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ABSTRACT We present the first comprehensive investigation of clonal hematopoiesis (CH) in 
2,860 long-term survivors of pediatric cancer with a median follow-up time of 23.5 

years. Deep sequencing over 39 CH-related genes reveals mutations in 15% of the survivors, signifi-
cantly higher than the 8.5% in 324 community controls. CH in survivors is associated with exposures to 
alkylating agents, radiation, and bleomycin. Therapy-related CH shows significant enrichment in STAT3, 
characterized as a CH gene specific to survivors of Hodgkin lymphoma, and TP53. Single-cell profiling 
of peripheral blood samples revealed STAT3 mutations predominantly present in T cells and contrib-
uted by SBS25, a mutational signature associated with procarbazine exposure. Serial sample tracking 
reveals that larger clone size is a predictor for future expansion of age-related CH clones, whereas 
therapy-related CH remains stable decades after treatment. These data depict the distinct dynam-
ics of these CH subtypes and support the need for longitudinal monitoring to determine the potential 
contribution to late effects.

SIGNIFICANCE: This first comprehensive CH analysis in long-term survivors of pediatric cancer pre-
sents the elevated prevalence and therapy exposures/diagnostic spectrum associated with CH. Due to 
the contrasting dynamics of clonal expansion for age-related versus therapy-related CH, longitudinal 
monitoring is recommended to ascertain the long-term effects of therapy-induced CH in pediatric 
cancer survivors.

See related commentary by Collord and Behjati, p. 811.
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INTRODUCTION
Clonal hematopoiesis (CH) refers to the presence of hemat-

opoietic stem cell (HSC) subpopulations that have become 
genetically distinct from the germline genome via acquisition 
of somatic mutations. Although CH is an age-related phe-
nomenon in the general population (1), it can also be induced 
by exogenous factors such as chemotherapy, which can affect 
both the emergence and evolution of CH clones. In addition 
to the higher prevalence among people previously treated for 
malignancy (2, 3), CH is now recognized as a precancerous 
state of blood cancers (4–7), highlighting the need for moni-
toring malignant transformation of secondary neoplasms for 
cancer survivors (1–3).

With the overall improvement of pediatric cancer survival 
rates, it has become evident that pediatric cancer survivors 
are at risk of accelerated physiologic aging (8, 9). Despite this, 
the study of CH in pediatric cancer survivors has been limited 
by poor representation of this population in studies that 
focused primarily on survivors of adult-onset cancers (2, 3) 
or has focused on survivors with limited duration of follow-
up or small cohort sizes (10–12). For example, a recent study 
by Bertrums and colleagues (12) showed that chemotherapy 
can induce mutations in HSCs directly or indirectly by study-
ing 24 pediatric patients with a median follow-up time of 
1.65 years (range, 0.2–10 years). These studies have greatly 
improved our understanding of the acute landscape of ther-
apy-related CH. However, as the life expectancy of long-term 
(>5 years) survivors of pediatric cancer can exceed 50 years 
after treatment (13), the long-term profile of CH in survivors, 
including the evolutionary trajectory during their lifespan, 
may inform the design of clinical management of late effects.

To fill this knowledge gap, we analyzed CH in the St. Jude 
Lifetime Cohort study (SJLIFE), a retrospective cohort with 
prospective clinical follow-up of pediatric cancer survivors 
treated at St. Jude Children’s Research Hospital since 1962 
(14, 15). We performed deep sequencing on DNA extracted 
from peripheral blood samples obtained from 2,860 SJLIFE 
survivors (age range, 6.0–66.4 years; median 31.6) to enable 
comprehensive CH analysis in this relatively young popu-
lation. Furthermore, we performed statistical modeling to 
probabilistically assign CH into age- and therapy-related 
subtypes in order to characterize their distinct dynamics in 
clonal expansion.

RESULTS
Higher CH Incidence in Pediatric Cancer Survivors

To estimate the prevalence of CH in pediatric cancer sur-
vivors, we performed targeted sequencing of 39 hemato-
logic malignancy–associated or cancer-predisposing genes 
(Supplementary Table  S1) using peripheral blood samples 
from 2,860 SJLIFE survivors and 324 community controls 
(Fig. 1A). The survivors were followed up over 5.1 to 51.1 years 
(median 23.5 years) from cancer diagnosis and were ages 6.0 
to 66.4 years (median 31.6 years) at the time of sample collec-
tion, which was slightly younger than the community con-
trols (18.3–70.2 years, median 34.6; Supplementary Fig. S1). 
The childhood cancer diagnoses of the survivors included 
leukemias (35%), lymphomas (19%), central nervous system 

malignancies (CNS; 11%), and non-CNS solid tumors (35%). 
Given the relatively young age of our cohort, the median raw 
sequencing depth was set at 15,987× (1,720× after deduplica-
tion) so that we could detect CH clones present at a variant 
allele frequency (VAF) as low as 0.1%. To reduce the error rate 
inherent in deep sequencing data, additional analyses, such 
as computational error suppression (16), outlier detection 
(17) adjusted for sequencing context (Fig.  1B), and indel 
realignment (18), were used in variant analysis (Methods). 
Approximately 40% of the putative variants were subjected 
to orthogonal validation by digital droplet PCR (ddPCR), 
whereas the validity of the remaining variants was inferred by 
modeling the site-specific background error (Fig.  1A; Meth-
ods and Supplementary Methods). Altogether, we identified 
540 validated CH variants with a median VAF of 0.4% (range, 
0.1%–29.5%) for further analysis (Supplementary Table S2).

