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Abstract
Light harvesting complex II (LHCII) in plants and green algae have been shown to adapt their absorption properties, depend-
ing on the concentration of sunlight, switching between a light harvesting and a non-harvesting or quenched state. In a 
recent work, combining classical molecular dynamics (MD) simulations with quantum chemical calculations (Liguori et al. 
in Sci Rep 5:15661, 2015) on LHCII, it was shown that the Chl611–Chl612 cluster of the terminal emitter domain can play 
an important role in modifying the spectral properties of the complex. In that work the importance of charge transfer (CT) 
effects was highlighted, in re-shaping the absorption intensity of the chlorophyll dimer. Here in this work, we investigate 
the combined effect of the local excited (LE) and CT states in shaping the energy landscape of the chlorophyll dimer. Using 
subsystem Density Functional Theory over the classical �s MD trajectory we look explicitly into the excitation energies of 
the LE and the CT states of the dimer and their corresponding couplings. Upon doing so, we observe a drop in the excitation 
energies of the CT states, accompanied by an increase in the couplings between the LE/LE and the LE/CT states facilitated 
by a shorter interchromophoric distance upon equilibration. Both these changes in conjunction, effectively produces a red-
shift of the low-lying mixed exciton/CT states of the supramolecular chromophore pair.
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Introduction

Light harvesting complex II (LHCII) or the major antenna 
complex of the Photosystem-II (PSII) in higher plants and 
green algae, is a complex structure accounting for almost 
80% of the light absorbed by PSII. LHCII exists in the native 
trimeric form where one monomer consists of eight chloro-
phyll a (Chla), six chloropyll b (Chlb), two luteins (Lut), one 
neoxanthin (Nx) and one violaxanthin (Vx) chromophore as 
cofactors. The trimeric (major) LHCII and the monomeric 
(minor) LHCII complexes (CP24, CP26 and CP29) along 

with the PSII core form the PSII supercomplex, the crystal 
structure of which has been determined at high resolution 
(Wei et al. 2016; Su et al. 2017). Previous studies on LHCs, 
have highlighted the importance of the excitation energy 
transfer (EET) processes in fine tuning the spectral proper-
ties of the complexes (Segatta et al. 2019; Cupellini et al. 
2020b; Balevičius et al. 2017; Maity et al. 2019; Duffy et al. 
2013; Chmeliov et al. 2015; Lapillo et al. 2020; Khokhlov 
and Belov 2019). [We refer the reader to reference (Segatta 
et al. 2019) for a focused review on the different theoreti-
cal methods and to reference (Cupellini et al. 2020b) for 
the challenges therein]. In addition Electron Transfer (ET) 
effects, giving rise to Charge Transfer (CT) states, have also 
been shown to play a crucial role in modulating the overall 
spectral and energy landscape of the complexes especially 
for closely interacting pigments (Kell et al. 2014; Wahado-
szamen et al. 2014; Novoderezhkin et al. 2007; Miloslavina 
et al. 2008; Cupellini et al. 2020a). Although CT states 
by themselves are optically dark states, previous theoreti-
cal studies have shown that these states can mix with the 
local states thereby gaining some dipole strength (Cupellini 
et al. 2018; Nottoli et al. 2018). Previous studies have also 
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elucidated a strong correlation between the LHC energet-
ics and protein conformational changes (Ruban et al. 2012; 
Krüger 2014; Liguori et al. 2013), showing that the so-called 
‘quenched’ states of LHCs are linked to particular confor-
mations where the chromophore–chromophore interactions 
are strengthened (Pascal et al. 2005; Ruban et al. 2007; Ahn 
et al. 2008; Bode et al. 2009; Miloslavina et al. 2008). In this 
respect, interactions between a particular chlorophyll dimer 
(originally labelled Chla611–Chla612 in reference Liu et al. 
2004) is particularly interesting because it is often assumed 
to be a critical site for the switch between light harvesting 
and quenched conformations of LHCs (Ruban et al. 2007; 
Mozzo et al. 2008; Mascoli et al. 2019).

