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Abstract

Motivation: The integration of single-cell multi-omics data can uncover the underlying regulatory basis of diverse
cell types and states. However, contemporary methods disregard the omics individuality, and the high noise, spars-
ity, and heterogeneity of single-cell data also impact the fusion effect. Furthermore, available single-cell clustering
methods only focus on the cell type clustering, which cannot mine the alternative clustering to comprehensively
analyze cells.

Results: We propose a single-cell data fusion based multiple clustering (scMCs) approach that can jointly model
single-cell transcriptomics and epigenetic data, and explore multiple different clusterings. scMCs first mines the
omics-specific and cross-omics consistent representations, then fuses them into a co-embedding representation,
which can dissect cellular heterogeneity and impute data. To discover the potential alternative clustering embedded
in multi-omics, scMCs projects the co-embedding representation into different salient subspaces. Meanwhile, it
reduces the redundancy between subspaces to enhance the diversity of alternative clusterings and optimizes the
cluster centers in each subspace to boost the quality of corresponding clustering. Unlike single clustering, these al-
ternative clusterings provide additional perspectives for understanding complex genetic information, such as cell
types and states. Experimental results show that scMCs can effectively identify subcellular types, impute dropout
events, and uncover diverse cell characteristics by giving different but meaningful clusterings.

Availability and implementation: The code is available at www.sdu-idea.cn/codes.php?name=scMCs.

1 Introduction

The advancement of single-cell sequencing techniques assists
researchers to simultaneously obtain multiple omics data, which in
return more precisely characterize the joint regulatory mechanism of
multiple molecules (Luecken and Theis 2019). Specifically, single-
cell RNA-sequencing (scRNA-seq) quantifies the mRNA abundance
of genes in each cell, while single-cell Assay for Transposase-
Accessible Chromatin using sequencing (scATAC) characterizes the
openness of cis-regulatory elements in nearby genes (Zhu et al.
2020). The joint analysis of scRNA-seq and scATAC data can
strength key genetic information of different omics, and decipher
gene regulatory relationships related with cellular heterogeneity
(Macaulay et al. 2017; Hao et al. 2021).

Although the integration of single-cell multi-omics data can fa-
cilitate the study of complex biological information, the inherent
characteristics of single-cell data, such as high sparsity, noise, and
dimensionality mismatch, bring great computational and analytical

challenges. Researchers have been developing single-cell multi-omics
integration methods by leveraging machine learning and bio-
analytical techniques. A line of methods build on non-negative
matrix factorization or principal component analysis to integrate
single-cell multi-omics data and resolve cellular heterogeneity (Duren
et al. 2018; Welch et al. 2019; Argelaguet et al. 2020; Ma et al.
2022). But these shallow methods mostly project multi-omics data
into a shared latent space and ignore omics-specific information.
Furthermore, linear models disregard non-linear geometries of multi-
omics data. Manifold alignment methods aim to align embedded
low-dimensional manifolds of different omics data and characterize
intrinsic cellular structures (Liu et al. 2019; Cao et al. 2021).
Although these alignment-based methods can capture non-linear geo-
metries across multi-omics data, they suffer a high time complexity
OðN3Þ (N is the number of samples), which limits their applications.

By the virtue of expressive feature extraction capability, deep-
learning methods have emerged as the mainstream technique for
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single-cell data analysis (Tian et al. 2019; Xiong et al. 2019; Liu
et al. 2021a). Recently, Zuo and Chen (2021) proposed single-cell
Multimodal Variational AutoEncoder (scMVAE) to integrate
scRNA-seq and scATAC data. Specifically, scMVAE combines
probabilistic Gaussian mixture models with three different joint
learning strategies to explore latent features that can characterize
multi-omics data. But merely embedding different omics data into
the same latent space may lose the specificity of individual omics.
Unlike scMVAE, Deep Cross-omics Cycle Attention (DCCA) (Zuo
et al. 2021) uses different deep generative networks to model the
scRNA-seq and scATAC data, then applies attention-transfer to ex-
plore the regulations between different omics and cell heterogeneity.

The aforementioned deep methods still have some issues. First,
most of them focus on a shared representation, but disregard the
omics individuality, and cannot integrate different levels of biologic-
al features to learn a more discriminative representation for data im-
putation and cell clustering. Furthermore, contemporary single-cell
clustering methods only aim at one clustering of cell types. In prac-
tice, cells can also be clustered by other biological characteristics,
such as cell functions or states, and these biological characteristics
can be regulated by gene expression. Existing methods cannot suffi-
ciently integrate and merge the genetic information from different
omics to reveal potential alternative clusterings with diversity and
high quality, while these multiple clusterings can reveal the different
roles and characteristics of cells from different perspectives.