Higher CH prevalence was found in the survivors com-
pared with the community controls in each age category 
(Fig. 1C), with a statistically significant increase in the over-
all prevalence: 15.0% of survivors [95% confidence interval 
(CI), 13.7%–16.3%] versus 8.6% of controls (95% CI, 5.6–11.7; 
Fisher exact P = 1.44 × 10−3). When limited to variants with 
VAF ≥2%, a threshold commonly used for other studies, CH 
prevalence was 1.99% (57/2,860) and 0.93% (3/324) for sur-
vivors and controls, respectively. Notably, at this cutoff, the 
1.99% prevalence in our relatively young survivorship cohort 
(median of 31.6 years) is comparable with the prevalence in 
a general population ages 50 to 59 years (2.54%, 138/5,441, 
Fisher exact P = 0.128; ref. 5). As HSCs acquire mutations dur-
ing cell division, we compared the leukocyte telomere length, 
a biomarker for cell division, in CH-positive survivors and 
controls using the accompanying whole-genome sequenc-
ing (WGS) dataset (19, 20). The shortening of telomere with 
age relationship represented by a least-square regression fit 
showed nearly parallel lines (Fig. 1D). This indicates that the 
telomere attrition rates, which reflect the rates of underly-
ing HSC division, were very similar between the controls  
(41.4 base pairs/year) and survivors (45.1; P  =  0.413). This 
suggests that the CH variants were acquired at a similar 
rate in survivors and controls. Therefore, the increased CH 
prevalence in the survivors was likely related to cancer and/
or treatment-related exposures in childhood rather than an 
acceleration of cell division.

Associations of CH Status with Therapeutic 
Variables

To investigate the origin of elevated CH in pediatric cancer 
survivors, we analyzed the association of CH with demo-
graphic variables and cancer treatment exposures. Although 
no association was found with sex and race/ethnicity, the 
prevalence of CH was correlated with age in both survivors 
and controls as expected (Supplementary Table S3). We next 
sought to evaluate the association of specific therapies with 
CH, as cancer treatments typically involve multiple therapeu-
tic agents and modalities. In multivariable logistic regression 
analysis, after adjusting for age at sample acquisition and 
age at diagnosis, CH was associated with alkylating agents, 
bleomycin, and estimated radiotherapy (RT) dose to active 
bone marrow (Fig.  2A). Specifically, exposures to alkylating 
agents and RT were independently associated with CH in a 
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Figure 1.  Elevated CH in pediatric cancer survivors. A, Study design for CH analysis in survivors. Blood samples from survivors and controls were 
analyzed by capture sequencing on 39 CH-associated genes. Putative CH variant analysis involves computational error suppression of sequencing reads, 
outlier analysis of substitutions with the same genomic context, and indel realignment. Approximately 40% of the putative variants (538 total) were 
successfully assayed by ddPCR, whereas the validity of the remaining variants was inferred by comparing to a background error model. ddPCR, digital 
droplet PCR; SNV, single-nucleotide variant. B, Outlier analysis based on the sequence context of a CH variant. For each of the 96 genomic triplet context 
changes, the count and frequency for sequencing context matching the context of the alternative allele as well as the read count were within a sample. 
Outlier analysis was performed by IsolationForest (17) in both the spaces spanned by the count and coverage and count and frequency. Example shows the 
GCG>GTC context analysis in an acute lymphoblastic leukemia survivor, in which the DNMT3A R882H mutation was detected as an outlier. cnt., count; cov., 
coverage. C, Elevated CH prevalence in the survivors (orange) compared with the controls (green) across all five age categories. Significance of difference in 
the overall prevalence of the two groups was based on Fisher exact test. D, Leukocyte telomere lengths in the CH-positive survivors and controls. Telomere 
attrition rates were estimated as a regression slope, which was compared by the t test. Bands represent 95% CIs of the least-square regressions.
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dose-dependent manner, which was not observed for bleomy-
cin (Fig. 2B). As treatment differs by cancer type, we analyzed 
the association of CH prevalence by diagnosis (Fig. 2C). After 
adjusting for age, survivors of Hodgkin lymphoma (HL), soft-
tissue sarcoma, germ cell tumor, rhabdomyosarcoma, neu-
roblastoma, non-HL, or acute lymphoblastic leukemia were 
more likely to develop CH compared with the controls; these 
diagnoses were collectively represented as Dx*, while those 
with insignificant odds ratio were labeled Dx (Fig. 2C). We also 
found that a significantly higher proportion of survivors with 
Dx* had been exposed to alkylating agents (all dose tertiles; 
details in Methods) than those of Dx (Fig. 2D; 67.0% vs. 35.9%, 
proportion test P = 1.83 × 10−57). Bleomycin was administered 
to only a small number of cases (n  =  147), with the second 
tertile exhibiting a significantly higher proportion in cancer 
diagnoses significantly associated with CH risk (2.47% vs. 
0.20%, P = 7.18 × 10−6). The third tertile of bleomycin dose was 
primarily among survivors of osteosarcoma, a cancer type that 
barely missed the cutoff for Dx* (Fig.  2C), which led to the 
statistically insignificant finding in this category (Supplemen-
tary Fig. S2). There was no difference in the distribution of RT 
third tertile (18.3% vs. 17.2%, P = 0.477). However, in a subset 
analysis of survivors treated without chemotherapy (n = 475; 
Supplementary Fig. S3), in whom a potential effect-masking 
by chemotherapy was uncovered, we similarly observed a 
significantly higher proportion of the third tertile (30.9% vs. 
16.1%, P = 2.09 × 10−5).

Although exposures to alkylating agents, bleomycin, and RT 
were associated with elevated CH prevalence in the survivors, 
there may exist additional contributing factors. To address 
this hypothesis, we performed a mediation analysis to quantify 
how much of the CH association with cancer type could be 
explained by these three therapies (21). Exposure to the statisti-
cally significant tertiles of alkylating agents, bleomycin, or RT 
was defined as a dichotomous mediator in the analysis. After 
adjusting for ages at diagnosis and at sample collection, the 
therapy mediator explained 74% of the association between CH 
and cancer diagnosis, confirming that the CH development in 
our cohort was largely contributed by these therapies.

CH Association with Germline Pathogenic 
Mutations in Survivors

In addition to the therapy variables, germline mutations 
may have also played a modifier role in CH development. We 
first analyzed the CH association with 112 germline patho-
genic mutations identified in the SJLIFE cohort, which 
were previously classified based on the American College of 
Medical Genetics and Genomics (ACMG) guidelines in 60 
cancer predisposition genes (CPG) known to be associated 
with autosomal dominant cancer predisposition syndromes 
with moderate to high penetrance (ref.  20; Supplementary 
Table  S4). The CH prevalence was 8.9% in carriers of CPG 
mutations versus 15.3% in noncarriers, respectively (Sup-
plementary Table S4). The reduced prevalence in the carri-
ers, albeit statistically insignificant (Fisher exact P = 0.078), 
likely reflected the fact that more than 50% of such muta-
tions occurred in survivors of cancer types with the lowest 
CH incidence due to less intensive therapy (Fig.  2C)—that 
is, retinoblastoma (n  =  35), Wilms tumor (n  =  9), or CNS 
malignancies (n = 24).

