle in the light transforms into a noncyclic open structure (hemi-
cycle) maintained primarily by the influx of malate and the export of citrate to the cytosol. The exchange of malate and 
citrate forms the basis of feeding redox energy from the chloroplast into the cytosolic pathways. This supports the level 
of NADPH in different compartments, contributes to the biosynthesis of amino acids, and drives secondary metabolism 
via a supply of substrates for 2-oxoglutarate-dependent dioxygenase and for cytochrome P450-catalyzed monooxygen-
ase reactions. This results in the maintenance of redox and energy balance in photosynthetic plant cells and in the for-
mation of numerous bioactive compounds specific to any particular plant species. The noncoupled mitochondrial 
respiration operates in coordination with the malate and citrate valves and supports intensive fluxes of respiration 
and photorespiration. The metabolic system of plants has features associated with the remarkable metabolic plasticity 
of mitochondria that permit the use of energy accumulated during photosynthesis in a way that all anabolic and cata-
bolic pathways become optimized and coordinated.
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Abbreviations 
AOX alternative oxidase
ETC electron transport chain
ICDH isocitrate dehydrogenase
NDA internal rotenone-insensitive NADH 

dehydrogenase
NDB external rotenone-insensitive NADPH and 

NADH dehydrogenases
NDC internal rotenone-insensitive NADPH 

dehydrogenase
OAA oxaloacetate

2-OG 2-oxoglutarate
2ODD 2-oxoglutarate-dependent dioxygenase
PDC pyruvate dehydrogenase complex
TCA cycle tricarboxylic acid cycle

Introduction
In plants, photosynthesizing cells possess two major systems 
for energy production associated correspondingly with 
chloroplasts and mitochondria. In the light, the primary 
energy-generating organelle is the chloroplast, while the 
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physiological functions of mitochondria are modified com-
pared to that of heterotrophic cells. In this review, we will dis-
cuss recent progress in understanding the role of 
mitochondria in photosynthetic metabolism and outlining 
their functions in photosynthetic plant cells.

The living state is characterized by the ability to prevail 
against disturbance through the system of self-maintaining 
resilient reaction networks (Heylighen et al., 2022). 
Metabolic organization underlies the structure of energy 
flows in a way that the useful energy transformation becomes 
maximized via the constrained release of energy that delays 
the production of entropy (Kauffman, 2020; Igamberdiev 
2021). This means that energy flows in biological evolution 
can be evaluated via such economic criteria as productivity, 
efficiency, and the costs and benefits (profitability) of various 
mechanisms for capturing and utilizing energy to build bio-
mass and do work (Corning, 2022), i.e. via the ability to pre-
vail against disturbance, which is defined as ascendency 
(Ulanowicz, 1997, 2021).

The metabolic system of plants possesses unique features 
that permit the use of energy accumulated in photosynthesis 
in a way that all anabolic and catabolic pathways become op-
timized and coordinated. Mitochondria are directly involved 
in this role in photosynthetic tissues via catalyzing the ex-
change of malate and citrate, contributing to the balance 
of adenylates, NAD, and NADP in the cytosol and other com-
partments, and via driving the operation of the cytochrome 
P450 and 2-oxoglutarate-dependent dioxygenase (2ODD) 
systems. The latter systems generate a vast number of sec-
ondary metabolites and other compounds determining the 
specificity and metabolic uniqueness of individual plant spe-
cies (Figure 1).

Mitochondrial respiration is an important factor providing 
metabolic pathway flexibility by regulating the metabolic 
fluxes of supply and demand, and adjusting enzyme capacities 
(O’Leary et al., 2019, O’Leary, 2021). Respiration in the light 
provides an efficient mechanism for controlling redox and en-
ergy balance, and mitochondria change their role from being 
the energy powerhouse in the absence of photosynthesis to 
the thermodynamic buffering organelle in actively photosyn-
thesizing cells (Igamberdiev and Kleczkowski, 2019). In the last 
years, a substantial advancement in our understanding of the 
role of mitochondria during photosynthesis has been 
achieved, but several important questions remain unresolved. 
Their resolution has important practical implications for the 
development of advanced engineering strategies involving 
plant respiration. New approaches will aim to slow down 
the unnecessary protein turnover, replace, relocate, or re-
schedule metabolic activities, suppress futile cycles, make 
ion transport more efficient, and thus boost plant productiv-
ity (Amthor et al., 2019). In this article, we will focus on the 
peculiarities of plant respiratory metabolism, its organization, 
and intercompartmental arrangement during photosynthesis 
to define the roles of respiration and mitochondria in the pro-
cess of photosynthesis.

Malate valve supplies the substrate for plant 
mitochondria
Since chloroplast membranes are almost impermeable to 
large charged molecules such as NADPH and ATP, the shuttle 
systems are essential for exchanging redox equivalents and 
energy between chloroplasts and cytosol. The malate valve 
is involved in shuttling redox equivalents across the inner 
chloroplast envelope. The reducing power is generated in 
the light reactions of chloroplasts as NADPH and is delivered 
to the cytosol, mitochondria, and other compartments in the 
form of NADH, which is formed via the reactions catalyzed 
by multiple isoforms of malate dehydrogenase (MDH) 

Box 1 TCA cycle in an open mode

In heterotrophic cells and in darkness, mitochondria 
operate as the main bioenergetic power stations, 
while during photosynthesis, this function is trans-
ferred to chloroplasts. In the light, mitochondria co-
ordinate the phosphorylation of adenylates and the 
reduction of pyridine nucleotides in the cytosol and 
other compartments to avoid overenergization and 
to optimize major metabolic fluxes. This function, 
which can be defined as thermodynamic buffering, 
is achieved via the establishment and regulation of 
local equilibria of the TCA cycle enzymes. In the di-
carboxylic branch of the TCA cycle, it is associated 
mainly with MDH and fumarase, while in the tri-
carboxylic branch, it is linked with aconitase and 
NAD- and NADP-dependent isocitrate dehydro-
genases. When the redox level is elevated, the 
TCA cycle is transformed into a noncyclic open 
structure (hemicycle), leading to the export of the 
TCA (mainly citrate) to the cytosol and to accumu-
lation of dicarboxylic acids (malate and fumarate). 
While the buildup of NADPH in chloroplasts sup-
ports the operation of the malate valve leading to 
the establishment of NADH/NAD+ ratios in differ-
ent cell compartments, the production of NADH 
by mitochondria drives the export of citrate by es-
tablishing conditions for the operation of the citrate 
valve. The latter regulates the intercompartmental 
NADPH/NADP+ ratios, contributes to amino acid 
biosynthesis, and supports various reactions of sec-
ondary metabolism. Citrate exported from mito-
chondria stimulates the expression of AOX, thus 
facilitating metabolic turnover during active photo-
synthesis. The open mode of the TCA cycle and the 
activation of the noncoupled pathways of electron 
transport in the light are the main roles of mito-
chondria during photosynthesis, maintaining the 
organization and energy flow structure of the sys-
tem and optimizing useful energy transformation 
(Figure 1).
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present in several plant cell organelles (Liszka et al., 2019; 
Selinski and Scheibe, 2019). In animal mitochondria, the oxi-
dation of NADH drives ATP generation in oxidative phos-
phorylation, while in plant mitochondria, NADH oxidation 
may be uncoupled from ATP synthesis. Contrary to animal 
mitochondria, plant mitochondria can also oxidize NADPH, 

so the turnover of NADP constitutes an important feature 
of plant mitochondrial metabolism (Møller and Rasmusson, 
1998; Møller et al., 2021; Figure 1; Box 1).