To address these challenges, we propose a method called scMCs
and present the conceptual framework in Fig. 1. The main idea of
our solution is to design an information extraction and fusion mod-
ule to finely process the individuality and commonality learned from
heterogeneous omics, and construct a more comprehensive and in-
formative representation for single-cell multi-omics data fusion,
clustering, and multiple clustering. Specifically, scMCs uses the
omics-independent deep autoencoders to learn the low-dimensional
representation of each omics, and utilizes the attention mechanism

and omics-label discriminator to capture the omics individuality.
Meanwhile, scMCs utilizes the contrastive learning strategy to cap-
ture the commonality, and fuses the individuality and commonality
features into a compact co-embedding representation for cell cluster-
ing and data imputation. To uncover the potential alternative clus-
terings in multi-omics data, scMCs applies multi-head attention
mechanism (Vaswani et al. 2017) on the co-embedding representa-
tion to generate multiple salient subspaces, and reduce the redun-
dancy between subspaces. Meanwhile, scMCs optimizes a
Kullback–Leibler (KL) divergence-based clustering loss in each sali-
ent subspace and generates different high quality clusterings in an
end-to-end framework.

2 Materials and methods

The framework overview of scMCs is shown in Fig. 1, where Fig. 1a
aims at multi-omics data fusion and cell clustering; and Fig. 1b tar-
gets to explore multiple clusterings with quality and diversity
embedded in multi-omics data. The technical details of scMCs are
presented below.

2.1 Multi-omics data encoder for individuality
With the increasing complexity of single-cell data, researchers have
merged deep learning with single-cell data clustering (Liu et al.
2021a). As a classical neural network, autoencoder can map
high-dimensional data into a low-dimensional representation space
while ignoring noise and outliers. Given that, we separately use
autoencoders to map single-cell multi-omics data into their respect-
ive non-linear embedding spaces, thereby preserving the individual-
ity, resisting noises and outliers.

Let X 2 R
N�DX and Y 2 R

N�DY be the normalized scRNA-seq
data and scATAC data, where N is the number of samples, DX and
DY are the number of features. scMCs firstly employs two independ-
ent encoders fEXðÞ and fEYðÞ to learn respective d-dimensional fea-
ture representations fZX;ZYg 2 R

N�d:

ZX ¼ fEXðXÞ;ZY ¼ fEYðYÞ; (1)

where d is the dimension of embedding space; ZX is the latent low-
dimensional representation of cells and genes in scRNA-seq data,
while ZY encodes the latent patterns between cells and peaks in
scATAC data.

To extract the individuality and explore the complementary in-
formation among different omics, we incorporate the attention
mechanism and omics-label discriminator into the encoder module.
Concretely, scMCs defines two normalized attention score matrices
as:

AX ¼ softmax
ZXðZXÞTffiffiffi

d
p

 !
; AY ¼ softmax

ZYðZYÞTffiffiffi
d
p

 !
; (2)

where the elements in AX and AY quantify the similarity of a pair of
cells for different omics. Softmaxð�Þ normalizes the weight to [0, 1]
to avoid modeling negative correlations, it also helps to prevent the
local optimal problem caused by too large weights of some cells.
With the normalized attention scores, we reorganize the low-
dimensional representations by considering the similarity among
cells:

ZgX ¼ AXZX; ZgY ¼ AYZY : (3)

The attention mechanism plays important roles in the encoding
module. On the one hand, it measures the importance of biological
signals in the intrinsic feature spaces of different omics, and extracts
omics individuality; on the other hand, it explores the similarity be-
tween cells and enables to explore the representation relationship
between cells and features from a global perspective.

In supervised learning tasks, labels can indicate the class or iden-
tity of the samples. Given that, omics labels can be used as the super-
vised signals to extract individual features of each omics. Here, we
explicitly define the omics labels, i.e. cells from the same omics are

Figure 1 Framework overview of scMCs for single-cell multi-omics data fusion and

multiple clusterings. (a) scMCs firstly projects scRNA-seq data X and scATAC data

Y into different low-dimensional spaces ZX and ZY . Next, it utilizes the attention

mechanism and omics-label discriminator to extract the omics individuality ZgX

and ZgY , and uses contrastive learning mechanism to capture omics commonality

ZXY . After that, scMCs fuses the omics individuality and commonality to obtain an

informative co-embedding matrix ZI for clustering, and learns the parameter repre-

sentations fMX ;H;Pg of ZINB distribution and fMYg of Ber. (b) scMCs projects

ZI into different subspaces fOlgL
l¼1, leverages the redundancy control constraint

and clustering loss Lclu to enhance the diversity and quality among them for generat-

ing multiple clusterings fRlgL
l¼1 in an end-to-end manner. Besides, scMCs minimizes

the reconstruction loss Lrec to ensure the consistency of feature information
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labeled as one type. Next, we design an omics-label discriminator to
further enhance the quality of individuality in ZgX and ZgY . The dis-
criminator loss is defined as:

Ldis ¼ CEðP; fdisðZgX;ZgYÞÞ; (4)

where CE is the cross-entropy loss, P 2 f0;1g2N�K is the true omics-
label matrix, where K is the number of omics; fdisðÞ is the omics-
label predictor, which is a fully connected neural network with two
layers.