We also studied the effect of deficiency in DNA damage 
repair (DDR) on CH prevalence (Supplementary Table  S4) 
using germline pathogenic mutations in 127 DDR genes 
selected by our prior study (22). The overall CH prevalence, 
17.9% in carriers versus 14.9% in noncarriers (Fisher exact 
P  =  0.417), was not affected by germline mutation status. 
However, when stratifying the survivors by therapy exposure, 
nonirradiated survivors (n = 1,359) had a significantly higher 
CH prevalence in mutation carriers (21.2%) than in noncarri-
ers (11.7%, Fisher exact P = 0.0496), indicating that RT might 
have masked the pathogenic effect of mutations in irradiated 
cases (P = 0.730).

Molecular Characteristics of Age- versus 
Therapy-Related CH Subtypes

We proposed an additive model for CH clones detected in 
survivors based on the association of therapy with CH preva-
lence (Fig.  2) and a cell division rate comparable between 
survivors and community controls in this cohort (Fig.  1D). 
Under this model, CH in survivors is an admixture of ther-
apy- and age-related clones. Age-related CH clones in the 
survivors are generated at a rate similar to those in the 
community controls over time (Supplementary Fig.  S4). As 
the vast majority of CH-positive survivors (85% or 365/430) 
harbored only a single CH event, we classified the clones into 
age- or therapy-related categories using two steps. First, the 
probability of developing age-related CH in a given age cat-
egory was estimated by logistic regression using the control 
data. Second, the probability of developing CH in a given 
age category and by therapy exposure was estimated in the 
survivor cohort. In the second regression, the age effect esti-
mated by the first regression was included as an offset term 
so that the age impact on a survivor and a control will be 
the same at a given age category as in the proposed model 
(Supplementary Fig. S4; Methods). Using these two models, 
we computed probabilities of developing CH for each survi-
vor, given their age and treatment exposures, and when the 
estimated contribution from therapy was higher than that 
of age, the CH of the sample was designated as “inferred 
therapy-related” (iTR) and otherwise as “inferred age-related” 
(iAR). Of the 430 CH-positive survivors, this approach found 
214 samples as iAR, which accounted for 7.5% in the survivor 
cohort, comparable with 8.6% CH prevalence in the control 
(Fisher exact P  =  0.439). Prevalence of iAR in the survivors 
increased with age, matching the course of the community 
controls (Fig. 3A).

To provide independent validation for this model, we 
first compared the mutation spectra of iAR and iTR, which 
reflects the underlying mutagenesis process and subsequent 
selection. As shown in Fig. 3B, the spectra from the control 
and iAR were nearly identical, exhibiting dominance of the 
cytosine (C)>thymine (T) transition in 63.0% and 65.8% of 
the substitutions, respectively, consistent with expected age-
related processes (5). By contrast, the iTR spectrum was 
different from iAR in that the C>T transition accounted for 
only 45.7% of substitutions (post hoc P = 2.05 × 10−3). Although 
samples with four CH mutations were observed only in iTR, 
the distribution of CH mutation burden did not differ across 
the control, iAR, and iTR (Kruskal–Wallis P = 0.454; Fig. 3C). 
Next, we examined the mutation frequency in DNMT3A, 
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KRAS, TP53, TET2, and STAT3, the five most frequently 
mutated genes in both survivors and controls (Fig.  3D). 
These five genes had similar mutation frequencies in control 
and iAR samples of the survivors, consistent with the iAR 
classification. By contrast, the frequencies in iTR showed 
considerable differences—significantly higher frequency 
was found for STAT3 (17.9% in iTR vs. 6.25% in controls, 
FDR q = 2.61 × 10−6) and TP53 (17.5% vs. 12.5%, q = 0.033), 
and a lower rate was found for DNMT3A (19.0% vs. 28.1%, 
q = 2.48 × 10−5). Although elevated TP53 mutation frequency 

in therapy-related CH is consistent with previous studies that 
reported TP53 as a therapy-related CH gene (2, 3, 23), STAT3 
has not been characterized as related to therapy.

Therapy-Related STAT3 Mutations in Survivors 
of HL

Identification of STAT3 as a frequently mutated CH gene 
is a new finding in our pediatric cancer survivorship cohort. 
Notably, all STAT3 mutations were in the Src homology 
2 domain (Fig.  3E), which contains mutation hotspots in 
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hematologic and lymphoid cancers. The most frequent hot-
spot mutation, Y640F, was also the predominant mutation 
in our cohort present in 36 cases. Interestingly, STAT3 muta-
tions were significantly enriched in survivors of HL (9.3% 
in HL survivors vs. 1.4% in survivors of pediatric cancers 
other than HL, Fisher exact P = 9.21 × 10−14; Supplementary 
Table  S5). This suggests that STAT3 is an HL-specific CH 
gene, which was further supported by the lack of enrichment 
of STAT3 mutations in survivors of cancers other than HL 
(1.4% in other cancers vs. 0.6% in controls, P = 0.426).

For three survivors with STAT3 Y640F, we sought to iden-
tify the mutant cell phenotype by the Mission Bio Tapestri 
assay, which jointly profiles the genotype and phenotype in 
the same single cell using oligo-conjugated antibodies (Meth-
ods). Although STAT3 Y640F was detected in all blood cell 
types, it was highly enriched in T cells across all three cases 
(Fig.  3F; Supplementary Fig.  S5). Among the subtypes of T 
cells, the CD8+ populations consistently harbored this muta-
tion (Supplementary Fig. S5). This suggests that the mutant 
T cells may have accelerated proliferation, as STAT3 Y640F 
has previously been identified as a gain-of-function driver 
mutation in T-cell large granular lymphocyte leukemia, a 
lymphoproliferative disorder characterized by CD3+ CD8+ 
T-cell expansion (24). The broad spectrum of mutation-
positive cell types coupled with its predominance in T cells 
argues against the possibility that Y640F arises from residual 
HL, as classic HL is of B-cell origin (25, 26).