In a recent study, Moreno-García et al. (2022) showed that 
suppression of the malate valve increases the NADH/NAD+ 

ratio in the cytosol, confirming the role of malate flux in 

Figure 1 The open/closed modes of the TCA cycle using malate, oxaloacetate (OAA), or pyruvate as substrates and exporting citrate. Citrate con-
version in the cytosol results in the formation of NADPH, which fuels cytochrome P450 monooxygenase reactions, and 2-OG, which can be dioxy-
genated, and both processes result in the formation of numerous secondary compounds. 2-OG can also be transaminated to glutamate, which leads 
to the biosynthesis of different amino acids. Abbreviations of enzymes: CS, citrate synthase; GC/GOGAT, glutamine synthetase/glutamate synthase; 
GDH, glutamate dehydrogenase. NAD-ICDH, NAD-dependent isocitrate dehydrogenase; NADP-ICDH, NADP-dependent isocitrate dehydrogenase; 
MDH, NAD-malate dehydrogenase; ME, NAD-malic enzyme; 2ODDs, 2-oxoglutarate-dependent dioxygenases; 2-OGDH, 2-oxoglutarate dehydro-
genase complex; PDC, pyruvate dehydrogenase complex; PEPC, phosphoenolpyruvate carboxylase; PK, pyruvate kinase; SCS, succinyl-CoA synthe-
tase; SDH, succinate dehydrogenase; Abbreviations of transporters: OAT, oxaloacetate transporter; MPC, mitochondrial pyruvate carrier; DTC, 
dicarboxylate-tricarboxylate carrier; SFC, succinate–fumarate carrier. The processes operating actively in the light are shown by the solid lines, 
whereas the dotted lines indicate processes suppressed in the light. The black lines correspond to biochemical reactions, and the brown lines des-
ignate the transport of compounds across membranes.
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the interaction between chloroplasts and the extrachloroplast 
part of the plant cell during photosynthesis. The Kok effect re-
presents a phenomenon of changing abruptly the quantum 
yield of photosynthesis at low light and is often considered evi-
dence for the suppression of respiration during photosynthesis 
(Yin et al., 2020). It is related to malate metabolism, which par-
ticipates in maintaining the photosynthetic linear electron flow 
(Gauthier et al., 2020). The malate valve operates already dur-
ing the stage of photosynthetic induction and is involved in the 
transfer of excess reducing power from chloroplasts via mito-
chondria, as the suppression of the mitochondrial NADH oxi-
dation delays the start of photosynthesis (Igamberdiev et al., 
1998, 2001). In the opposite process of the transition from light 
to darkness, defined as light-enhanced dark respiration (LEDR), 
photosynthetic products are oxidized in mitochondria in the 
form of malate, and the activation of malic enzyme is part of 
this process (Igamberdiev et al., 2001; Tronconi et al., 2015).

In C4 plants, malate provides CO2 for Rubisco in the bundle 
sheath cells. The NAD- and NADP-dependent malic enzymes 
are the part of malate exchange system between organelles, 
which acquires a new function in this particular group of 
plants. This function is attributed to the second isoform of 
NAD-malic enzyme of NAD-malic enzyme C4 species, in add-
ition to the isoform that continues to fulfill respiratory func-
tions (Hüdig et al., 2022). In the origin and evolution of C4 

plants, mitochondria played a crucial role (Fan et al., 
2022a), which resulted in a change in their metabolic func-
tion in NAD-malic enzyme and phosphoenolpyruvate kinase 
types of C4 plants. This was accompanied by an increased 
mitochondrial abundance and size, enzymatic capacity, and 
alterations in location and ultrastructure. At the same 
time, the level of dark respiration is not determined by mito-
chondrial capacity in C4 leaves, but it is primarily driven by 
cellular maintenance demands independently of mitochon-
drial organic acid cycling in the light (Fan et al., 2022b).

A diel flux balance analysis model by Shameer et al. (2019)
substantiates the necessity of the dynamic mitochondrial 
respiration for the leaf energy balance in the light. 
Although chloroplasts can generate sufficient ATP to satisfy 
the energy requirements of the rest of the cell, the availability 
of chloroplast-derived ATP is limited by chloroplast energy 
dissipation, e.g. nonphotochemical quenching, and by the 
capacity of the chloroplast ATP export shuttles. The model 
shows that the chloroplast malate valve together with the tri-
ose phosphate-3-phosphoglycerate shuttle has an important 
metabolic role in maintaining the leaf energy balance during 
photosynthesis. The chloroplast malate valve complements 
the cyclic electron transport and chlororespiration asso-
ciated with the NAD(P)H-dehydrogenase pathway to pre-
vent over-reduction of the chloroplast (Chadee et al., 
2021). However, instead of avoiding NADPH production or 
dissipating it, the malate valve directs the reductant to other 
cell compartments. When the noncoupled pathways in 
chloroplasts are suppressed by down-regulating their com-
ponents, the expression of the mitochondrial alternative oxi-
dase (AOX) increases, suggesting the complementary roles of 

these pathways for preventing over-reduction in photosyn-
thetic cells (Chadee et al., 2021).

The citrate valve generates the efflux of citrate 
and 2-OG as the biosynthetic products of 
plant mitochondria
The reducing power from chloroplasts is delivered to other 
cell compartments via malate in the form of NADH as 
NAD-MDH has only a low (about 1% of NAD+) affinity for 
NADP+ (Agius et al., 1998). However, numerous metabolic 
reactions, in particular biosynthetic reactions, require 