2.2 Cross-omics contrastive learning for commonality
The attention layers and omics-label discriminator may induce the
model to pay more attention to individual features or noises of each
omics, which is not conducive to data fusion and cell clustering.
Furthermore, individual features only unilaterally characterize the
complementarity between omics, while the cross-omics consistent
(shared) information can reflect the commonality between omics,
which is important for a consistent clustering with high quality.
Existing methods (i.e. MOFAþ, CoNMF, and scMVAE) mainly
concatenate the multi-omics data and project them into a common
low-dimensional representation to explore the shared information.
However, due to the sparsity and high dimensionality of different
omics, the resulting representation may be of low quality. Although
DCCA (Zuo et al. 2021) uses different deep generative autoencoders
and the attention-transfer to link multi-omics, it pays more attention
to the knowledge learned from scRNA-seq but lacks attention to
scATAC. To extract the compact commonality features between dif-
ferent omics, we introduce the cross-omics contrastive learning
strategy (Liu et al. 2021b) to extract shared knowledge from
scRNA-seq and scATAC data for fusion.

As a novel self-supervised learning paradigm, the core theory of
contrastive learning is to maximize the consistency by maximizing
the mutual information between different views (Chen and Geng
2021). In this way, we can obtain more informative embedded fea-
tures by maximizing the information entropy, and avoid the simple
solution of assigning all samples to the same cluster. The details of
learning commonality are as follows:

i. Feature multilayer perceptron (MLP): To eliminate the influence

of heterogeneity and ensure the semantic consistency of ZX and

ZY , scMCs maps ZX and ZY into one latent semantic space via a

shared feature MLP:

QX ¼ fMLPðZXÞ; QY ¼ fMLPðZYÞ; (5)

where fQX, QYg 2 R
N�d are low-dimensional embedding repre-

sentations of X and Y with similar semantics.

ii. Cross-omics contrastive learning: In the latent space parameter-

ized by fMLP, we optimize the contrastive loss between QX and

QY to learn the commonality representation as:

Lcl ¼ �ðIðQX;QYÞ þ �ðHðQXÞ þHðQYÞÞÞ; (6)

where Ið�Þ denotes the mutual information, Hð�Þ is the information

entropy, and � is a weight parameter. Finally, scMCs integrates the

consistent representations as follows:

ZXY ¼ fXYðQX;QYÞ; (7)

where ZXY encodes the commonality of different omics, fXY is a

fully connected neural network with two layers.

2.3 Multi-omics data fusion and imputation for

clustering
As discussed, scMCs can learn two latent representations ZgX and
ZgY to encode omics individuality, and a latent representation ZXY

to encode commonality, which are key factors for clustering and
imputing single-cell multi-omics data. Here, we perform an element-
wise sum operation with scale parameters kx and ky to aggregate

them, and generate a more discriminative co-embedding representa-
tion ZI:

ZI ¼ ZXY þ kxZgX þ kyZgY : (8)

A simple solution to optimize the co-embedding representation
ZI is to use different MLP as decoders to reconstruct each omics.
However, frequent dropout events may seriously affect the quality
of ZI and lead to inaccurate clustering results. In practice, we can
impute the dropout events and utilize the imputed data feedback to
optimize ZI, further enhancing the accuracy of key genetic features.
Previous studies show that scRNA-seq data often have the charac-
teristics of discreteness, variance greater than the mean and high
sparsity (Risso et al. 2018). Nonetheless, some studies report the
zero-inflated negative binomial (ZINB) probability distribution can
account for these characteristics (Eraslan et al. 2019). Therefore, we
propose a ZINB model based decoder network to explore the global
probabilistic structure of scRNA-seq data. Mathematically, ZINB is
defined with the mean (lx) and dispersion (h) parameters of the
negative binomial distribution and a coefficient (p) that describes
the probability of dropout events:

NBðx; lx; hÞ ¼
Cðxþ hÞ

CðhÞ
h

hþ lx

� �h lx

hþ lx

� �x

; (9)

ZINBðx; p;lx; hÞ ¼ pf0ðxÞ þ ð1� pÞNBðx; lx; hÞ; (10)

where x is a vector from the original scRNA-seq data.
In details, the ZINB-based decoder estimates the parameters

fp;lx; hg based on ZI through three different fully connected layers
as follows:

P ¼ sigmoidðfDXðZI;WpÞÞ; (11)

MX ¼ expðfDXðZI;Wlx
ÞÞ; H ¼ expðfDXðZI;WhÞÞ; (12)

where fP;MX;Hg is the matrix form of fp; lx; hg; fDX is a decoder
with fully connected layer; Wp, Wlx

, and Wh are three learnable par-
ameter matrices. The activation function of P is sigmoidðÞ because
the dropout probability is between 0 and 1. In addition, since the
mean and dispersion parameters are non-negative, the exponential
function expðÞ is selected as the activation function for MX and H.