The advent of Classical Molecular Dynamics (MD) 
simulations in the microsecond ( �s ) time scale allows for 
probing the chromophore dynamics at atomistic resolution, 
also allowing the inclusion of lipid membrane and solvent 
effects (Curutchet and Mennucci 2017). Snapshots from 
these long simulations can be used as input for quantum 
chemical calculations to provide a computationally efficient 
strategy for studying spectral properties of LHCs over such 
time scales. We note that care has to be taken that the force 
field reproduces the structure of the chromophores well 
enough (Andreussi et al. 2017; Jurinovich et al. 2015) and 
have checked in earlier work (Sen et al. 2021) that the dif-
ference of excitation energies between MM and QM opti-
mized structures does not exceed 0.1 eV. In that work, we 
performed Time-Dependent Density Functional Theory 
(TDDFT) (Runge and Gross 1984; Casida 1995) calcula-
tions on the above chlorophyll dimer (i.e. Chla611–Chla612) 
on selected snapshots from a particular trajectory obtained 
from a �s classical MD simulation which showed signifi-
cant structural disorder from the crystal structure (Liguori 
et al. 2015). This particular trajectory [trajectory “A” in the 
original work of reference (Liguori et al. 2015) that was 
also used in reference (López-Tarifa et al. 2017)] was one of 
six independent simulations where the excitonic interactions 
between the chlorophyll dimer displayed marked differences 
compared to the others (Liguori et al. 2015). In our previous 
work, it was shown that a drop in the total oscillator strength 
of the Q bands ( Qy and Qx ) could be explained using a transi-
tion density decomposition analysis, wherein an increase in 
the CT component of the oscillator strength was observed 
upon equilibration. Furthermore a characterization of the 
excitonic states using charge transfer descriptors of Plasser 
and Lischka (2012) revealed an overall increase of the CT 
character of the low-lying states. Both of these analysis 
clearly showed an increase in the mixing of the CT states 
with the local excited (LE) Q states, making it difficult to 
make a quantitative calculation of the energies of the LE and 
the CT states towards the end of the trajectory.

In this previous work, the delocalized orbital picture 
resulting from the use of a supramolecular basis made the 

interpretation of the TDDFT states difficult when the dis-
tance between the chromophores was small. In the current 
work, we instead use a diabatic representation built on the 
framework of subsystem DFT in which the identification 
as LE or CT states becomes straightforward. A pictorial 
description of the involved electronic states for both these 
processes for two identical pigments is shown in Fig. 1. We 
construct a model Hamiltonian that can be used to predict 
the importance of the ET and EET processes by comput-
ing the subsystem DFT energies of the individual diabatic 
states (diagonal elements of the model Hamiltonian) as well 
as their couplings (the off-diagonal elements). We thereby 
focus on the pair Chla611–Chla612 and compare computed 
matrix elements from the beginning and the end of the MD 
trajectory. Upon doing so, we observe a decrease in the ener-
gies of the CT states which are accompanied by an increase 
in the coupling between the LE and CT states and among the 
LE states themselves, resulting from a shorter interchromo-
phoric distance between Chla611 and Chla612 after equili-
bration. We show that this conformational change results in a 
red-shift of the low-lying mixed excitonic/CT state, induced 
by a drop in the CT state energy and an increased coupling 
between the local and CT state and between the local states 
themselves.

This paper is organized as follows: In the “Methods” sec-
tion, we introduce the model Hamiltonian and give an over-
view of the subsystem DFT framework. Therein, the defin-
ing equations for the approximations used in the calculation 

Fig. 1   Excitation energy transfer and electron transfer are represented 
in the monomer coordinate system. The red arrows represents Förster 
(Förster 1948) energy transfer flow, whereas the green arrows repre-
sent the Marcus (Marcus and Sutin 1985) electron transfer between 
pigments A and B. Vertical excitation processes are represented with 
broken arrows. The ground, local excited and ionized potential sur-
faces of the corresponding pigments A and B are shown in black, red 
and green (denoted by ΨA∕B

i
 ) respectively in the increasing order of 

energy. �A∕B
i

 denotes the reorganization energy associated with the 
electronic transition
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of the matrix elements of the effective Hamiltonian (repre-
senting the local and CT energies and their couplings) are 
discussed. In the “Computational details” section, the tech-
nical details of the workflow and the calculations performed 
to obtain the matrix elements are specified. In the “Results 
and discussion” section, we then discuss the obtained values 
of the matrix elements of the model Hamiltonian and com-
pare with the supramolecular picture. In the final concluding 
section we also present a brief outlook for further studies.

Methods

In order to obtain approximate solutions of the Schröding-
ers equation of a many-body system involving electrons and 
nuclei one usually employs the Born–Oppenheimer approxi-
mation (1927). In this approximation the total wavefunction 
of the system, Ψi�(�, �) , where � and � represent the set of 
coordinates of the nuclei and the electrons, respectively, is 
written as a product of the electron and nuclear wavefunc-
tions, i.e.

where Φi is ith electronic wave function obtained for a fixed 
nuclear configuration � , and the �i� are nuclear wave func-
tions for vibrational states � . The product of these two wave 
functions, Φi(�, �)�i�(�) , describes so-called vibronic states 
i� and their energy, Ei� . Vibronic transitions are associated 
with a change in both the electronic and the vibrational 
states, the corresponding rate of which is given by the Fer-
mi’s golden rule,

where ki�j� is the rate, Ĥ1 a perturbation operator and Ei� , Ej� 
are the energies of the initial and final vibronic states i� and 
j� respectively. In the Franck–Condon approximation, the 
matrix element, H1

i�j�
 is separated into two factors, i.e.,

The first term on the rhs of Eq. 4 represents the coupling 
matrix element between the electronic states i and j that is 
our main interest. The nuclear wavefunction overlap matrix 
elements, given by the second term on the rhs of Eq. 4, 
determine the homogenous (vibrational) broadening of the 
transition between the two electronic states i and j and will 
not be considered explicitly.