Box 2 Aconitase equilibrium and isocitrate  
dehydrogenase redox cycle

While citrate is formed by citrate synthase, which is 
activated in the light via reduced thioredoxin 
(Schmidtmann et al., 2014), its further conversion 
or efflux depends on the enzymes metabolizing it 
in the TCA cycle. Mg2+, the release of which takes 
place upon a decrease in ATP level, finely regulates 
the aconitase equilibrium by shifting it toward cit-
rate (Igamberdiev and Kleczkowski, 2019), while 
ROS and RNS formed upon elevation of the cellular 
redox level inhibit aconitase and stimulate citrate ef-
flux (reviewed by Igamberdiev and Bykova, 2018). 
The regulation of NAD- and NADP-dependent isoci-
trate dehydrogenases in mitochondria by the level of 
reduced and oxidized pyridine nucleotides is another 
point of fine regulation of citrate efflux/conversion. 
This pair of enzymes represents a system strongly re-
sponding to the intramitochondrial NADPH and 
NADH levels. Under high reduction levels of NADP 
and NAD, when CO2 is limited in the light, isocitrate 
oxidation in mitochondria is suppressed and citrate is 
transported to the cytosol, where the cytosolic 
NADP-ICDH supplies 2-OG for photorespiratory am-
monia refixation and for the reactions of 2-OG-de-
pendent dioxygenases. The NADPH formed in the 
NADP-dependent isocitrate dehydrogenase reac-
tions in the cytosol and peroxisomes can fuel cyto-
chrome P450 monooxygenase reactions. Under 
elevated intramitochondrial redox levels, the 2-OG 
dehydrogenase complex is inhibited, which stimu-
lates citrate and 2-OG efflux from mitochondria. 
All these reactions are regulated via thioredoxin 
and other post-translational modifications. This re-
sults in the fine regulation of the tricarboxylic branch 
of the TCA cycle and thus the efflux of its intermedi-
ates (mainly citrate) to the cytosol that fuels gluta-
mate biosynthesis, phytohormone production, and 
other numerous reactions of secondary metabolism 
(Figure 2).
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NADPH, and many of these reactions cannot be performed in 
chloroplasts. Thus, during active photosynthesis, there is a 
need for an engine that generates NADPH (Smith et al., 
2021). The NADPH-generating systems include the oxidative 
pentose phosphate pathway and the system of NAD- and 
NADP-dependent glyceraldehyde-3-phosphate dehydrogenases 
(Wieloch, 2021). However, mitochondria play an important role 
in NADP turnover and NADPH generation (Figure 2; Box 2).

Inside mitochondria, NADP turnover is mainly connected to 
the balance of redox level by the coupling of NAD- and 
NADP-dependent mitochondrial isocitrate dehydrogenases 
(Rasmusson and Møller, 1990), in which the NAD-dependent 
enzyme operates in one direction and the NADP-dependent 
enzyme operates in both directions (Igamberdiev and 
Gardeström, 2003). A substantial rate of NAD-malic enzyme 
with NADP+ represents another source of NADPH in the mito-
chondrial matrix (Maier et al., 2011). Inside mitochondria, 
NADPH is oxidized by the internal dehydrogenase NDC acti-
vated by Ca2+ (Møller and Rasmusson, 1998; Møller et al., 
2021). The balance of the reduced and oxidized NAD and 
NADP represents an important redox engine for the switching 
of the tricarboxylic acid (TCA) cycle operation between the 
complete and partial modes (Sweetlove et al., 2010).

Besides the production and utilization of NADPH in mito-
chondria, even more important is the production of NADPH 
in the cytosol driven by mitochondria via the efflux of citrate 
via the citrate valve (Igamberdiev, 2020). This results in the 
maintenance of the cytosolic NADPH/NADP+ ratio in the light 
at a stable level (Igamberdiev and Gardeström, 2003) to drive 
different metabolic processes. The NADPH/NADP+ ratio is 
sustained at a value around 1.0 under different conditions of 
light and CO2 supply (Gardeström and Igamberdiev, 2016).

Lee et al. (2021) established that DICARBOXYLATE 
CARRIER 2 (DIC2) plays a central role in the mitochondrial 
malate–citrate exchange in Arabidopsis (Arabidopsis thali-
ana). DIC2 imports malate against citrate export, which is es-
pecially important for dark–light transitions. Among several 
dicarboxylate and tricarboxylate transporters, DIC2 is most 
effective in facilitating malate uptake and citrate export. The 
impairment of this process via DIC2 down-regulation resulted 
in slower growth, citrate accumulation inside mitochondria, 
an increase in the respiration rate, sugar depletion, and facili-
tation of peroxisomal citrate metabolism in darkness. Other 
organic acid transporters carrying out similar functions can 
partially compensate for the DIC2 function (Lee et al., 2021). 
Transporters of dicarboxylates (and amino acids) include the 
uncoupling proteins (UCP), which combine the dissipating 
function with the transport of metabolites such as glutamate, 
aspartate, and dicarboxylates (Monné et al., 2018).

The biosynthetic reaction of citrate synthesis from malate 
via the TCA cycle has features that combine light–dark metab-
olism. While NAD-malic enzyme is more active in the dark, the 
mitochondrial citrate synthase (Eprintsev et al., 2018b) and 
pyruvate dehydrogenase complex (PDC; Tcherkez et al., 
2005) are inhibited by light. The pyruvate imported via the 
pyruvate carrier forms a distinct pool independent of the 

pyruvate pools originating from NAD-malic enzyme and 
from the transamination of alanine (Le et al., 2022). The citrate 
efflux can be stimulated by the high redox level in the light 
(Igamberdiev, 2020). Citrate exhibits a fundamental structural 
role in the connectivity of the metabolic network serving as a 
link between different communities of enzymes and metabo-
lites, and plays a central role in the integration of carbon and 
nitrogen metabolism in plants (Toubiana et al., 2016). A 
scheme showing interactions between mitochondria and 
chloroplasts in the light and the operation of malate and cit-
rate valves is presented in Figure 3.

Operation of malate and citrate valves during 
photorespiration
During photorespiration, an intensive flux of glycine through 
mitochondria of C3 plants occurs, which results in an increase 

Figure 2 TCA branch of the TCA cycle and its regulation. Superoxide 
anion (O2

−), hydrogen peroxide (H2O2), and nitric oxide (NO) inhibit 
aconitase via interaction with its iron–sulfur cluster. The irreversible 
NAD-dependent isocitrate dehydrogenase (NAD-ICDH) and the re-
versible NADP-dependent isocitrate dehydrogenase (NADP-ICDH) 
constitute the substrate cycle responding to the changes in redox levels 
of NAD and NADP. NADH inhibits both enzymes, NADPH inhibits 
NAD-ICDH and stimulates the reverse reaction of NADP-ICDH, and cit-
rate stimulates NAD-ICDH and inhibits NADP-ICDH. Mg2+ displaces 
the equilibrium of aconitase toward citrate and activates both ICDHs 
(also Mn2+). The inhibition of aconitase and both ICDHs and stimula-
tion of the reverse reaction of NADP-ICDH result in the efflux of citrate 
from mitochondria. CS, citrate synthase; OAA, oxaloacetate; 2-OG, 
2-oxoglutarate; 2-OGDH, 2-oxoglutarate dehydrogenase complex. 
The blue lines indicate biochemical reactions, the red dotted lines indi-
cate the enzyme inhibition, and the green dotted line shows the acti-
vation of NAD-ICDH by citrate.
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in the intramitochondrial concentrations of NADH and 
NADPH, engaging components of the electron transport 
chain (ETC) internal dehydrogenases (NDA and NDC) and 
the alternative pathway associated with AOX (Bykova and 
Møller, 2001; Bykova et al., 2014). MDH in mitochondria par-
ticipates in the oxidation of NADH, preventing substrate in-
hibition of glycine decarboxylase (Bykova et al., 2014; Lindén 
et al., 2016). While the engagement of the noncoupled 
pathways supports high photorespiratory flux, the photore-
spiratory ATP production remains high and supports biosyn-
thetic reactions in the cytosol (Gardeström and Igamberdiev, 
2016).