Different from the traditional mean squared error loss-based
autoencoder, the loss function of ZINB-based decoder network is
the negative log of the ZINB likelihood:

LZINB ¼ �logðZINBðXjP;MX;HÞÞ: (13)

Considering the extremely sparse and nearly binary nature of
scATAC data, we use a Bernoulli distribution (Ber)-based decoder
network to model scATAC data:

Berðy; lyÞ ¼ y logðlyÞ þ ð1� yÞlogð1� lyÞ; (14)

where y is a vector from the original scATAC data; ly is the mean
parameters of Ber. The Bernoulli-based decoder estimates ly based
on ZI through a fully connected layer with sigmoidðÞ as activation
function:

MY ¼ sigmoidðfDYðZI;Wly
ÞÞ; (15)

where MY is the matrix form of ly and Wly
is the weight parameter

matrix. Finally, the Bernoulli-based autodecoder can be optimized
by the cross-entropy loss:

LBer ¼ CEðY;MYÞ: (16)

To pursue a more discriminative and informative co-embedding
representation that incorporates individuality and commonality of
multi-omics data, we unify the objective of imputing the scRNA-seq
data and scATAC data, predicting the omics labels, and cross-omics
contrastive learning loss as follows:

scMCs: single-cell multiple clusterings 3



L1 ¼ argminU1
ðð�logðZINBðXjP;MX;HÞÞÞ þ a1CEðY;MYÞ

þa2CEðP; fdisðZgX;ZgYÞÞ
þa3ð�ðIðQX;QYÞ þ �ðHðQXÞ þHðQYÞÞÞÞÞ;

(17)

where U1 denotes the network parameters, a1, a2, and a3 are three
scalar parameters to constrain LBer, Ldis, and Lcl. By optimizing
Equation (17), the individual and shared feature representations can
be learned from multi-omics data, and they can be merged into an
informative co-embedded representation for clustering and multiple
clustering.

2.4 Multiple clusterings mining module
Contemporary single-cell multi-omics analysis methods mainly aim
to integrate cross-omics shared features to find an optimal cell div-
ision pattern, which ignores other potential important patterns. Due
to the multiplicity of multi-omics data, different cell clustering pat-
terns, such as cell type clustering or cell state clustering, can co-
exist. Unlike traditional multi-view clustering methods that can only
discover a single clustering, multi-view multiple clustering can in-
corporate the omics consistent and specific features and simultan-
eously generate multiple meaningful and non-redundant clusterings,
which help us to divide cells from different perspectives and explain
the cell heterogeneity. Different from subspace clustering that finds
one clustering with clusters spanned in different subspaces, multiple
clustering explores alternative clusterings in different subspaces. To
more comprehensively mine single-cell multi-omics data, scMCs
introduces another module (as illustrated in Fig. 1b), and proposes
to sufficiently utilize the omics individuality and commonality to ex-
plore alternative clusterings embedded in the multi-omics data.

A naive idea to generate multiple clusterings is to define multiple
embedding subspaces based on the original or imputed data.
However, the resulting embeddings/clusterings may largely overlap,
due to the characteristics of high noise and sparsity of single-cell
data. Here, scMCs uses ZI to generate different salient subspaces for
its compactness with informative features. Specifically, it applies
multi-head attention on ZI to generate L salient heads fOlgL

l¼1,
which capture different perspectives of ZI, and thus generate L sali-
ent subspaces. The l-th head Ol 2 R

N�m is calculated as:

Ol ¼ softmax
QlK

T
lffiffiffiffi

m
p

 !
Vl; (18)

where fQl;Kl;Vlg are the linear transformations of ZI with respect
to different parameters fWQ

l ;W
K
l ;W

V
l g, m is the dimension of each

head. It is worth noting that projecting ZI with different parameters
can theoretically control the difference between heads, and thus help
to generate diverse subspaces and clusterings.

To ensure the consistency between subspace features and ZI, we
concatenate all the heads as Z ¼ concatðO1; . . . ;OLÞ and decode Z

toward ZI with the following reconstruction loss:

Lrec ¼ jjZI � ZIjj22; ZI ¼ fHðZÞ: (19)

One key concern of multiple clusterings is how to reduce the re-
dundancy between clusterings. Although with different linear trans-
formation parameters, the multi-head attention may still produce
redundant subspaces. Here, we leverage the Hilbert Schmidt
Independence Criterion (HSIC) (Gretton et al. 2005) to quantify the
dependency between heads, which also approximately measures the
redundancy between subspaces and clusterings. Theoretically, HSIC
quantifies the dependency between two head Ol and Ol0 based on
the norm of the cross-covariance operator. It can simultaneously
measure the linear and non-linear dependency between representa-
tions. The larger the HSIC value, the larger the dependency between
them is. The empirical HSIC is computed as:

HSICðOl;Ol0 Þ ¼
1

ðm� 1Þ2
TrðUlHUl0HÞ; (20)

where Trð�Þ is the trace norm, Ul ¼ OT
l Ol is the Gram matrix, H ¼

Im � 1
m 11T centers the Gram matrices to have zero mean.