We aim to calculate the matrix elements of the electronic 
Hamiltonian Ĥel in a diabatic basis, consisting of the electronic 

(1)Ψi�(�, �) ∶= Φi(�, �)�i�(�)

(2)ki�,j� =
2�

ℏ
|H1

i�j�
|2�(Ei� − Ej�),

(3)H1
i𝜇,j𝜈

= ⟨𝜒i𝜇(�)�⟨Φi(�, �)�Ĥ1�Φj(�, �)⟩�𝜒j𝜈(�)⟩ ,

(4)H1
i𝜇,j𝜈

= ⟨Φi(�, �)�Ĥ1�Φj(�, �)⟩ . ⟨𝜒i𝜇(�)�𝜒j𝜈(�)⟩

ground state ΦGS and sets of excited states {ΦA∗B} , {ΦAB∗} , 
{ΦCT1} and {ΦCT2} , where states ΦA∗B , ΦAB∗ describe LE states 
of chromophores A and B, and ΦCT1 , ΦCT2 describe the non-
local charge transfer states ( A+B− and A−B+ ) respectively. This 
basis is illustrated graphically in Fig. 2. In the subsystem, or 
weak coupling, approach, these states can be written as a prod-
uct of local states,

where �A∕B

0
 , �A∕B

1
 , �A∕B

+  and �A∕B
−

 are, respectively, the 
ground state, LE state, ionized and electron-attached wave-
functions for subsystems A or B. Note that we have dropped 
the explicit coordinate dependence of the set of Φi ’s on 

(5)ΦGS =��A
0
�

B
0
⟩

(6)ΦA∗B =��A
1
�

B
0
⟩

(7)ΦAB∗ =��A
0
�

B
1
⟩

(8)ΦCT1 =��A
+
�

B
−
⟩

(9)ΦCT2 =��A
−
�

B
+
⟩ ,

Fig. 2   The ground state, ΦGS , two locally excited states, ΦA∗B and 
ΦAB∗ , and two CT states, ΦCT1 , ΦCT2 along with the distribution of 
electrons, where each fragment is considered as a two-level two elec-
tron system, are shown. a† and a are the corresponding creation and 
annihilation operators, and i, j and a, b represent occupied and unoc-
cupied orbitals of the fragments A and B, respectively
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� and � in the above definitions for convenience. In this 
diabatic basis the Hamiltonian matrix assumes a blocked 
structure with diagonal blocks representing the electronic 
ground state ( �el

GS
 ), interactions between LE states, ( �el

LE
 ), as 

well as interactions between CT states ( �el
CT

 ). Off-diagonal 
blocks ( �el

X−Y
 , where X, Y ∈ (GS, LE, CT) and X ≠ Y  ) cou-

ple these physically distinct states and lead to states with 
mixed LE–CT character.

In order to describe the final states we need to compute 
the values of the matrix elements in each of the blocks. We 
can set the energy of the ground state to zero and define 
the diagonal matrix elements of �el

LE
 and �el

CT
 block, i.e. 

⟨Φi�Ĥel�Φi⟩ , where, i ∈ (A∗B,AB∗, CT1, CT2) as LE and CT 
excitation energies. The calculation of off-diagonal matrix 
elements inside the �el

LE
 block, i.e. ⟨Φi�Ĥel�Φj⟩, where 

i, j ∈ (A∗B,AB∗) and i ≠ j is facilitated by the fact that the 
two transition densities are (almost) non-overlapping. We 
furthermore note that off-diagonal elements in �el

CT
 block, 

i.e. the coupling between CT states in which the transfer 
goes in opposite directions can be assumed negligible as 
they correspond to a two-electron process. The couplings 
between the GS and CT state and between the GS and LE 
states are accounted for in the calculation of the CT and LE 
energies and need not be considered explicitly. The final 
significant coupling is between LE and CT states and will 
be calculated in a generalization of Fragment Orbital DFT 
(Senthilkumar et al. 2003, 2005) that we describe below.

As the diabatic states will be constructed independently 
from each other, they are in general non-orthogonal and adi-
abatic eigen states Ψad and energies Ead need therefore be 
determined by solving a generalized eigenvalue problem

where �dia denotes the diabatic matrix representation of �el . 
The overlap matrix �dia is constructed in addition to evalu-
ation of the matrix elements of �dia and �ad are the coef-
ficients of the adiabatic eigenstates in the diabatic basis. As 
the coupling between the ground state and the locally excited 

(10)�
dia
�

ad = Ead
�
dia
�

ad,

states is zero by construction, and the coupling between the 
ground state and the charge transfer states is very weak for 
the systems we are considering, we thereby focus only on 
the set of diabatic states { ΦA∗B , ΦAB∗ , ΦCT1 ΦCT2 }. The struc-
ture of the matrices �dia and �dia used in this work is shown 
in Fig. 3. We note that �dia shares a similar structure with 
other ab-initio exciton models used to describe such pro-
cesses (Cupellini et al. 2018; Nottoli et al. 2018). In the next 
sections we will introduce a composite approach to obtain 
the non-zero matrix elements.