Malate/oxaloacetate equilibrium plays a key role in photo-
respiration not only for supporting glycine oxidation but also 

for hydroxypyruvate reduction in peroxisomes, where the 
malate valve supplies NADH for this reaction (Cousins 
et al., 2008; Dao et al., 2022). Photorespiration generates a 
large amount of NADH in mitochondria, exceeding its 
NADH-dissipating capacity, which leads to its export to the 
cytosol through the malate–oxaloacetate shuttle and to 
the maintenance of redox states of NADP and NAD pools 
in several subcellular compartments connected by the 
malate-OAA shuttles (Lim et al., 2020; Figure 3).

While the role of malate shuttling in photorespiration has a 
direct function in the intercompartmental redox transfer, the 
role of citrate efflux from mitochondria during photorespir-
ation has received less attention. However, the operation of 
the citrate valve during photorespiration fulfills an important 

Figure 3 Metabolic coordination of chloroplasts and mitochondria in the light. NADPH formed in the photosynthetic ETC drives the Calvin–Benson 
cycle and fuels the malate valve in the reaction catalyzed by NADP-MDH. Oxidation of malate in the chloroplasts, cytosol, peroxisomes, and mito-
chondria by corresponding isoforms of NAD-MDH generates NADH in these compartments. In mitochondria, the increase of NADH level fuels the 
mitochondrial ETC and stimulates the efflux of citrate, which is transformed into 2-OG by the cytosolic aconitase and NADP-isocitrate dehydro-
genase. The increase in the cytosolic NADPH level results in stimulation of the cytochrome P450-dependent monooxygenase reactions leading to 
the synthesis of secondary metabolites, xenobiotic degradation, and other processes. The rise in the 2-OG level results in glutamate synthesis and 
2ODD reactions, which also generate secondary metabolites. Oxygen produced in photosynthesis is used not only for mitochondrial respiration but 
also in Rubisco oxygenase reaction (photorespiration), glycolate oxidase in peroxisomes, and in mono- and dioxygenase reactions, leading to the 
formation of secondary metabolites. OAA, oxaloacetate; PEP, phosphoenolpyruvate; PGA, 3-phosphoglyceric acid; TP, triose phosphate. The oxygen 
consumption or release is shown by the red arrows, and the light blue thick arrows indicate the formation of secondary compounds. The biochem-
ical reactions and transport processes are represented by the solid thin lines, and the dotted line indicates the reduction of hydroxypyruvate in 
peroxisomes by NADH.
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function for refixation of photorespiratory ammonia by sup-
plying 2-oxoglutarate (2-OG) for glutamate biosynthesis 
(Fernie and Bauwe, 2020). Thus, by increasing the redox level 
in mitochondria, the photorespiratory flux transforms the 
TCA cycle into the open (hemicycle) mode and activates 
the citrate valve. This, in turn, stimulates the expression and 
activation of AOX by citrate, as well as activation of 
rotenone-insensitive dehydrogenases through the elevation 
of NADH/NAD+ ratio in mitochondria (Bykova et al., 2014).

Therefore, the operation of malate and citrate valves and 
the functioning of the TCA cycle in open mode (Figure 1; 
Box 1) represent prerequisites for the realization of high 
photorespiratory flux and for its preference over other re-
spiratory reactions in C3 plants during photosynthesis. 
Although the flux through the TCA cycle is decreased under 
these conditions, in particular, due to the inhibition of PDC 
by photorespiratory ammonia and the inhibition of expres-
sion of several enzymes by light (reviewed by Igamberdiev 
and Bykova, 2018), the active intercompartmental ex-
change of malate and citrate is crucial for supporting high 
rates of photorespiratory flux. This is achieved by the pre-
vention of glycine decarboxylase inhibition by NADH, by 
NADH-dependent hydroxypyruvate reduction (with the 
participation of MDH isoforms), via the activation of AOX 
transcription by citrate, up-regulation of the AOX activity 
by high redox and pyruvate levels, and switching to 
rotenone-insensitive dehydrogenases at high NADH and 
NADPH levels (Bykova et al., 2014).

Switching to the noncoupled pathways  
in the light
Under conditions where ATP and redox power are intensive-
ly produced by light-dependent reactions of photosynthesis, 
chloroplasts have a very limited capacity to supply ATP to 
the cytosol. The redox power is supplied from chloroplasts 
to other cellular compartments in the form of malate, and 
the oxidation of malate by NAD-MDH generates NADH 
(Gardeström and Igamberdiev, 2016). Switching to the non-
coupled pathways of mitochondrial electron transport, 
which balances ATP/ADP and NAD(P)H/NAD(P)+ ratios in 
mitochondria, cytosol, and other cell compartments, repre-
sents an important mechanism of achieving stable operation 
and maximum efficiency of photosynthetic plant cells. The 
mitochondrial capacity of supplying ATP and NADPH 
(generated primarily via isocitrate oxidation) remains an im-
portant precondition for cellular metabolism via the synergis-
tic operation of different compartments in photosynthetic 
cells (Igamberdiev, 2020).

When the supply of ATP and redox equivalents to the 
cytosol by mitochondria is optimal, further energization of 
cytosol and mitochondria would negatively affect the effi-
cient operation of photosynthetic cells. Equilibration of the 
fluxes of load and consumption of ATP and redox power 
in metabolic reactions is essential for a stable metabolic 

performance (Igamberdiev and Kleczkowski, 2019). Under 
these conditions, switching to the noncoupled pathways of 
electron transport plays an important role in the optimiza-
tion of metabolic performance in photosynthetic cells.