Mathematically, the dependency among L heads is computed as:

Lred ¼
XL

l¼1;l 6¼l0

HSICðOl;Ol0 Þ ¼
XL

l¼1

TrðOl
~UlO

T
l Þ ; (21)

where ~U l ¼ ðm� 1Þ�2 PL
l¼1;l 6¼l0

HUl0H. Minimizing Equation (21)

penalizes the dependency among L heads, and reduces the redun-
dancy between different subspaces and clusterings therein.

Another concern of multiple clusterings is how to maintain the
quality of each clustering, which describes the compactness within
clusters and the separation between clusters. Here, we propose to
learn L sets of cluster centers fXlgL

l¼1 in L subspaces fOlgL
l¼1, where

Xl ¼ fx1
l ;x

2
l ; . . . ;xJl

l g indicates that Ol has Jl cluster centers.
To optimize the cluster centers in each subspace, we utilize a KL

divergence loss to enhance the association between similar cells.
Specifically, we measure the pairwise similarity between the sample
point oi

l and centroid xj
l in Ol as follows:

pij ¼
ð1þ jjoi

l � xj
ljj

2Þ�1P
j ð1þ jjoi

l � xj
ljj

2Þ�1
; (22)

where pij 2 Pl is the probability of assigning sample i ð1 � i � NÞ
to cluster j ð1 � j � JlÞ. Equation (22) uses a t-distribution con-
straint to optimize the distance between samples and cluster centers,
which can generate larger gradients for dissimilar samples to prevent
clustering them together.

To further optimize the cluster centers and strengthen the affinity
between similar samples, we introduce an auxiliary target distribu-
tion Rl to refine the clusters in each clustering by learning their high-
confidence assignments (Xie et al. 2016), and its elements can be
computed as:

rij ¼
p2

ij=
P

i pijP
jðp2

ij=
P

i pijÞ
: (23)

Theoretically, Rl can improve the compactness between similar
samples, while paying less attention to dissimilar ones. In addition, it
balances the contribution of each cluster center through normaliza-
tion, and avoids the clustering distortion caused by a larger cluster.

Based on these two similarity distribution functions, we can de-
fine the clustering loss among L heads as:

Lclu ¼
XL

l¼1

KLðPljjRlÞ ¼
XL

l¼1

XN
i¼1

XJl

j¼1

pij log
pij

rij
: (24)

To generate multiple diverse subspaces from ZI and explore high
quality clusterings therein, we unify the objective of reconstruction
loss, redundancy between subspaces, and clustering loss as follows:

L2 ¼ argminU2
ðjjZI � ZIjj22 þ b1

PL
l¼1 TrðOl

~UlO
T
l Þ

þb2

PL
l¼1 KLðPljjRlÞÞ;

(25)

where U2 is the network parameters, b1 and b2 are two scalar
parameters to balance the diversity and quality. By optimizing
Equation (25), we can find multiple salient subspaces from the co-
embedding representation ZI, and also generate multiple clusterings
with high quality therein in an end-to-end manner. When updating
l-th clustering Cl, the label assigned to i-th sample can be made as
ci ¼ argmax rij; Cl ¼ fcigN

i¼1. If we fix L ¼ 1, the redundance con-
trol term in Equation (25) is disregarded, then, we can learn an
embedded representation O1 of multiple omics and discover the sin-
gle clustering therein.

3 Results

3.1 Experiment setup
Datasets: scMCs is a flexible framework that can integrate different
single-cell omics data. In the experiments, we mainly evaluate the
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performance of scMCs by jointly modeling the scRNA-seq data and
scATAC data. We collect four preprocessed single-cell multi-omics
data with paired profiles from a previous study (Zuo et al. 2021): (i)
CellMix with 1047 cells is downloaded from GEO (D1,
GSE126074), in which the chromatin accessibility and gene expres-
sion in each single-cell are simultaneously co-assayed using the
SNARE-seq; (ii) PBMC 3K (D2) with 3012 cells is downloaded
from 10X Genomics; (iii) Mouse skin downloaded from GEO (D3,
GSE140203) contains 34 774 cells, and it is derived from adult
mouse skin by SHARE-seq. (iv) AdBrain with 10 309 cells is down-
loaded from GEO (D4, GSE126074), in which the chromatin acces-
sibility and gene expression in each single-cell are derived from the
adult mouse cerebral cortex. We use the Signac package (Stuart
et al. 2021) to preprocess AdBrain dataset, and retain the top 5000
highly variable-genes of scRNA-seq data and 52 818 peaks of the
scATAC data.

Evaluation protocols: For ‘single clustering’, k-means is applied
to cluster the cells based on the learned low-dimensional co-embed-
ding representation ZI. Then, we use Normalized Mutual
Information (NMI) and Adjusted Rand Index (ARI) to evaluate the
clustering performance. The range of NMI and ARI are both [0,1],
and a higher value indicates a better clustering performance. For
‘multiple clusterings’, we use the NMI and Jaccard Index (JI) to
measure the overlap between different clusterings, and Silhouette
Coefficient (SC) and Dunn Index (DI) to evaluate the quality of each
clustering.