To evaluate whether mutagenic processes related to ther-
apy might explain the association between STAT3 mutation 
and HL, we performed single-cell WGS (scWGS) analysis 
on mutant and wild-type cells in HL survivors (Methods) 
and were able to analyze four cells for each genotype from 
SJHL018702, an iTR case whose blood sample collected 22 
years after the initial HL diagnosis was used for this pur-
pose (Fig. 3G). Somatic single-nucleotide variants (SNV) were 
identified by using the bulk WGS data as the matching 
control (Methods). Compared with the expected mutation 
burden of 1,000 to 2,000 for a normal peripheral blood cell 
aged 37.7 years (27), all cells had elevated mutation burden. 
The mutation burden of STAT3 Y640F–mutant cells was 3 to 
4 times higher than those of the wild-type cells (Fig. 3G, mid-
dle). Mutation signature analysis of these cells only extracted 
COSMIC SBS25, a postchemotherapy signature specific to 
HL cell lines (28) or normal tissues of HL survivors (29, 30), 
at a cosine similarity of 0.91. Multiple signatures, including 
COSMIC SBS1, 5, 11, and 25 with the relative contribution of 
2.4%, 24.5%, 16.1%, and 57.5%, respectively, at a cosine simi-
larity of 0.94, were extracted for the wild-type cells (Fig. 3G, 
right). SBS25 preferentially converts T to adenine (A) when 
C or guanine (G) precedes. Therefore, the probability that 
Y640F (GTA>GAA) was induced by SBS25 was estimated to 
be 0.985 to 1.0 in the mutant cells.

The near 100% probability of Y640F being induced by 
SBS25 based on mutation signature analysis of scWGS data 
prompted us to examine the sequence context of all STAT3 
mutations in our cohort. Indeed, N647I (GTT>GAT), the 
only other STAT3 mutation (besides Y640F) enriched in HL 
(Supplementary Table  S5), also matches the predominant 
pattern of SBS25. Recently, Santarsieri and colleagues (30) 
found that procarbazine, an alkylating drug used in HL 

treatment, is likely responsible for the SBS25 signature. In 
our cohort, 192 of 356 HL survivors, including SJHL018702 
(Fig. 3G), were exposed to procarbazine. We found that prior 
exposure to procarbazine was associated with CH-positive 
HL survivors harboring mutations of G/C[T>A]N context—
that is, the pattern that matches SBS25 (Supplementary 
Table S6; Fisher exact P = 5.55 × 10−6)—but not those with 
other mutation contexts (P = 0.893), suggesting the specific 
contribution of procarbazine to SBS25.

Dynamic Characteristics of Age- versus Therapy-
Related CH Clones

To examine the clonal expansion pattern, we plotted VAF, 
a surrogate measure for clone size, for iAR over age and for 
iTR over follow-up time, respectively (Fig.  4A). We tested if 
the pattern differed across clone sizes by performing quan-
tile regression for the lower 25th (Q25th), median (Q50th), and 
upper 25th (Q75th) quartiles of VAF values, which respectively 
correspond to smaller, medium, and larger clones. Although 
iTR clones, regardless of their size quantiles, remained stable 
over follow-up, there was a modest but significant increase 
of the Q25th quartile in iAR over age. The iAR pattern was 
replicated when we analyzed two independent age-related 
CH datasets from previous studies using the same approach 
(refs. 2, 31; Supplementary Fig.  S6). Encouraged by this 
reproducible finding, we further analyzed the correlation 
between clone size and growth direction using serial samples 
(Fig.  4B). VAF change during the two time points (median 
time interval, 4.13 years; range, 0.23–7.9) was plotted to show 
the growth direction (i.e., expanding and nonexpanding) of 
an iAR (n = 46) or iTR (n = 55) clone (Supplementary Fig. S7; 
Supplementary Table S7); the majority of CH clones did not 
expand in this analysis (76% of iAR and 64% of iTR, Fisher 
exact P = 0.179; inset in Fig. 4B). Among the iAR clones, there 
was a tendency for the nonexpanding clones to be smaller 
than the expanding clones at the initial time point (nonex-
panding and expanding clone median VAF, 0.22% vs. 1.25%; 
Mann–Whitney P = 6.28 × 10−4; Fig. 4B), suggesting the trend 
at Q25th was due to the loss of smaller clones. We speculate 
that this modest Q25th trend in iAR could be a prelude to the 
precipitous decline in diversity of HSCs in the elderly (>70 
years old) reported recently by Mitchell and colleagues (32). 
By contrast, such a tendency was not detected in iTR clones 
(0.33 vs. 0.48%, P = 0.183), reminiscent of the stable VAF over 
follow-up times across the survivorship cohort (Fig. 4A). We 
then tested whether these patterns could arise by perform-
ing a simulation using the branching HSC division model, 
which was developed to explain age-related CH dynamics 
(33). Indeed, simulated CH clone trajectories recapitulated 
the association between VAF and the growth pattern of iAR 
(Supplementary Fig.  S8). To evaluate whether the contrast-
ing pattern in iTR could be attributed to the early onset of 
therapy-related clones, we performed a second simulation 
using a modified model that generated CH trajectories driven 
by the same dynamics but initiated in the range of childhood 
cancer treatment (i.e., 0–20 years old; Methods). However, this 
modified simulation produced a pattern similar to iAR, refut-
ing the hypothesis that the timing of mutational acquisition 
led to the lack of an association between clone expansion and 
VAF in iTR.
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Figure 3.  Molecular features of inferred age- versus therapy-related CH. A, Comparable prevalence of iAR CH in the survivors (blue) and CH in the 
controls (green). Fisher exact test showed no significant difference between the two groups (P = 0.439). B, Mutation spectra of single-nucleotide variants 
(SNV) in the control (green), iAR (blue), and iTR (purple). Spectrum frequency was compared by the χ2 test followed by post hoc χ2. Only significant com-
parisons are shown. Post hoc P value was adjusted by the Šidák method. C, Distribution of mutation count per sample. The distribution in each group was 
compared by the Kruskal–Wallis test. D, CH mutation frequency in the top 10 genes identified in the survivors and controls. The CH mutations in survivors 
were further stratified into iAR and iTR groups, and the top five genes were compared with the control by a two-sided proportion test. *, q (Benjamini–
Hochberg corrected P) < 0.05 and ***, q < 0.001, with red indicating a proportion higher than control and blue if lower. E, STAT3 mutations identified in 
this study (top, number in the circle represents occurrence) and the COSMIC database (v97) for hematologic and lymphoid tumors (bottom, y-axis shows 
occurrence). (continued on following page)
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The median follow-up time of the serial samples profiled 
in this study was 33.1 years (range, 14.0–48.4 years), and this 
long follow-up time allowed us to evaluate the long-term 
effect of cytotoxic therapies on the growth rate of CH clones 
in iTR and iAR clones. There was no significant difference in 
the growth rate of iAR and iTR clones harboring the most 
frequently mutated genes, including TP53 (Supplementary 
Fig. S9, top). This indicates that there is a minimal long-term 
effect of cytotoxic therapies on accelerating the growth of 
clones harboring mutations, including TP53, a DNA damage 
response gene—a different effect was shown previously in 
samples obtained with a short follow-up time (median was 
0.79 years; ref. 3). Interestingly, iTR clones with TP53 muta-
tions were significantly larger than their iAR counterparts 
(Supplementary Fig.  S9, bottom), which can be attributed 
to an early clonal expansion under the selective pressure of 
therapy, consistent with the observation by Bolton and col-
leagues (3) using samples with short follow-up time. Alto-
gether, these findings suggest that the selective pressure of 
cancer therapy on clonal expansion may not be permanent 
and can be attenuated over decades.