Plant mitochondrial electron transport contains numerous 
components that are not coupled to the generation of proton 
potential and ATP synthesis (Møller et al., 2021; Popov et al., 
2021). They include rotenone-insensitive dehydrogenases 
NDA, NDB, NDC, AOX, and UCP. The rotenone-insensitive de-
hydrogenases are encoded by seven genes in Arabidopsis and 
are responsible for four distinct activities: NDA oxidizes NADH 
at the internal side of the inner mitochondrial membrane, 
NDB1 oxidizes NADPH, and NDB2 oxidizes NADH externally, 
while NDC oxidizes NADPH internally (Møller et al., 2021). 
They are dual-targeted proteins, and the homologs of 
rotenone-insensitive dehydrogenases are present in peroxisomes 
and also in chloroplasts (Xu et al., 2013). The operation of NDB1 
and NDC is Ca2+ dependent, and the NDB-type dehydrogenases 
operate at lower pH values (Rasmusson et al., 2008). A coordi-
nated expression of the components of plant mitochondrial 
ETC has been shown, e.g. AOX1a and AOX1d, along with 
NDB3, are co-expressed during stress treatments in rice (Oryza 
sativa) (Wanniarachchi et al. 2018). In Arabidopsis, NDB2a and 
AtAOX1A are co-expressed (Sweetman et al. 2019). An inte-
grated regulation of the chloroplast cyclic electron transport 
and the mitochondrial noncoupled pathways was also noted. 
A signal derived from the redox status of the photosynthetic 
ETC coordinately controls the amount of AOX and the light- 
harvesting complex protein LHCB2, and both proteins then 
contribute to the maintenance of chloroplast energy balance, 
particularly under stress conditions (Dahal et al., 2017; Chadee 
et al., 2021; Alber and Vanlerberghe, 2021).

Fine regulation of the noncoupled pathways takes place at 
all levels of molecular organization (Figure 4). In particular, at 
the genetic level, citrate activates the expression of the genes 
encoding the most abundant AOX1 form (but not AOX2), 
with isocitrate being the only organic acid to exhibit this ef-
fect (Finkemeier et al., 2013). The gene NDA2 encoding the 
rotenone-insensitive internal NADH dehydrogenase with a 
higher Km(NADH) than complex I is also stimulated by cit-
rate (Finkemeier et al., 2013). Thus, citrate triggers the tran-
scription of the genes involved in the activation of the 
noncoupled pathways of mitochondrial electron transport. 
Citrate as a product of the TCA cycle becomes the main ac-
tivator at the transcriptional level not only for AOX but 
also for NDA. Accumulation of ROS and NO contributes 
to the regulation of AOX at the transcriptional and 
post-translational levels (Florez-Sarasa et al., 2016; 
Ageeva-Kieferle et al., 2021). Light stimulates NDA and 
NDC expression (Escobar et al., 2004), and even stronger 
light-activated gene expression occurs for the external 
NDB dehydrogenases (Michalecka et al., 2003). Wallström 
et al. (2014) demonstrated that the down-regulation of 
NDB1 led to decreased levels of sugars, citric acid cycle in-
termediates, and amino acids, as well as to transcriptomic 
changes associated with protein synthesis, glucosinolate, 
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and jasmonate metabolism. By using the mutants of two 
UCP, Arcuri et al. (2021) established that ROS homeostasis 
is altered at higher ATP/ADP ratios under the suppression 
of mitochondrial uncoupling.

At the post-translational level, AOX is regulated by the re-
dox state via thioredoxin and by oxo-acids providing high 
flexibility of metabolism under changing environmental 
conditions (Florez-Sarasa et al., 2016). The specific mito-
chondrial thioredoxin, Trx h, is capable of activating AOX, 
e.g. the thioredoxin h from poplar (PtTrxh2) can be reduced 
efficiently by the mitochondrial Trx reductase AtNTRA, and 
then it can act as a reducing agent for AOX homodimers 
and facilitate AOX activation by pyruvate (Gelhaye et al., 
2004; Figure 4). On the other hand, in pea (Pisum sativum L.), 
the activation of AOX was achieved by the o-type thio-
redoxin, which also interacted with other mitochondrial 
proteins, including peroxiredoxin and enzymes of the 
photorespiratory pathway (reviewed in da Fonseca-Pereira 
et al., 2021).

Initially, it was suggested that pyruvate is the main organic 
acid activator of AOX, and the function of this compound as 

the product of glycolysis and the entry of mitochondrial me-
tabolism links AOX to the TCA cycle (Day et al., 1994). It was 
later demonstrated that different AOX isoforms have differ-
ent sensitivity levels to pyruvate (Sweetman et al., 2022), 
and AOX isoforms are also differentially activated by the 
TCA cycle intermediates oxaloacetate (OAA) and 2-OG 
(Selinski et al., 2018). Thus, AOX possesses fine regulatory me-
chanisms for differential activation of isoforms by the inter-
mediates of mitochondrial metabolism appearing at the 
entry (pyruvate), the citrate branch (2-OG), and the malate 
branch (OAA) of the TCA cycle. The activation of AOX by 
the photorespiratory intermediates glyoxylate and hydroxy-
pyruvate (Pastore et al., 2001) reveals the metabolic adapt-
ability of AOX toward the photorespiratory flux, which 
requires the oxidation of large amounts of NADH without 
coupling to the ATP synthesis (Igamberdiev et al., 1997; 
Bykova et al., 2014).

The dependency of stromal ATP production on the dissipa-
tion of photosynthetic reductants in mitochondria was shown 
in a study that used fluorescent probes to measure ATP in vivo 
(Voon et al., 2018). This study demonstrated that, during 

Figure 4 Multilevel regulation of AOX. AOX biosynthesis is regulated transcriptionally by citrate and by elevated levels of ROS and NO. AOX is 
modified post-translationally by the mitochondrial thioredoxins (Trx) h or o, which mediate the conversion between an inactive form with a di-
sulfide bridge between the monomers and an active form with free thiol groups. Thioredoxin reductase regenerates Trx to the reduced form; 
NADPH for this reaction is supplied by NADP-dependent isocitrate dehydrogenase (NADP-ICDH). AOX is activated by oxo-acids including pyruvate 
(coming from the glycolysis and malic enzyme reactions), 2-OG and oxaloacetate (OAA; formed in the TCA cycle), and glyoxylate and hydroxypyr-
uvate (from photorespiration). The post-translational binding of pyruvate and other oxo-acids to the reduced form further activates the enzyme. 
The increase in the concentration of the AOX substrate ubiquinol (UQH2) in the inner membrane stimulates AOX activity. The individual biochem-
ical processes are shown with the solid arrows; and the dotted lines indicate regulatory effects. Thick red arrows define different levels of AOX regu-
lation. The figure was substantially modified from Møller et al. (2020a) and the Web Figure 12.3C of Taiz et al. (2015): http://6e.plantphys.net/ 
topic12.03.html.

http://6e.plantphys.net/topic12.03.html
http://6e.plantphys.net/topic12.03.html
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illumination, the provision and consumption of ATP/NADPH 
in chloroplasts can be balanced by exporting excess reductants 
rather than importing ATP from the cytosol. It is important to 
maintain the ATP/NADPH balance for the optimal photosyn-
thetic performance, and the reductant dissipation in mito-
chondria plays the primary role in this process.