Comparing baselines: We implement scMCs with the MindSpore
deep learning framework and compare it against with Iv competitive
single-cell multi-omics data fusion methods. (i) JSNMF (Ma et al.
2022) decomposes different omics data into different latent spaces,
and learns the consistent information of multi-omics data through a
consensus graph; (ii) UnionCom (Cao et al. 2020) projects multi-
omics data into a common embedding space, and matches the com-
plex non-linear features by a global scaling parameter to cluster the
cells; (iii) scMVAE (Zuo and Chen 2021) proposes three strategies,
scMVAE-PoE, scMVAE-NN, and scMVAE-Direct, to learn the joint
latent features for data fusion and clustering. scMVAE-Direct con-
catenates raw features of each omics, scMVAE-NN combines the
low-dimensional features extracted from different omics, while
scMVAE-PoE uses the product of experts framework to estimate a
joint posterior distribution; and (iv) DCCA (Zuo et al. 2021) proj-
ects different omics into their corresponding low-dimensional
spaces, and uses the ‘Teacher-student’ mechanism to fuse multi-
omics data. The experimental configurations of these compared
methods are given in Supplementary Table S1.

3.2 Cell clustering and visualization
Table 1 summarizes the clustering performance of scMCs and other
baselines on four datasets. Each method repeats five times to take
the average and variance, and the bold fonts indicate the best result.
UnionCom is too time-consuming on large datasets, so its results on
Mouse skin are not reported. scMCs performs well on the four data-
sets in terms of NMI and ARI, and the clustering results are

statistically better than other methods in most cases. Other import-
ant observations are as follows:

i. scMCs versus JSNMF: JSNMF more focuses on the linear and

shared features, but overlooks the individual features of each

omics. In addition, it neglects the impact of dropout events.

Thus, it has a poor clustering performance in most cases. In

contrast, scMCs can learn the omics individuality and common-

ality to joint optimize the co-embedding and data imputation

for a better cell clustering.

ii. scMCs versus UnionCom: UnionCom not only fails to consider

the influence of individual manifold features on clustering, but

also cannot effectively handle the dropout events. So it loses to

scMCs in most cases. Furthermore, the huge time overhead of

learning the manifold topology structure also limits its applica-

tion to high-dimensional data.

iii. scMCs versus scMVAE: There is a clear margin between

scMVAE-PoE, scMVAE-Direct, scMVAE-NN, and scMCs,

which proves the advanatages of scMCs. scMVAE-Direct has

the worst performance, because concatenating the high-

dimensional features can significantly increase the sparsity and

complexity of data representation. scMVAE-NN performs bet-

ter than scMVAE-Direct, because it explores a common repre-

sentation in a more compact feature space. scMVAE-PoE learns

a consistent probability distribution of multi-omics data with

fewer model parameters from a global perspective, and it gives

better results than scMVAE-Direct and scMVAE-NN.

However, scMVAE disregards the individuality of multi-omics

data for data fusion cell clustering. In constrast, scMCs not only

considers shared features as key factors for a consensus cell clus-

tering, but also the individual features.

iv. scMCs versus DCCA: Although DCCA utilizes different neural

networks to project multi-omics data into different representa-

tion spaces, it loses to scMCs by a clear margin. This is because

DCCA mainly focuses on the individual features of different

omics data, and neglects the shared features of these omics for

the consistent clustering. In contrast, scMCs simultaneously ex-

tract the shared and individual features from different omics,

and fuses them into a co-embedding space, which can encode

the cellular heterogeneity and find a more accurate clustering.

In addition, to illustrate the quality of ZI, we apply uniform
manifold approximation and projection (UMAP) (Becht et al. 2019)
to visualize cell clustering points of scMCs and other baselines on
each benchmark dataset. As shown in Supplementary Figs S1–S4,
we can clearly see that scMCs has the clearest division boundaries
and the lowest misclassification rate. These results also explain why
scMCs achieves a better clustering performance.

Table 1. Performance of single clustering of compared methods on different datasets.a

JSNMF UnionCom scMVAE-PoE scMVAE-NN scMVAE-Direct DCCA scMCs

D1 NMI 0.262 6 0.003• 0.704 6 0.004• 0.852 6 0.002• 0.817 6 0.001• 0.811 6 0.000• 0.619 6 0.000• 0.907 6 0.000

ARI 0.196 6 0.003• 0.670 6 0.005• 0.839 6 0.001• 0.819 6 0.000• 0.811 6 0.001• 0.513 6 0.001• 0.939 6 0.000

D2 NMI 0.416 6 0.000• 0.606 6 0.000� 0.603 6 0.002� 0.611 6 0.001� 0.505 6 0.002• 0.414 6 0.000• 0.534 6 0.001

ARI 0.284 60.004• 0.400 6 0.001• 0.452 6 0.007• 0.447 6 0.003• 0.441 6 0.004• 0.404 6 0.000• 0.596 6 0.000

D3 NMI 0.140 6 0.000• 0.334 6 0.000• 0.331 6 0.000• 0.29460.001• 0.265 6 0.000• 0.433 6 0.000

ARI 0.087 6 0.000• 0.250 6 0.000• 0.260 6 0.000� 0.232 6 0.002• 0.250 6 0.001• 0.260 6 0.000

D4 NMI 0.269 6 0.000• 0.305 6 0.001• 0.325 6 0.001• 0.287 6 0.005• 0.27360.003• 0.296 6 0.003• 0.510 6 0.000

ARI 0.194 6 0.001• 0.248 6 0.005• 0.268 6 0.001• 0.164 6 0.002• 0.125 6 0.002• 0.197 6 0.001• 0.554 6 0.001

a•/� indicates whether scMCs is superior/inferior to the other method, with statistical significance checked by pairwise t-test at 95% level. The best results are