Subsystem DFT

While the theory has thus far been general and applicable 
with any diabatic wave function ansatz, we will now special-
ize to the wave functions provided by subsystem DFT (Jacob 
and Neugebauer 2014; Wesolowski et al. 2015). Subsystem 
DFT is typically formulated such that a monomer basis set is 
used to represent a subsystem and will thereby by construc-
tion yield local states. We, therefore construct each of the 
aforementioned diabatic states from separate sets of (spin)
orbitals of A and B resulting from an underlying subsystem 
DFT calculation. The ground state determinant, ΦGS in Eq. 5 
(Fig. 2) of the combined system A + B in the subsystem 
framework is thereby written as combination of two sets of 
subsystem spinorbitals {�i

A
} and {�j

B
} on A and B comprising 

�
A
0
 and �B

0
 in Eq. 5 i.e,

In the following section we briefly outline the basic formula-
tion of subsystem DFT and thereafter introduce the different 
flavours that are used in approximating the matrix elements 
of �dia.

The basic idea of subsystem DFT is to partition the elec-
tron density of a total system into subsystem contributions 
(Wesolowski and Warshel 1993)

(11)

ΦGS = ��A
0
�

B
0
⟩ ≈ 1√

NA + NB

����
�
1
A
...�i

A
...�

NA

A
�
1
B
...�

j

B
..�

NB

B

����

Fig. 3   Structure of a the Ham-
iltonian matrix, �dia , and b the 
Overlap matrix, �dia which is 
used in this work. LE represents 
the locally excited states on 
pigment A and B, and CT the, 
non-local charge transfer states. 
The �dia

LE
 , �dia

CT
 and �dia

LE−CT
 

blocks, constructed following 
Table 1 are shown in green, blue 
and orange, respectively. We 
assume zero coupling (white 
areas) between the CT states of 
different polarity
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where n is the number of subsystems. The total energy of 
the system is then minimized with respect to all �K , where 
each of the subsystem densities is usually represented by a 
Kohn–Sham like system of independent particles. In case 
of two subsystems A and B, the ground state energy of A + 
B is then given by,

where

Therefore in subsystem DFT, in addition to the usual Exc 
functional, we also need to approximate (Wesolowski and 
Weber 1996; Wesolowski et  al. 1996) the non-additive 
part of the kinetic energy, Tnad

s
[�A, �B] . For weakly inter-

acting or non covalent interactions, there are sufficiently 
good density functional approximations available for this 
quantity. Employing these, the set of spinorbitals {�i

A
} and 

{�
j

B
} in Eq. 11 can then be obtained by solving the modi-

fied Kohn–Sham equations with constrained electron density 
(KCSED) for each subsystem A and B. In this approach, each 
subsystem is solved individually with the other subsystem 
being included as a frozen environment (hence the alterna-
tive name frozen density embedding or FDE) in the form of 
an embedding potential, i.e. {�i

A
} and {�j

B
} are obtained as 

solutions of,

where � and s are the spatial and spin coordinates, respec-
tively. For simplicity, we assume that both subsystems have 
an even number of electrons so that we can integrate out the 
spin coordinate. The one-electron Kohn–Sham potentials 
are then

and

(12)�(�) =

n∑

K

�K(�),

(13)

E0 =min
�A,�B

{Ts[�A] + Ts[�B] + Tnad
s

[�A, �B] + Vnuc[�A + �B]

+ J[�A + �B] + Exc[�A + �B]},

(14)Tnad
s

[�A, �B] = Ts[�A + �B] − Ts[�A] − Ts[�B]

(15)

[
−∇2

2
+ vKS[�A∕B](�) + vemb[�A, �B](�)

]
�
i
A∕B

(�, s)

= �
i
A∕B

�
i
A∕B

(�, s)

(16)

v
A∕B

KS
(�) = vA∕B

nuc
(�) + ∫

�A∕B(�)

|� − ��|d�
� +

�Exc[�]

��(�)

|||||�(�)=�A∕B(�)

in which a non-additive exchange-correlation energy is 
defined for convenience:

The above procedure can be made fully self-consistent by 
including the mutual polarization between the subsystems 
by the effect of the embedding potential vemb(r) in so-called 
freeze-and-thaw cycles (Wesolowski and Weber 1996; 
Gritsenko 2013; Jacob and Neugebauer 2014). Compared 
to other embedding schemes one may in this way account 
for polarization while still allowing for the Pauli repulsion 
that is missing in classical embedding (Jacob et al. 2006).

In applying these Kohn–Sham wave functions, there are 
two sources of non-orthogonality (Pavanello et al. 2013), the 
first one stemming from the overlap between the full electron 
diabatic states as in Eq. 10, and the second one arising at 
the subsystem level from the fact that the two set of orbitals 
{�i

A
} and {�j

B
} of subsystem A and B are non-orthogonal 

with respect to each other.