Plant mitochondria are the drivers of 2ODD 
reactions
Plant mitochondria provide 2-OG for glutamate biosynthesis and 
through this supply intermediates for the biosynthesis of many 
other amino acids and their derivatives (Igamberdiev and 
Bykova, 2018). This function is the most evident consequence 
of the citrate valve (Igamberdiev, 2020). NADP-isocitrate dehydro-
genase (NADP-ICDH) in the cytosol is a key player in 2-OG pro-
duction that affects different aspects of metabolism including 
several secondary pathways (Araújo et al., 2014). The overexpres-
sion of NADP-ICDH causes alterations, resulting in enhanced 
plant growth and vascular development (Pascual et al. 2018). In 
mitochondria, 2-OG can be oxidized to succinate via the 2-OG de-
hydrogenase complex and succinyl-CoA synthetase coupled to 
ATP production. However, 2-OG can be converted to succinate 
in an alternative way through the reaction of its dioxygenation 
catalyzed by 2-OG-dependent dioxygenases (2ODDs). These reac-
tions occur mostly in the cytosol and initiate several metabolic 
pathways leading to the formation of diverse physiologically im-
portant compounds including secondary metabolites (Islam 
et al., 2018; Figure 1; Box 3).

2ODDs represent a large superfamily of enzymes with mostly 
Fe(II) as a redox cofactor, which use 2-OG and O2 as substrates 
and form CO2 and succinate as products. In the course of this 
reaction, various compounds are oxidized via hydroxylation, in-
cluding small molecules as well as proteins, nucleic acids, and 
lipids. Furthermore, oxidative modifications catalyzed by 
2ODDs include not only hydroxylations but also demethyla-
tions (that include N-methyl and, in some cases, O-methyl 
demethylations), desaturations, ring closure, ring cleavage, epi-
merization, rearrangement, halogenation, and demethylena-
tion (Farrow and Facchini, 2014; Sonawane et al., 2022; Song 
et al., 2022). In primary metabolism, 2ODDs participate in 
DNA repair and histone modifications, epigenetics, post- 
translational modifications, hypoxia response, and activation 
and catabolism of plant growth regulators. In the specialized 
(secondary) metabolism, 2ODDs participate in numerous 
pathways and display as much functional diversity as cyto-
chrome P450 monooxygenases (Araújo et al., 2014).

The TCA cycle modulates not only the flux from 2-OG to ami-
no acid metabolism but also the flux through 2ODDs that con-
nects the TCA cycle with glucosinolate, flavonoid, and alkaloid 
formation, as well as with different reactions of amino acid and 
GA biosynthesis (reviewed by Araújo et al., 2014). The direct 
role of the TCA cycle in these reactions was shown through the 
inhibition of the mitochondrial 2-OG dehydrogenase complex 
(Araújo et al., 2012a, 2012b; Condori-Apfata et al., 2021). In the 

mitochondrial matrix, citrate synthase controls not only the pro-
duction of citrate that leads to the formation of 2-OG entering 
the 2ODD reactions but also the formation of products of meta-
bolic pathways initiated by 2ODDs, e.g. of anthocyanin synthesis 
in petunia (Zhao et al., 2021). Some genes encoding ODDs are ac-
tivated by light (Cho et al., 2012).

The level of 2-OG in mitochondria and cytosol is balanced 
via its oxidation in 2-OG dehydrogenase reaction, dioxygena-
tion by 2ODDs, amination to glutamate, and other reactions. 
Its concentration directly regulates pyruvate kinase and PEP 
carboxylase in the cytosol, and citrate synthase and AOX in 
mitochondria (Araújo et al., 2014). These enzymes, in turn, 
control the fluxes through glycolysis and the TCA cycle, 
thus establishing an autocatalytic feedback mechanism in 
the metabolic system that leads to its balanced operation.

Plant mitochondria energize cytochrome P450 
monooxygenase reactions
The formation of 2-OG in the cytosol not only supports vari-
ous 2ODD reactions but also produces NADPH that can de-
liver electrons to cytochrome P450-driven monooxygenase 
reactions. The latter result in the formation of various sec-
ondary compounds and bioactive products, of which there 
are over 200,000 identified substances (Jensen and Møller, 
2010; Jensen et al., 2011; Pandian et al., 2020; Hansen et al., 
2021). An altered cellular redox status in mitochondria was 
shown to be a key factor in the coordination of proline 
and very long-chain fatty acid metabolism through the in-
volvement of cytochrome P450 (Shinde et al., 2016). In 
cyanobacteria, the expression of one cytochrome P450 

Box 3 TCA cycle and secondary metabolism

Through efflux of citrate from mitochondria, 2-OG 
production in the cytosol not only feeds glutamate 
biosynthesis but also supports a range of oxidative 
reactions catalyzed by 2-OG-dependent dioxy-
genases (Araújo et al., 2014). This drives glucosino-
late, flavonoid, and alkaloid metabolism as well as 
gibberellic acid and amino acid metabolism. In par-
ticular, differences in the levels of bioactive gibberel-
lin are controlled by the flux of 2-OG from the TCA 
cycle via 2-OG-dependent dioxygenases. The forma-
tion of 2-OG in the cytosol not only supports various 
2-OG-dependent dioxygenase reactions but also 
produces NADPH to support cytochrome 
P450-driven monooxygenase reactions resulting in 
the formation of numerous secondary compounds 
(Figures 1 and 3). Understanding the regulation of 
monooxygenase and dioxygenase reactions via the 
TCA cycle opens great possibilities for bioengineer-
ing the production of particular secondary metabo-
lites by plants.
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protein (CYP1A1) results in the reduction in the expression 
of other natural electron dissipation pathways, and cyto-
chrome P450 can be used as a competing electron sink 
(Torrado et al., 2022).

Thus, 2-OG-dependent dioxygenases and cytochrome P450 
monooxygenases not only utilize oxygen for the formation of 
numerous bioactive compounds but also their operation is dri-
ven by mitochondria supplying 2-OG and NADPH via the citrate 
valve (Figure 1; Box 3). Further experimental work is needed to 
clarify the direct role of mitochondria in fueling secondary me-
tabolism via the monooxygenase and dioxygenase reactions.