highlighted in bold font.
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3.3 Evaluation of data imputation
Besides accurate cell clustering, scMCs also realizes data imputation
based on ZI using two independent deep generative decoder net-
works. To evaluate the quality of imputed scRNA-seq data and
scATAC data, we visualize the raw data and the imputed data gener-
ated by scMCs, scMVAE-PoE, scMVAE-Direct, scMVAE-NN, and
DCCA. Specifically, we project the raw data and imputed data into
different 2D spaces via UMAP, and explore cell clusterings therein.
Meanwhile, we also leverage NMI and ARI to evaluate the cluster-
ing given by each method.

Supplementary Figs S5–S12 report the visualization and cluster-
ing performance of each method on raw and imputed CellMix,
PBMC_3K, Mouse_skin, and AdBrain, respectively. We see the
NMI and ARI scores of scMCs are significantly higher than those of
other baselines. The visualization results also confirm the cell clus-
tering found by scMCs is more separated between different clusters
and more compact within clusters. All these confirm that scMCs can
generate an informative embedding representation ZI, which can be
used for data imputation.

In addition, to assess whether scMCs contributes to discover im-
portant biological signals, we utilize Signac to process the raw
multi-omics data as well as the imputed data. Taking AdBrain as ex-
ample, we report the results in Supplementary Fig. S13. Concretely,
we normalize the raw scRNA-seq data and scATAC data and visual-
ize the normalized data into a 2D space via UMAP. Then, we anno-
tate cell types and provide the results in Supplementary Fig. S13a,
where the top shows the clustering results on raw AdBrain, the bot-
tom shows the results on imputed data. We can observe that the
clusters obtained using the imputed data are more compact, and the
boundaries between clusters are clearer. To study differences in gene
activity across clusters, we create a gene activity matrix based on
imputed scATAC data. Taking ‘L2/3 IT’, ‘L6 IT’, ‘L5 CT’, and ‘L4’
as examples, we use FindAllMarkersðÞ function to determine the dif-
ferentially expressed genes of each cell cluster, and report the results
in Supplementary Fig. S13b. We can accurately identify the marker
genes of different cell types using the imputed scATAC data, which
prove scMCs can find out associations between genes and peaks by
imputing the missing values in scATAC data. Moreover, we uncover
the differentially accessible peaks between clusters using the imputed
scATAC data, and report the results on four clusters in
Supplementary Fig. S13c. We can observe that the peaks are signifi-
cantly different among clusters, which indicates the specific accessi-
bility in heterogeneous cell types. Overall, these results show that
scMCs can achieve effective imputation of single-cell multi-omics
data, reveal significant relationships between cells and genes, as well
as the biological correlation between cell types and peak
accessibility.

3.4 Evaluation of multiple clusterings
Existing single-cell data clustering methods can ‘only find one clus-
tering pattern’ of cell types. However, with the increased multipli-
city of single-cell data, there exist alternative and meaningful
clusterings, which can uncover new patterns of cells at a more com-
prehensive way.

As shown in Fig. 1b, scMCs can project the co-embedding repre-
sentation ZI into different salient subspaces, and find out different
clusterings therein. The number of clusterings and clusters in each
clustering can be specified based on the datasets or user’s expect-
ation. If the dataset has reference label, users can refer to these labels
to specify the number of clusterings and clusters. Otherwise, users
can specify the expected number of alternative clusterings, next
adopts widely used stable clustering techniques (Wang et al. 2021)
to determine the number of clusters in each clustering, and then vis-
ualizes these clusterings or use internal evaluation metrics (i.e. SC)
to determine the number of alternative clusterings and clusters there-
in in an explorative data mining way. In the experiments, we project
ZI into two subspaces fO1;O2g, and generate two clusterings
fC1; C2g. Then, we use the SC and DI to measure the overall quality
of fC1; C2g, and further compare fC1; C2g against the distinct ground
truth Ct of CellMix, PBMC_3K, and AdBrain. Table 2 lists the aver-
age clustering results of five independent runs of scMCs. In addition,

we further evaluate the diversity between C1 and C2 using NMI and
JI. Supplementary Fig. S14 reports the diversity (1-NMI, 1-JI) of
scMCs on CellMix, PBMC_3K, and AdBrain. Concretely, NMI and
JI measure the similarity between the two generated different clus-
terings. Hence, a larger (1-NMI or 1-JI) means these clusterings are
less overlapped. Several observations can be made from these
results:

i. From Table 2, we can observe that C1 has a high similarity with

the ground truth Ct, while the smaller NMI and JI values indicate

that C2 is not similar to Ct. In addition, the high SC and DI val-

ues suggest that C2 is a potential alternative clustering with high

quality.

ii. The results in Supplementary Fig. S14 show that there is a rather

low redundancy between C1 and C2, this fact proves that scMCs

can not only find the significant cell type clustering from the co-

embedding representation ZI, but also the other potential alter-

native clustering.