Calculation of �dia

LE
 block

Having discussed the calculation of the ground state, ΦGS , 
by subsystem DFT in the previous section, we now introduce 
the formulas used in obtaining the matrix elements of the 
blocks �dia

LE
 , �dia

CT
 and �dia

LE−CT
 that we need in this work. We 

will compute these blocks independently (each block is com-
puted without the knowledge of the other one) in separate 
sets of calculations. We assume that all of the LE states ΦA∗B 
and ΦAB∗ in Eqs. 6 and 7 (Fig. 2) can formally be constructed 
from single-particle excitations from either �A

0
 or �B

0
:

where a† and a are creation and annihiliation operators and 
indices are chosen such that (i, j) ∈ ΦGS and (a, b) ∉ ΦGS . 
The coefficients c�

ai
 and c�

bj
 describe the coupling of these 

single orbital transitions for state � localized on A and state 
� localized on B. The diagonal matrix elements of the �dia

LE
 

block are taken from two separate FDEu (where u denotes 
uncoupled) TDDFT (Casida and Wesołowski 2004; Neuge-
bauer 2007, 2008, 2010; König et al. 2013) calculations by 
selecting the states of interest. In this work, we are interested 

(17)
v
A∕B

emb
(�) =vB∕A

nuc
(�) + ∫

�B∕A(��)

|� − ��|d�
� +

�Enad
xc

[�A, �B]

��A∕B(�)

+
�Tnad[�A, �B]

��A∕B(�)

(18)Enad
xc

[�A, �B] = Exc[�A + �B] − Exc[�A] − Exc[�B].

(19)ΦA∗B =��A
1
�

B
0
⟩ ≈

�

i,a∈A

c
�

ai
a†
a
ai�ΦGS⟩

(20)ΦAB∗ =��A
0
�

B
1
⟩ ≈

�

j,b∈B

c�
bj
a
†

b
aj�ΦGS⟩ ,
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in the lowest two states Qy and Qx for each of the chromo-
phores. These energies are also called site energies in the 
context of interacting chromophores and are obtained as 
solutions of

Here, �sub and �sub is the subsystem partitioned response 
matrices (Neugebauer 2007; König et al. 2013) assuming 
real spatial orbitals, {�} the set of eigenvalues (site ener-
gies) and {�sub,�sub} the set of corresponding excitation and 
de-excitation vectors for each of the ΦA∗B and ΦAB∗ states, 
respectively [see for example Eq. 23 in Ref. König et al. 
(2013)]. Note that by choosing the FDEu starting ansatz the 
�

dia
LE

 matrix becomes diagonal inside the ΦA∗B and ΦAB∗ sub-
blocks. The coupling between the LE states Φ�

A∗B
 and Φ�

AB∗ , 
is subsequently approximated by the coupling between the 
transition densities of excitations localized on fragments A 
and B and yields the remaining non-zero elements of the 
�

dia
LE

 block. In the Tamm–Dancoff approximation (denoted 
as FDEc-TDA) it is given by König et al. (2013),

where �A,�(�) and �B,�(��) are the transition densities of exci-
tations � and � corresponding to ΦA∗B and ΦAB∗ , respectively, 
and the kernel f (�, ��) is given by

where EXC[�] and Ts[�] denote the usual exchange-correla-
tion and kinetic energy functional and �tot is the summed 
density of subsystems A and B. The first term of Eq. 23 
represents the Förster type Coulomb coupling between two 
localized excitations whereas additional short-range interac-
tions are taken into account via the approximate exchange-
correlation and kinetic energy functionals in the second and 
third term. The remaining elements to be considered are the 
overlap matrix elements, these are taken as elements of the 
unit matrix so that diagonalization of the LE submatrix will 
reproduce the FDEc-TDA results. We would like to note 
here that the above formulation of subsystem TDDFT lacks 
an explicit description of charge transfer excitations (which 
we calculate in the next section using explicitly constructed 
charge localized states) that become significant when two 
chromophores are sufficiently close to each other (Sen et al. 
2021). Recent works by Neugebauer and co-workers using 
projection based embedding techniques (as an alternative to 
the conventional non-additive functionals used here) in com-
bination with a supramolecular basis set in the context of 

(21)

(
A

sub
B
sub

−Bsub − A
sub

)(
X

sub

Y
sub

)
= �

(
X

sub

Y
sub

)
, sub ∈

{
A∗B,AB∗

}

(22)⟨Φ𝜇

A∗B
�Ĥel�Φ𝜈

AB∗⟩ ≈ ∫ ∫ 𝜌A,𝜇(�)f (�, �
�)𝜌B,𝜈(�

�)d�d��.

(23)

f (�1, �2) =
1

|�2 − �1|
+

�
2EXC[�]

��(�1)��(�2)

|||||�=�tot
+

�
2Ts[�]

��(�1)��(�2)

|||||�=�tot

subsystem TDDFT have been shown to be able to describe 
such inter-subsystem charge transfer excitations and repro-
duce the supramolecular results exactly (Tölle et al. 2019a, 
2019b, 2020; Scholz et al. 2020; Tölle and Neugebauer 
2022). We have not considered this extension of FDE here.