Multilevel regulation of respiration in the light
Regulation of respiration in the light represents a phenom-
enon that coordinates all major pathways of metabolism 
during photosynthesis including reactions of secondary me-
tabolism. It occurs at all levels of molecular organization and 
includes transcriptional, post-transcriptional, and post- 
translational mechanisms. Covalent post-translational modi-
fications of proteins represent an important mode of regula-
tion associated with changes in redox and energy balance in 
the cell (Møller et al., 2020a, 2020b; Figure 5). Fine regulation 

Figure 5 Redox and phosphorylation post-translational modifications and the regulation of TCA cycle enzymes and ETC components. 
Phosphorylation is shown by circled P, and Trx-dependent reduction is depicted by triangles with R. Abbreviations of the mitochondrial matrix 
enzymes and ETC components: ACO, aconitase; AOX, alternative oxidase; I, II, III, IV, complexes I–IV; CS, citrate synthase; FUM, fumarase; GDC, 
glycine decarboxylase complex; ICDH, isocitrate dehydrogenase; IMM, inner mitochondrial membrane; IMS, intermembrane space; MDH, malate 
dehydrogenase; NDA, internal rotenone-insensitive NADH dehydrogenase; NDB1 and NDB2, external rotenone-insensitive NADPH and NADH de-
hydrogenases; NDC, internal rotenone-insensitive NADPH dehydrogenase; OGDH, 2-oxoglutarate dehydrogenase complex; PDC, pyruvate dehydro-
genase complex; SCS, succinyl-CoA synthetase; SHMT, Ser hydroxymethyltransferase. Oxo-acids activating AOX isoforms are highlighted in green; 
citrate and isocitrate causing transcriptional activation of AOX and NDA are highlighted in blue. The biochemical reactions and electron transport 
are indicated by black thin lines with arrows, whereas H2O formation is shown in brown color. The light blue arrows indicate the supply of redox 
equivalents to ETC, the dark blue arrows indicate nitric oxide (NO) production, and the red arrows show superoxide anion (O2

−) production. The 
figure was substantially modified from Møller et al. (2020a)
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mechanisms take place at the level of activity modulation of 
enzymes by metabolites and cofactors. A consequence of en-
ergy production in chloroplasts is its involvement in the 
regulation of transcription of the mitochondrial genome. A 
study recently showed that overexpressed dual-targeted pur-
ple acid phosphatase 2 (AtPAP2) participated in the import 
of several nuclear-encoded proteins into chloroplasts and 
mitochondria (Liang et al., 2015).

While AOX and NDA are activated by citrate at the tran-
scription level (Finkemeier et al., 2013), the post- 
transcriptional mode of regulation via alternative splicing is 
essential. The role of alternative splicing in the expression 
of AOX was clearly demonstrated (Kong et al., 2003), as 
well as the expression of subunits of mitochondrial ETC com-
plex I (Lee et al., 2017; Lin et al., 2022). Another major mech-
anism of regulation of mitochondrial proteins is the 
methylation of promoters, as shown in the case of 
NAD-malic enzyme, aconitase, and citrate synthase 
(Eprintsev et al., 2018b, 2018a, 2020a, 2020b, 2022). 
Succinate dehydrogenase and fumarase represent an import-
ant point of control of the TCA cycle in the light (Huang 
et al., 2019). Their regulation is achieved by phytochrome 
and cryptochrome at the transcriptional level via methyla-
tion of promoters (Eprintsev et al., 2018a) and via thioredox-
in at the post-translational level (Daloso et al., 2015).

Since the maintenance of redox and energy balance de-
notes the main mechanism for achieving the stable oper-
ation of photosynthetic plant cells, sudden changes in the 
cellular environment trigger numerous signaling events 
that are related to the regulation at different levels. Redox 
signaling refers to the operation of the thioredoxin system 
and to the use of reactive oxygen and nitrogen species 
(ROS and RNS) as signaling compounds that initiate feed-
back mechanisms to keep the operation of photosynthetic 
cells under control. In mitochondria, ROS and RNS are 
formed upon elevation of the redox state during active 
photosynthesis, and the noncoupled pathways are involved 
in the regulation of their production and scavenging 
(Cvetkovska and Vanlerberghe, 2012; Hebelstrup and 
Møller, 2015; Van Aken, 2021). Over-reduction of mitochon-
dria and ROS formation take place as a result of heat stress 
due to the increased fluidity of membranes and impairment 
of cytochrome c oxidase (Scafaro et al., 2021). Many redox- 
related reactions are mediated via the pool of glutathione 
and ascorbate. A highly negative glutathione redox potential 
(EGSH) is maintained in the cytosol, plastids, and mitochon-
dria of plant cells to support fundamental processes, includ-
ing antioxidant defense, redox regulation, and iron–sulfur 
cluster biogenesis (Marty et al., 2019). Glutathionylation of 
proteins may represent another important redox regulatory 
mechanism (Palmieri et al., 2010), although its contribution 
to interactions between photosynthesis and respiration re-
quires further investigation (reviewed in Møller et al., 
2020a, 2020b).

Although RNS is formed at high levels under low oxygen 
conditions when the components of electron transport use 

nitrite instead of oxygen as the terminal electron acceptor 
to produce NO, the activity of electron transport compo-
nents toward generating NO also takes place under nor-
moxic conditions in the light (Gupta et al., 2018). In 
normoxic conditions, the Q-cycle of complex III generates 
NO from nitrite, and AOX reduces this activity by acting as 
a nonenergy-conserving electron sink upstream of complex 
III (Cvetkovska and Vanlerberghe, 2012; Hebelstrup and 
Møller, 2015; Alber et al., 2017). The role of AOX in anaerobic 
conditions can be related to NO generation, while in nor-
moxia, the AOX engagement contributes to NO scavenging 
(Jayawardhane et al., 2020). Recent evidence strongly indi-
cates that NO signaling could play an important role during 
photosynthesis and photorespiration via redox protein 
modification, such as S-nitrosylation of glycine decarboxylase 
(Palmieri et al., 2010; Keech et al., 2017) and tyrosine nitration 
of superoxide dismutases by peroxynitrite formed via NO 
and superoxide interaction (Holzmeister et al., 2015).

An important role in the regulation of plant respiration dur-
ing photosynthesis belongs to protein phosphorylation 
(Figure 5). The reversible phosphorylation of Ser, Thr, and 
Tyr residues in proteins represents a dynamic protein regula-
tory mechanism that operates in concert with changes in 
the ATP/ADP ratio in plant cells. By using either [γ-32P]ATP 
labeling-based or mass spectrometry-based phosphoproteo-
mic analysis, more than 50 phosphorylated proteins and a 
number of protein kinases and protein phosphatases have 
been identified in isolated plant mitochondria, including sev-
eral TCA cycle enzymes, ETC components, and components 
of most other major mitochondrial pathways (Bykova et al., 
2003; Havelund et al., 2013; reviewed in Møller et al., 2020a, 
2020b). Among these proteins, the regulation of only PDC is 
understood in detail (Tovar-Méndez et al., 2003). The activity 
of MDH decreases with an increase in the ATP/ADP ratio 
(Yoshida and Hisabori, 2016), and redox regulation by Trx 
was also observed (Martí et al., 2020). The phosphorylation cas-
cades are especially important for triggering autophagy during 
cell senescence. This includes mitogen-activated protein kinase 
(MAPK) signaling (Karia et al., 2021). The role of phosphoryl-
ation cascades during the interactions between photosynthesis 
and respiration, in particular, includes the participation of 
phytochrome and cryptochrome systems, in which the 
first step represents light-dependent phosphorylation of 
the protein moiety of phytochrome and cryptochrome 
(Igamberdiev et al., 2014a, 2014b; Ponnu and Hoecker, 2022).