To verify the biological significance of C1 and C2, we conduct a
series of downstream analyses. Taking CellMix as an example, the
relevant results are shown in Supplementary Figs S15–S17. Firstly,
we perform cell clustering and annotation on CellMix based on the
ground truth Ct. As shown in Supplementary Fig. S15a, CellMix is
divided into four cell clusters. To determine the identity of each cell
cluster, we identify the marker genes in each cluster using the
FindAllMarkersðÞ function and report four differentially expressed
genes in Supplementary Fig. S15b and c. According to the
Cell Taxonomy database (Jiang et al. 2023), we confirm that these
four genes mark four different cell lines, including H1, BJ, K562,
and GM12878. In addition, Supplementary Fig. S16 provides the
results of O1 based on C1. We find that cells in O1 can also be clus-
tered into four clusters. By identifying the marker genes, we identify
these four cell clusters as H1, BJ, K562, and GM12878, respectively.
These results can also prove that there is a cell type clustering
embedded in O1, and this is consistent with the results in Table 2.

scMCs not only can find out a clustering in accordance with the
known Ct, but also other alternative ones C2 embedded in O2, which
reveals the tissue specificity of the cells from a new perspective.
Concretely, Supplementary Fig. S17a and b shows that cells in O2

can be divided into two clusters, where the marker genes of cluster 0
are UCHL1 and CALD1, and the markers of cluster 1 are TXNIP
and DDIT3. Moreover, Supplementary Fig. S17c also shows that
different genes are differentially expressed in each cluster. Based on
the conclusions in Cell Taxonomy database (Jiang et al. 2023) and
Human Protein Atlas (Uhlen et al. 2010), the expression of UCHL1
and CALD1 enhances the tissue specificity of the cells, while the ex-
pression of TXNIP and DDIT3 decreases the tissue specificity of
cells. Therefore, as shown in Supplementary Fig. S17d, cluster 0 can
be defined as cells with ‘high tissue specificity’, and cluster 1 can be
defined as cells with ‘low tissue specificity’. This observation

Table 2. Diversity and quality of multiple clusterings generated by

scMCs on benchmark datasets.a

CellMix PBMC_3K AdBrain

Ct Ct Ct

NMI" C1 0.845 0.695 0.513

C2 0.365 0.204 0.289

JI" C1 0.860 0.378 0.364

C2 0.355 0.197 0.291

SC" C1 0.666 0.644 0.268

C2 0.599 0.826 0.579

DI" C1 0.076 0.071 0.048

C2 0.054 0.040 0.053

aCt is the ground truth, while C1 is the clustering similar to ground truth, C2

is the other alternative clustering.
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suggests that scMCs can more comprehensively mine the single-cell
multi-omics data by giving different clusterings

3.5 Ablation study and parameter sensitivity analysis
To study the contribution factors of scMCs, we introduce four var-

iants: w/oAtt, w/oDiscriminator, w/oCL, and w/oZB, which separ-
ately disregard the attention layer, omics-label discriminator,
contrastive learning, and ZINB loss and Bernoulli loss.

Supplementary Fig. S18 reveals the average NMI and ARI values of
scMCs and its variants. We observe that scMCs outperforms its var-
iants by a clear margin, which confirms that attention layer, omics-

label, contrastive learning mechanism, and generative decoder in-
deed contribute to the quality of cell clustering. More analyses are

given in Supplementary Section S4. Taking CellMix as an example,
we also conduct different experiments to evaluate the parameter sen-
sitivity of scMCs. The details are reported in Supplementary Figs

S19–S21 in Supplementary Section S5. In general, scMCs can show
better clustering performance without much effort to adjust

parameters.

4 Conclusion

In this article, we propose scMCs for single-cell multi-omics data fu-
sion, cell clustering, and multiple clusterings. scMCs extracts the in-

dividual and shared features of multi-omics data and fuses them into
an informative co-embedding representation for clustering and im-

putation. Moreover, scMCs can comprehensively mine multi-omics
data by projecting the co-embedding representation into different
salient subspaces to generate different and meaningful alternative

clusterings. Experimental results show that scMCs can achieve su-
perior and competitive performance in cell clustering and data im-

putation. More importantly, scMCs finds out multiple clustering
structures with diversity and quality, which provide new insights of
understanding the diverse roles of cells from different perspectives.

How to couple data fusion and multiple clustering mining into a
unified method and simplifying scMCs with fewer parameters

(ideally parameter-free) are two future pursues for single-cell data
multiple clusterings.

Supplementary data

Supplementary data is available at Bioinformatics online.
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