DISCUSSION
In this first comprehensive analysis on CH of long-term 

survivors of pediatric cancer, we detected a higher CH preva-

lence in the survivor cohort compared with the community 
controls (Fig.  1C). The results are consistent with find-
ings from recent studies that reported the effect of cancer 
therapy on CH in cohorts comprised mostly of adult cancer 
patients (2, 3). More importantly, the long-term follow-up 
(median 24 years) of the SJLIFE cohort enabled us to con-
firm that elevated CH is a chronic condition that persists 
for decades, which has potential clinical relevance to inform 
clinical trials of early interventions in childhood cancer 
survivors. Our study analyzed only survivors who were alive 
at the cohort enrollment and thus able to provide a blood 
sample for sequencing. A review of all >5-year survivors at 
St. Jude found that only 0.68% succumbed to secondary 
leukemias/myelodysplastic syndrome before they could be 
recruited to SJLIFE. Given the very low frequency of such 
events, our CH analysis provides a general representation of 
long-term survivors of pediatric cancer.

Although radiotherapy was found related to CH devel-
opment by Bolton and colleagues (3) as well as this study, 
the association with chemotherapeutic agents can be 
affected by different cancer diagnoses examined in dif-
ferent cohorts. For example, platinum-based agents were 
associated with CH in the mostly adult cohort (3) but not 
in our pediatric cancer survivors. Notably, leukemias and 
lymphomas, which account for 54% (1,557/2,860) of the 
cases in our cohort, were rarely (1.1% or 17/1,557) treated 
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with platinum. After excluding these hematologic malig-
nancies, multivariable logistic analysis (Fig.  2A) showed a 
marginal, albeit barely insignificant, association between 
CH and platinum (odds ratio: 1.14; 95% CI, 0.996–1.31; 
P  =  0.057). By contrast, platinum-based agents were the 
most frequently used drug in the study by Bolton and col-
leagues (3) with 44% of the patients being exposed (5,236 
exposed vs. 6,695 unexposed), rendering sufficient statisti-
cal power to detect such an association.

HSC turnover rates of survivors versus controls were com-
parable, as indicated by their near-identical telomere attri-
tion rate (Fig.  1D). This provides a rationale for separating 
age- versus therapy-related events in the survivor cohort. 
A striking molecular finding in therapy-related CH is the 
identification of STAT3 as a CH gene in HL survivors (Supple-
mentary Table  S5). Single-cell profiling showed that STAT3 
mutations are predominantly present in T cells and are 
therefore unlikely to arise from residual disease, as classic HL 
is of B-cell origin (25, 26). The sequence context of the two 
enriched STAT3 mutations in HL, Y640F and N647I, also 
matches the predominant pattern of the COSMIC mutation 
signature SBS25. The causality of SBS25 to STAT3 Y640F was 
further supported, with an estimated probably of 0.985 to 
1.0, by scWGS data generated from an HL survivor exposed to 
procarbazine. Recently, Santarsieri and colleagues (30) found 
that procarbazine, an alkylating drug used in HL treatment, 
is likely responsible for SBS25 and recommended that pro-
carbazine be replaced with dacarbazine because dacarbazine 
is as effective without incurring an excess mutation burden 
(30). Our findings from scWGS profiling as well as correlative 
analysis of procarbazine and CH mutation context in the HL 
survivors (Supplementary Table S6) provide further support 
for their recommendation.

Although clone size estimated by VAF can predict the 
subsequent growth of age-related CH clones (Fig.  4B; Sup-
plementary Fig. S7), therapy-related clones appear to lack this 
feature, at least within the VAF range analyzed in this study 
(first and third quartiles, 0.2% and 0.7%). This difference in 
clone dynamics may be attributable to nonmutational factors 
in addition to the higher mutation burden suggested by the 
targeted sequencing of bulk samples (Fig.  3C) and scWGS 
(Fig.  3G). Because of their young age at cancer diagnosis, 
the survivors analyzed in this study received cancer therapy 
when their hematopoietic and immune systems were still 
undergoing development (median 7.1 years old at diagno-
sis; range, 0.0–23.6), which might have modulated normal 
development (34), especially for survivors with CH classified 
as iTR. Although mutated cells with relatively low fitness 
are routinely eliminated by immune system surveillance in 
healthy individuals (35, 36), the altered microenvironments 
in the survivors might have imposed a weaker selection on 
CH clones, thereby tolerating clones with various adaptation 
potentials, including those behaving erratically.