Calculation of �dia

CT
 block

A detailed discussion of the computation of CT energies 
with subsystem DFT and other approaches can be found in 
the literature (Pavanello and Neugebauer 2011; Pavanello 
et al. 2013; Solovyeva et al. 2014; Ramos et al. 2015). Here 
we will give the essential points, largely following Marcus 
Theory. We start by considering the charge transfer process 
in terms of (quasi-)diabatic charge localized states and first 
consider the particular case of ΦCT1 defined in Eq. 8 and 
describing the process

where an electron is transferred from A to B. In order to 
calculate the excitation energy ECT1 of state CT1 ( A+ + B− ) 
with respect to the GS ( A + B ) one then solves a 2 × 2 gener-
alized eigenvalue equation (Pavanello and Neugebauer 2011; 
Pavanello et al. 2013; Migliore 2009, 2011). This yields two 
adiabatic state energies with their difference given by,

where

and we abbreviated CT1 by 1 and the GS by 0. Hdia
00

 , Hdia
11

 , 
Hdia

ab
 and S01 represents the diabatic energies of the GS and 

CT1, the coupling between them and their overlap, respec-
tively. When the energy difference between the diabatic 
states is much larger than the coupling ( Hdia

00
− Hdia

11
≫ V01 ), 

the diabatic and adiabatic energies coincide, i.e. Eq. 25 at 
small overlap and coupling becomes,

Similar considerations apply for the reverse CT state ΦCT2 
defined in Eq. (9).

In the subsystem DFT framework, these CT states are 
constructed from broken-symmetry KS determinants. Orbit-
als are optimized following Eq. 15 in a series of freeze-and-
thaw cycles, for two neutral fragments A and B comprising 
the ground state ( ΦGS ) and two charge-separated states A+ 
and B− (or A− and B+ ) comprising the product state ΦCT1 (or 
ΦCT2 ). These in total six sets of subsystem KS orbitals are 

(24)A + B → A+ + B−,

(25)ΔECT1 =

√
(Hdia

11
− Hdia

00
)2

(1 − (S01)
2)

+ 4V2
01
,

(26)V01 =
1

(1 − (S01)
2)

(
Hdia

01
− S01

Hdia
00

+ Hdia
11

2
,

)

(27)ΔECT1 ≈ Hdia
11

− Hdia
00
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combined to generate the three diabatic states ΦGS , ΦCT1 and 
ΦCT2 . In contrast to the procedure followed for the LE states, 
where it is easy to consider many excited states as they all 
are generated from the same GS orbital set, the procedure 
for CT states will produce only one CT1 state and only one 
CT2 state, each with it own set of optimized orbitals that 
include the effect of polarization via the freeze–thaw opti-
mization step.

For example, ΦCT1 in Eq. 8 is constructed as,

 where �i
A+

 , �j

B−
 are the set of orbitals for the corresponding 

charge localized cation A+ and anion B− . These states are 
then used to calculate the matrix elements in Eqs. 25 and 
26 as,

Here �(01∕2)(�) is the transition density between states 0 
and 1 or 2 (i.e. between ΦGS and ΦCT1 or ΦCT2 ) and S01∕2 
the corresponding overlap. �(ii)(�) is the density calculated 
using orbitals of the appropriate diabatic states 0, 1 or 2 
( ΦGS or ΦCT1/ΦCT2 ). We need to account for two kinds of 
non-orthogonality in these calculations. Since the subsystem 
orbitals are the results of an FDE calculation, their product 
wave function is not necessarily normalized so that Sii ≠ 1 . 
Furthermore, the off-diagonal elements S01 and S02 are in 
general non-zero ( S12 is zero, as mentioned before). This 
means that rather than focusing on only the blue part of 
Fig. 3, as is our intention, we also need to check the magni-
tude of the GS–CT coupling, or equivalently, the difference 
between the diabatic and adiabatic CT energies. As we will 
discuss later, we are in the current work in the weak coupling 
regime, which means that the desired �dia

CT
 elements can be 

taken as the approximate energy difference Eq. 27 and we 
need not consider the GS explicitly.