Many reactions in photosynthetic plant cells are regulated 
via thioredoxin (Trx; Martí et al., 2020). In mitochondria, Trx 
is reduced by NADPH-dependent reductases (Dreyer and 
Dietz, 2018). More than a hundred mitochondrial proteins 
are potential targets for Trx regulation (Buchanan, 2017). 
Two TCA cycle enzymes, namely, succinate dehydrogenase 
(the flavoprotein subunit) and fumarase, exhibit a decreased 
activity in response to Trx-mediated reduction (Daloso et al., 
2015), while citrate synthase is activated by Trx 
(Schmidtmann et al., 2014). Daloso et al. (2015) constructed 
a double mutant of Arabidopsis with down-regulated 
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NADP-Trx reductase (ntra and ntrb genes) and Trx o1 in 
mitochondria. They showed that while Trx deactivates suc-
cinate dehydrogenase and fumarase in mitochondria, it acti-
vates the cytosolic citrate synthase. This became one of the 
first studies demonstrating pathway-specific regulation of 
TCA cycle enzymes by Trx. The mitochondrial isoform of cit-
rate synthase in Arabidopsis was also shown to be regulated 
by Trx (Schmidtmann et al. 2014). The authors demonstrated 
that oxidation inhibits mitochondrial citrate synthase activ-
ity by the formation of mixed disulfides, resulting in the ac-
cumulation of large redox-dependent aggregates. Trx can 
cleave diverse intramolecular and intermolecular disulfide 
bridges reversing the enzyme to the active state.

The Trx-dependent regulation of the TCA cycle enzymes 
contributes to the TCA cycle operation in a noncyclic mode 
in the light (Møller et al., 2020a, 2020b). Redox states of sev-
eral Trxs directly follow the linear electron transport rate in 
photosynthesis (Zimmer et al., 2021). While the redox tar-
gets have kinetics compatible with equilibrium with one 
Trx, the reduction of other proteins manifests specific 
kinetic limitations, permitting flexible adjustment of the 
redox state for each component of plant metabolism 
(Zimmer et al., 2021). Disulfide bridge formation, which reg-
ulates the activities of many respiratory enzymes including 
AOX, is reversible through thioredoxin (Trx)- or glutaredox-
in (Grx)-catalyzed reduction (Nietzel et al., 2017). 
Thioredoxin reductase (Trx-R) regenerates Trx o to the re-
duced form, and for this reaction, NADPH can be supplied 
by NADP-isocitrate dehydrogenase (da Fonseca-Pereira et 
al., 2021). Moreover, the negative regulation of the TCA cy-
cle by the Trx system is coordinated with an increased input 
of electrons into the AOX pathway (Florez-Sarasa et al., 
2019). Glutaredoxin GRXS15 is required for the biosynthesis 
of lipoyl-dependent dehydrogenases in mitochondria 
(Moseler et al., 2021).

All complexes of the mitochondrial ETC and AOX are regu-
lated by the thioredoxin system (reviewed in Møller et al., 
2020a, 2020b). Interaction of Trx o2 with the activating CBS 
domain-containing protein CBSX3 was shown to regulate 
ROS generation in plant mitochondria at the level of complex 
II (succinate dehydrogenase; Shin et al., 2020). Redox regula-
tion via Trx o1 allows for the rapid initiation of mitochondrial 
steps of the photorespiratory cycle, which, in turn, facilitates 
the light-triggered induction of photosynthesis (Reinholdt 
et al., 2019). Trx h2 plays an important role in the redox regu-
lation of mitochondrial photorespiratory metabolism (da 
Fonseca-Pereira et al., 2020). A number of transcription factors 
(TFs) contain redox-sensitive cysteine residues at their 
DNA-binding sites, and hence, ROS-induced thiol oxidation 
strongly inhibits their recognition of the cognate DNA se-
quences, resulting in the redox regulation at the level of tran-
scription (Munné-Bosch et al., 2013). The level of RNA editing 
represents another essential point of regulation, which is par-
ticularly important for the assembly of the mitochondrial ETC 
complexes (He et al., 2018; Maldonaldo et al., 2022) and re-
quires further investigation.

Conclusions and perspectives
The photosynthetic performance of plants has to be optimized 
to be efficient, prevail against stress-induced disturbances, and 
provide maximum productivity in utilizing energy to build bio-
mass. This is achieved via establishing conditions for overcom-
ing environmental disturbance through the autocatalytic 
feedbacks incorporated into the integral intercompartmental 
organization of the plant cell. Mitochondria are directly in-
volved in this role in the light via regulating the noncoupled 
pathways of electron transport, catalyzing the exchange of mal-
ate and citrate, contributing to the balance of adenylates, NAD, 
and NADP in the cytosol and other compartments, and driving 
the operation of the cytochrome P450 monooxygenase and 
2-OG-dependent dioxygenase systems. The latter systems gen-
erate a vast number of secondary metabolites and other com-
pounds determining the specificity and metabolic uniqueness 
of individual plant species. In photosynthetic plant cells, mito-
chondria are transformed from the powerhouse organelles to 
the thermodynamic buffering organelles that regulate redox 
and energy balance in the cell and supply 2-OG and NADPH 
for biosynthetic reactions. Several important aspects of this 
transformation require further clarification (see Outstanding 
Questions) and will be the center of future investigations.

Advances

• Mitochondria avoid overenergization of photosynthet-
ic cells and optimize metabolic fluxes by balancing 
phosphorylation of adenylates and reduction of pyri-
dine nucleotides.

• The malate valve shuttles redox equivalents from chlor-
oplasts and optimizes NADH/NAD+ ratios.

• The citrate valve, driven by mitochondria, generates 
NADPH in the cytosol and other compartments; efflux 
of citrate from mitochondria is regulated by redox level 
and inhibition of aconitase.

• The citrate valve provides 2-OG for amino acid biosyn-
thesis and for 2ODD reactions; NADPH produced via 
the citrate valve feeds monooxygenase reactions per-
formed by cytochrome P450.

• In the light, mitochondria transform from powerhouse 
organelles to thermodynamic buffering organelles co-
ordinating and optimizing anabolic and catabolic path-
ways within the plant cell.

Outstanding questions

• What are the fine mechanisms of regulation of 2ODD 
reactions in light and darkness?

• How do the TCA cycle and 2-OG supply to 2ODDs 
regulate the balance of phytohormones?

• How is mitochondrial function connected with the 
regulation of cytochrome P450 monooxygenase reac-
tions?
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• What are the fine mechanisms that coordinate the 
regulation of the TCA cycle and photorespiration at 
the transcriptional, translational, and post-translational 
levels?

• How is the thioredoxin network in plant mitochondria 
coordinated with photosynthetic performance?

• What molecular factors and mechanisms determine 
the level of inhibition of the mitochondrial respiration 
in the light?
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