Our study has several limitations. First, CH characteriza-
tion was based on deep sequencing of a panel of 39 genes 
(Supplementary Table S1), and missing newly identified CH 
genes is an inherent problem with this approach. For exam-
ple, our gene panel does not include PPM1D and CHEK2, 
which were recognized as prominent driver genes in therapy-
related CH in recent studies (3, 23). To assess the impact of 

missing data, we performed targeted sequencing on PPM1D, 
as the mutation frequency is twice as high as CHEK2’s (3). By 
including only samples available for PPM1D analysis (2,185 
survivors and 311 controls; Supplementary Fig.  S10A and 
S10B), there is a slight increase of CH prevalence in survi-
vors by 0.3% (from the original 15.0%–15.3%), which does 
not have a major impact on the main findings presented 
in this study. Second, CH variants in noncoding regions or 
in nondriver genes, which are not assayed by gene panels, 
can be important markers for defining the CH landscape. 
A recent study by Mitchell and colleagues (32) performed 
WGS on single cell–derived colonies of HSCs and found 
that the majority of expanding HSC subpopulations are not 
characterized by known drivers. We do recognize, however, 
that with the current technology, unbiased approaches such 
as high-coverage (e.g., 100×)  WGS or scWGS as used by 
Mitchell and colleagues (32) are not scalable to profiling a 
larger cohort such as SJLIFE. Future studies may consider 
leveraging the strengths of both approaches: The insights 
gained from a global view of the entire cohort, enabled 
by panel sequencing, can be complemented by evolutional 
trajectory mapped by unbiased genome-wide sequencing in 
selected cases.

In this study, we profiled the blood samples collected at 
patients’ recent hospital follow-up visits to maximize the sen-
sitivity in CH detection. Despite this, the relatively young ages 
of the survivors in our cohort (median 31.6 years; range, 6.0–
66.4) may not have unveiled the full scope of adverse health 
conditions that will require continued follow-up efforts. Fur-
thermore, our study has unveiled a growth profile of CH 
clones different from samples collected from our long-term 
follow-up cohort from that of samples collected closer to the 
time of cancer diagnosis and treatment, as in the previous 
study by Bolton and colleagues (3). These data support the 
need for longitudinal surveillance of CH in pediatric cancer 
survivors to evaluate its chronicity and association with clone 
size, a key feature used for risk stratification in other popula-
tions (1).

METHODS
Study Population

Participants were enrolled in the SJLIFE study, a retrospective 
cohort with prospective clinical follow-up of childhood cancer sur-
vivors treated at St. Jude Children’s Research Hospital (37). This 
study was conducted in accordance with the Declaration of Helsinki 
and approved by the St. Jude Children’s Research Hospital institu-
tional review board. Consent for participants under 18 years of age 
was provided by a parent or legal guardian. All participants ages 14 
years and older provided written informed consent; individuals ages 
between 8 and 13 years provided verbal assent. Eligibility criteria and 
sample quality control (QC) for sequencing analysis were described 
previously (ref. 20; Supplementary Methods S1). The current study 
included pediatric cancer patients who survived at least 5 years since 
diagnosis. A community control group (SJLIFE controls) consist-
ing of 324 individuals without a history of pediatric cancer with 
frequency-matched demographic information (i.e., age, sex, and race/
ethnicity) was included for comparison purposes. For individuals 
with blood samples collected at multiple time points, the most recent 
samples were used for the initial discovery phase of targeted sequenc-
ing. Demographic information and key clinical variables used for this 
study are presented in Supplementary Table S8.
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CH Variant Detection
Peripheral blood samples were processed for DNA library construc-

tion via hybrid capture–based enrichment over the coding regions 
of 39 genes implicated in hematologic malignancy or cancer predis-
position (Supplementary Table  S1). Libraries were sequenced on a 
NovaSeq 6000 to a target depth of 10,000, and reads were mapped to 
the GRCh37 genome by BWA (Supplementary Methods S2) followed 
by running CleanDeepSeq (16) to remove reads with a high error rate. 
Prior benchmark analysis based on dilution experiment showed that 
error suppression by CleanDeepSeq enables the detection of variants 
at VAF of 0.05% to 0.1% (16) and showed high concordance with 
unique molecular identifier (UMI)–based VAF in our recent testing 
on a publicly available UMI dataset (38). CH variants with VAF >0.1% 
were identified in the following four steps: (i) Putative somatic CH 
SNVs were detected as outliers of alternative allele count and alterna-
tive allele fraction distribution of trinucleotide context substitutions 
(e.g., GCG>GTG) within each sample (Supplementary Methods S3.1). 
Putative somatic indels were detected by Bambino (39), which was 
modified for indel detection (40), with realignment (ref. 18; details are 
described in Supplementary Methods S3.2). This approach has higher 
sensitivity in detecting rare variants than conventional approaches 
used for somatic variant detection (Supplementary Methods S3.3). 
(ii) Nonprotein coding or synonymous SNVs as well as nonprotein-
coding indels were filtered. (iii) Orthogonal validation by ddPCR was 
performed for variants in  ∼40% of the genes. Given the novelty of 
STAT3 CH variants, we analyzed all STAT3 variants by ddPCR provided 
there were sufficient DNA samples for the assay. Details are described 
in Supplementary Methods S4 and Supplementary Table S9. (iv) For 
variants not selected for ddPCR or having a failed assay, their validity 
was inferred by building a binomial model based on read counts of 
the validated and notvalidated readout of ddPCR assay (Supplemen-
tary Methods S5). Also, amplicon-based sequencing on PPM1D was 
performed targeting exons 5 and 6 where somatic CH mutations are 
primarily found (2) and detailed in Supplementary Methods S6. The 
number of variant calls processed at each filtering step is shown with 
the CH variant detection flowchart (Supplementary Methods S7).

Germline Genetic Data Source
Carrier status of germline mutations (20, 22) and telomere length 

estimation (19) were extracted from previously published data. For 
analyses related to CPG mutations, we used only bona fide patho-
genic variants on 60 genes that have been associated with autosomal 
dominant cancer predisposition syndromes (SJCPG60; refs. 20, 41); 
thus, variants classified as “likely pathogenic” were not included in 
this analysis. Variants annotated as mosaic in Wang and colleagues 
(20) were excluded, as they could be potential CH variants. Analyses 
related to mutations in DDR genes were based on Qin and colleagues 
(22), which analyzed 127 DDR genes from six pathways: homologous 
recombination, nonhomologous end joining, nucleotide excision 
repair, mismatch repair, base excision repair, and Fanconi anemia. 
We only included mutations classified as “Pathogenic” by ClinVar 
(version 2022-10-1), similar to CPG.