We would like to point out here that the CT energies so 
computed using the subsystem formalism have the correct 
long-range behaviour, which the approximate functionals 
employed in conventional supramolecular TDDFT often fail 
to describe properly. The energy of a charge separated donor 
and acceptor in the subsystem formalism can be written as,

where the EA+ , EB− are the diabatic energies of the two ion-
ized states and Eint is the interaction energy between the two 
charged species given by,

(28)

ΦCT1 = ��A
+
�

B
−
⟩

≈
1√

(NA − 1) + (NB + 1)

����
�
1
A+
...�i

A+
...�

NA−1

A+
�
1
B−
...�

j

B−
..�

NB+1

B−

����

(29)Hdia
01∕2

=E[�(01∕2)(�)]S01∕2

(30)Hdia
ii

=E[�(ii)(�)], i ∈ (0, 1, 2)

(31)EA+....B− = EA+ + EB− + Eint,

At very long range, where there is zero overlap between A+ 
and B− , the non-additive terms drop out, while the other 
terms yield the correct limit: Eint ≈ −

1

R
 , where R is the dis-

tance between A and B (Solovyeva et al. 2014).
For the short-range or strong-coupling limit, we could in 

principle use Eq. 26 and include the GS explicitly in the cal-
culation, but such an approach would require careful testing of 
the validity of the employed density functional approximation 
in this limit.

Calculation of �dia

LE−CT
 block

Having discussed the diagonal blocks of �dia , we now turn our 
attention to the coupling of the CT and LE states given by the 
�

dia
LE−CT

 block. The most rigorous approach would be to con-
sider the broken-symmetry KS determinants of the preceeding 
section, as well as the full expansion of the TDA-TDDFT wave 
function, thereby accounting for the fact that these are con-
structed from different subsystem orbital sets and are not nec-
essarily orthogonal. Here, we will introduce a simple approach 
using second quantization for non-orthogonal orbitals in order 
to calculate the necessary couplings. The approach described 
here represents a generalized form of the Fragment Orbital 
DFT (FODFT) approach previously proposed by Senthilkumar 
et al. (2003, 2005) for calculating charge transfer integrals for 
non-orthogonal orbitals and used later by Hernández-Fernán-
dez et al. (2016) for calculating electronic couplings for hole 
transfer in stacked porphyrin dyads.

In this approach we approximate the full interaction Ham-
iltonian by the fixed Kohn–Sham (KS) Hamiltonian matrix 
representation obtained in a supermolecular calculation. This 
Hamiltonian is diagonal in its eigenbasis of supermolecular 
orbitals and can be expressed in second quantization as:

where {�p} are the supermolecular orbital energies.
We then define a normal ordered Hamiltonian with the 

supermolecular ground state determinant ΦGS as the refer-
ence vaccum,

(32)

Eint =J[�A+, �B−] + VnucA+
[�B−] + VnucB−

[�A+] + VnucA+−nucB−

+ Enad
xc

[�A+, �B−] + Tnad
s

[�A+, �B−]

(33)Ĥel ≈ ĤKS =
∑

p

𝜀pa
†
p
ap,

(34)
ĤN =ĤKS − ⟨Φ0�HKS�Φ0⟩

=
�

a

𝜀aa
†
a
aa −

�

i

𝜀iaia
†

i

(35)=
∑

a

�ab
†
a
ba −

∑

i

�ib
†

i
bi ,
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where we have redefined the usual creation/annihilation 
operators ( a†/a) in Eq. 34 in terms of hole/particle operators 
( b†/b) in Eq. 35 where the indices i, a denote the supermo-
lecular occupied and virtual orbitals. We then construct a 
set of unpolarized reference fragment orbitals obtained from 
two independent fragment calculations of A and B which 
constitutes the above defined reference (supermolecular) 
vacuum (valid for weakly interacting fragments). Assuming 
that the excited states can be effectively described by single-
particle excitation in this basis and that these underlying set 
of reference orbitals do not change, the LE state ΦA∗B and CT 
state ΦCT1 in the hole/particle formalism can be written as,

and,

respectively. The Greek indices �A , �A denote occupied orbit-
als on fragment A and �A , �B denote virtual orbitals on frag-
ment A and B, respectively. The coupling between these two 
states is then given as (see SI for the complete derivation),

where the elements of � and �′ are defined as,

where �p , ��A
 and �

�B
 denote general orbitals of the super-

molecule (A + B), fragment A and fragment B, respectively. 
Since we consider CT1 to occur from only the highest occu-
pied molecular orbital of a fragment A ( HA ) to the lowest 
unoccupied orbital of fragment B ( LB ), for the two LE states 
on fragment A, namely QA

y
 ( HA → LA ) and QA

x
 ( H′

A
→ LA ), 

the coupling in Eq. 36 can be written out as,

where H′
A
 and LA denote the HOMO-1 and LUMO on frag-

ment A, respectively.
Similarly, the coupling between the states ΦA∗B and 

ΦCT2 is given as,

Φ�A

�A
≈ b†

�A
b†
�A
�0⟩

Φ
�B

�A
≈ b

†

�B
b
†

�A
�0⟩

(36)
VA∗B,CT1 =⟨Φ𝛼A

𝜅A
�ĤN�Φ

𝛽B

𝜆A
⟩

=
�

a

𝜀a𝛿𝜅𝜆S
�
a𝛼A

S�
a𝛽B

−
�

i

𝜀iS𝛼A,𝛽BS
�
i,𝜅A

S�
i,𝜆A

,

(37)S
�B,�A

=∫ �
∗
�B
(�)�

�A
(�)d�

(38)S�
p,�A

=∫ �
∗
p
(�)�

�A
(�)d�

(39)V
QA

y
,CT1 =

∑

a

�aS
�
a,LA

S�
a,LB

−
∑

i

�iSLA,LBS
�2

i,HA

(40)VQA
x
,CT1 = −

∑

i

�iSLA,LBS
�
i,H�

A

S�
i,HA ,

Given that CT2 occurs only from the highest occupied 
molecular orbital of a fragment B ( HB ) to the lowest unoc-
cupied orbital of another fragment A ( LA ), the coupling with 
the two LE states on fragment A becomes,