Treatment Exposure Analysis
Treatment details were extracted from medical records. Chemo-

therapy variables were expressed as cumulative dose received per 
body surface area. To estimate the RT doses relevant to CH, we 
estimated the maximum region-specific doses abstracted from RT 
oncology records to the age-specific body distribution of active 
bone marrow (42). For survivors who had received autologous 
transplants (n  =  70), we modified the therapy doses by excluding 
therapies undertaken between stem cell harvest and transplanta-
tion. For those who received allogenic (n = 1) or syngeneic (n = 1) 
transplantation, we set the therapy exposures to zero assuming 
complete replacement by the donor cells. The treatment data in 

Supplementary Table  S8 were based on the modified values. To 
facilitate the comparison of various magnitudes, all cumulative 
doses were scaled by standard deviation. When the therapy dose was 
divided into tertiles, the exposed population was divided into three 
parts at the 1/3 and 2/3 quantiles of the ordered dose distribution 
so that the first, second, and third tertiles represented low, medium, 
and high levels of exposure, respectively. In mediation analysis, 
pediatric cancer diagnoses were binned into CH-enriched and 
not-enriched groups (Fig.  2C) represented as Dx* (including HL, 
soft-tissue sarcoma, germ cell tumor, rhabdomyosarcoma, neuro-
blastoma, non-HL, acute lymphoblastic leukemia) and Dx (includ-
ing acute myeloid leukemia, osteosarcoma, Ewing sarcoma family 
of tumors, retinoblastoma, CNS malignancies, Wilms tumor, and 
others), respectively. This binary diagnosis was examined by defin-
ing the CH status as outcome and the exposure to alkylating agents, 
bleomycin, or RT with a significant dose (Fig. 2B) as a binary media-
tor. Logistic regression adjusted for age at sample collection and age 
at diagnosis was used to assess the mediation.

Modeling Age- and Therapy-Related CH
Using the control data, the probability, p , to develop age-related 

CH was estimated at a given age category binned as in Fig.  1. Age 
categories [0, 18) and [18, 30) were combined because the controls 
were >18 years old.

logit age categoryp IT� � � � �� �� ,

where I  are indicators for each age category.
Under the proposed model (Supplementary Fig. S4), a survivor and 

a control in the same age bin would have a similar chance to develop 
age-related CH. Therefore, the survivor’s probability, q, to develop 
any CH, which may be age- or therapy-related, was estimated by fixing 
the age effect as an offset term:

logit logit therapy variablesq p T� � � � � � �ˆ .�

The therapy variables included the dose tertiles for alkylating 
agents, RT, and bleomycin, which were found significantly associ-
ated with CH in the multivariable logistic analysis with alkylating 
agents, RT, bleomycin, platinum, anthracyclines, vinca alkaloids, 
methotrexate, dactinomycin, epipodophyllotoxins, age at sample col-
lection, and age at diagnosis. The age at diagnosis was also included 
to capture potential age effects specific to the survivors. Assuming 
that the age- and therapy-related etiologies were mutually exclusive, 
CH clones were inferred as therapy-related (iTR) if they belonged to 
a survivor whose estimated probability for therapy-related CH was 
higher than the probability for age-related CH:

ˆ ˆ / ˆ ,q p p�� � �1

otherwise, inferred as age-related (iAR).

Joint Analysis on Cell Phenotyping and STAT3 Y640F 
Mutation Status by Tapestri

The blood samples from three survivors were analyzed; for 
SJHL018072, a serial sample collected 3 years after the one used 
for panel sequencing was used due to material exhaustion. Cryo-
preserved survivor samples were washed with FACS buffer and 
quantified using a Luna-FL Dual Fluorescence cell counter. Cells 
(0.5 × 106–4.0 × 106 viable cells) were then resuspended in cell stain-
ing buffer (#420201, BioLegend) in the concentration of 25,000 
cells/μL and incubated with TruStain FcX, and 1 × Tapestri block-
ing buffer (Mission Bio) for 15 minutes on ice. Then TotalSeq-D 
Human Heme Oncology Cocktail v1.0 (#399906, BioLegend), which 
contains the pool of 45 oligo-conjugated antibodies, was added and 
incubated for 30 minutes on ice. Cells were then washed three times 
with prechilled cell staining buffer (#420201, BioLegend) followed 
by resuspension of the cells in the Tapestri cell suspension buffer 
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(Mission Bio). We followed the Tapestri Single-cell DNA+Protein 
sequencing v2 (custom panel) user guide to process the samples 
for the single-cell amplicon-based DNA and protein sequencing. 
In brief, after counting the resuspended cells on an automated cell 
counter (Luna Biosystems), resuspended cells (2,500–3,500 cells/μL) 
were encapsulated using a Tapestri microfluidics cartridge and 
lysed. A forward primer mix (30 μmol/L each) for the antibody tags 
was added before barcoding. Barcoded samples were then subjected 
to targeted PCR amplification of a custom amplicon covering the 
STAT3 Y640F locus. DNA PCR products were then isolated from 
individual droplets and purified with Ampure XP beads as per the 
user’s guide. The DNA PCR products were then used as a PCR tem-
plate for library generation with additional 4 more PCR cycles and 
repurified using Ampure XP beads. Protein PCR products were incu-
bated with Tapestri pullout oligo (5 μmol/L) at 96°C for 5 minutes 
followed by incubation on ice for 5 minutes. Protein PCR products 
were then purified using streptavidin beads (Mission Bio) and were 
used as a PCR template for the incorporation of i5/i7 Illumina indi-
ces followed by purification using Ampure XP beads. All libraries, 
both DNA and protein, were quantified using an Agilent Bioanalyzer 
and pooled for sequencing on an Illumina NextSeq 550 or NovaSeq 
6000. The resulting FASTQ files for single-cell DNA and protein 
libraries were uploaded via the Tapestri portal for analysis by Tapes-
tri’s pipeline. This pipeline determines the genotype by analyzing the 
amplified DNA segment and the phenotype by reading the oligo-tag 
conjugated to the antibody in the same cell that is indexed by i5/i7 
Illumina sequences. The analysis of results contains the 2D coordi-
nate in the cluster space for each cell as well as meta information 
for the genotype and phenotype, which was visualized in Fig.  3F. 
The same data were used to summarize cellular fraction of STAT3-
mutant cells in each cell type as shown in Supplementary Fig. S5.

Single-Cell Whole-Genome Amplification and STAT3 Y640F 
Genotyping

Thawed survivor blood samples (the same as those used for the 
Tapestri assay), which had been cryopreserved, were washed and resus-
pended in a culture medium. The resuspended cells were stained with 
Calcein and DAPI for viable cell sorting. Calcein-positive/DAPI-negative 
cells were sorted into 96-well DNA loBind Semi Skirted plates contain-
ing 4 μL of cell storage buffer (Qiagen, #150370). The whole-genome 
amplification reactions were assembled in a pre-PCR workstation, 
which was decontaminated with ultraviolet irradiation before every 
experiment. Multiple displacement amplification (MDA) was carried 
out according to the Repli-g Advanced DNA Single Cell Kit (Qiagen, 
#150365). The amplified whole-genome amplification yield was in the 
range of 25 to 40 μg and was stored at −20°C until further processing 
STAT3 genotyping and sequencing library preparation. Aliquots from 
the amplified DNA material were diluted to 25 ng/μL, and the targeted 
region was amplified by PCR using Q5 Hot Start High-Fidelity 2 × Mas-
ter Mix (New England BioLabs, #M0494L). Two primer sets were used 
to generate the amplicons. The first set included the forward primer 
GGAAAGAAAAAATGGGCAG and the reverse AAATCAACAACTACC 
TGGG. The second set was TTAAGTCTTTTCCCCTTCG for forward 
and TCAACAACTACCTGGGTC for reverse, respectively. The PCR frag-
ments were cleaned up using ExoSAP-IT PCR product cleanup reagent 
(Thermo Fisher Scientific, #78202). The chromatogram from Sanger 
sequencing was visually inspected for the STAT3 Y640F mutation.

scWGS and Variant Identification
For amplified DNA materials from STAT3 Y640F or wild-type cells, 

Illumina-compatible whole-genomic DNA libraries were constructed 
using the Kapa HyperPrep Kit (Roche, #07962363001) and IDT for 
Illumina TruSeq DNA UD Indexes (Illumina, #20023784). Library 
QC was performed using a Bioanalyzer High Sensitivity DNA Analy-
sis chip (Agilent, #5067-4626) and MiSeq Nano kit (Illumina, cat. 

#15036717). The scWGS libraries were denatured with PhiX spike-in, 
and sequencing was performed on a NovaSeq 6000 using S2 or S4 
flow cells and standard workflow to generate 150-cycle paired-end 
reads. The reads were mapped to the GRCh37 reference genome 
by BWA. The mapped datasets were required to cover  >70% of the 
genome at a depth of 10 reads or more.

GATK HaplotypeCaller (4.0.2.1) was applied at the default setting 
to the single-cell datasets and the bulk WGS dataset (20) from the 
same survivor. GATK’s VariantFiltration was used to filter the raw 
calls: –filter-expression “QD < 2.0” –filter-expression “FS > 60.0” –filter-
expression “MQ  <  40.0” –filter-expression “MQRankSum  <  -12.5” 
–filter-expression “ReadPosRankSum  <  -8.0” –filter-expression 
“SOR > 3.0” –filter-expression “QUAL < 30” -window 10. MDA reac-
tion tends to yield a nonuniform amplification and thus could provide 
a biased genotype representation due to allele dropout. To select 
datasets with relatively uniform amplification, we performed a QC 
check that requires 10×  coverage in  >70% of the human genome in 
scWGS, and  >90% genotype concordance of heterozygous SNPs in 
bulk WGS sample in regions with >10×  coverage in both bulk WGS 
and scWGS. For scWGS data that passed QC, SNVs private to scWGS 
(i.e., absent in bulk WGS) were considered putative somatic SNVs. 
Of the scWGS data generated from three HL survivors, only those 
from SJHL018072 passed the QC check (93.7%–95.7%), whereas the 
other two (SJHL017906 and SJHL019340) failed (59.1–87.2%) despite 
repeated effort for all available DNA materials. From the QC-failed 
case, SNVs unique to scWGS were also collected for the purpose of 
building a panel of artifactual SNVs caused by MDA. The final muta-
tion set for SJHL018072 was prepared by filtering with the SNVs recur-
ring in the other two cases, which may represent MDA/sequencing/ 
artifacts, as suggested by the presence of SBS57, an error signature.

Mutational Signature Analysis
We ran signature profiler (https://github.com/AlexandrovLab/

SigProfilerSingleSample) to query against COSMIC signatures 
(v3.1, GRCh37) with the following options: ref  =  “GRCh37” and 
exome = False. Given the elevated mutation burden in STAT3 Y640F–
mutant cells compared with the wild-type cells, we performed the 
analysis by combining all SNVs from the mutant cells to generate a 
profile for the mutant cells and combining all SNVs from the wild-
type cells to generate a profile for the wild-type cells. The signatures 
from these two categories are shown in Fig. 3G.

Serial Sample Analysis
Eighty-four survivors had serial blood samples collected from mul-

tiple SJLIFE visits. These samples were analyzed for CH variants as 
described in the section “CH Variant Detection.” For the pair of time 
points in each serial sample, the growth direction of a CH clone was 
determined as expanding or nonexpanding by comparing the two 
VAFs with a binomial test or taking the concordance of the ddPCR 
concentration estimates for samples in which the readings were avail-
able at both time points.

Simulation Study
The stochastic clone dynamics model proposed by Watson and 

colleagues (33) was used to simulate the age-related CH dynamics. 
In addition to the original model, a modified model was prepared 
to study trajectories with early onsets as in CH-positive survivors. 
This model elevates the mutation rate [original rate by Watson and 
colleagues (33): 3 × 10−6/cell] by 5 to 10 times during a random time 
window starting at age 0 to 15 with a span of 1 to 5 years. Trajecto-
ries starting within the hypermutative windows were analyzed. To 
simulate the serial sample analysis, clones were subjected to a two 
time-point sampling if VAF stayed >0.1% (the detection limit of this 
study). The two VAFs were compared to label the clone as expanding 
or nonexpanding.

https://github.com/AlexandrovLab/SigProfilerSingleSample
https://github.com/AlexandrovLab/SigProfilerSingleSample
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Computations
Statistical analyses, simulation, and visualization were performed 

in Python. Comparisons were considered significant if two-sided 
P values were < 0.05.

Data Availability
The BAM files for panel sequencing and scWGS are available 

on St. Jude Cloud under accession SJC-DC-1020 (https://platform.
stjude.cloud/data/cohorts?dataset_accession=SJC-DS-1020).
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