Equations 39, 40 and 42, 43 along with the correspond-
ing coupling terms for the LE states on fragment B (see SI, 
not shown here) form the eight unique couplings in which 
we recognize the contributions of hole as well as electron 
transfer, which are, respectively, governed by the overlap 
between the occupied and the virtual orbitals of the indi-
vidual fragments.

Note that, in the above calculation of the couplings, we 
assumed the LE states ( Qy and Qx ) to be pure states (i.e. 
composed of a single single orbital transition), thereby mak-
ing their calculation fairly straightforward, obtained readily 
from a ground state Kohn–Sham calculation of A + B . In 
practice however, the LE states are composed of multiple 
single orbital transitions (see Eq. 19), in which case a more 
complete description of the couplings can be obtained either 
by a subsystem approach (Difley and Van Voorhis 2011) or 
by diabatization techniques (Voityuk and Rösch 2002; Yang 
and Hsu 2013; Hsu et al. 2008; Nottoli et al. 2018; Tölle 
et al. 2020). For the present purpose of the work, the above 
approximation is considered to be sufficient for a qualitative 
assessment.

A summary of the above approximations introduced in 
the context of the different methods and the structure of the 
matrix �dia and �dia used in Eq. 10 are shown in Table 1 and 
Fig. 3, respectively.

Effect of a polarizable environment on �dia

LE
 , �dia

CT
 

and �dia

LE−CT
 blocks

So far, we only consider the chromophores themselves, and 
not the effect of the surrounding protein matrix. This can be 
accounted for by means of an additional embedding poten-
tial, for which we selected the Discrete Reaction Field (DRF) 
model. The effect of a polarizable environment is in the DRF 
model accounted for in a molecular mechanics (MM) way 
via atomic point charges and static polarizabilities with a 
potential, vDRF , given by Jensen et al. (2003a)

(41)

VA∗B,CT2 =⟨Φ𝛼A

𝜅A
� ̂Hel

N
�Φ𝛽A

𝜆B
⟩

= −
�

i

𝜀i𝛿𝛼𝛽S
�
i𝜅A
S�
i𝜆B

+
�

a

𝜀aS𝜅A,𝜆BS
�
a,𝛼A

S�
a,𝛽A

.

(42)V
QA

y
,CT2 = −

∑

i

�iS
�
i,HA

S�
i,HB

+
∑

a

�aSHA,HB
S�

2

a,LA

(43)VQA
x
,CT2 = −

∑

i

�iS
�
i,H�

A

S�
i,HB

+
∑

a

�aSH�
A
,HB

S�
2

a,LA
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where the first term vel is the electrostatic operator and 
describes the Coulomb interaction between the QM system 
and the permanent charge distribution of the MM environ-
ment. The second term, vpol , describes the induced polariza-
tion at the MM atoms due to interaction with the QM part 
and other MM atoms. These two terms are given by

with

where the interaction tensor to a given order, n, is given by 
T (n)
pq,�1...,�n

 . Rpq is the distance between the interacting entities, 
Rsi,� is a component of the distance vector and �ind

s
 is the 

induced dipole at site s. The induced dipoles depend on the 
QM density and are updated during the self-consistent field 
cycles used to solve the QM part.

The DRF model has also been extended to the calculation 
of excited states in the linear response formalism of TDDFT 
where, an additional explicit response of the MM region DRF 
potential vDRF is accounted for in the kernel resulting from the 
response in the induced dipole upon change in the QM charge 
distribution. Similar to the calculation of the induced dipoles 
using the ground state density, in the excited state formalism it 
utilises the transition density for the calculation of the induced 
dipoles. It is defined by Jensen et al. (2003b) as

(44)vDRF(ri) = vel(ri) + vpol(ri),

(45)

vel(ri) =
∑

s

qs

Rsi

=
∑

s

qsT
(0)

si
,

vpol(ri) =
∑

s

�
ind
s,�

Rsi,�

R3
si

=
∑

s

�
ind
s,�
T
(1)

si,�

(46)T (n)
pq,�1,...,�n

= ∇pq,�1....
∇pq,�n

(
1

Rpq

)
,,

where �ind
s,�
[��] is the induced dipole at site s due to the per-

turbation in the density � and T (1)

si,�
 is the corresponding inter-

action tensor. In all our subsequent calculations we restrict 
ourselves to the adiabatic local density approximation 
(ALDA) of the kernel, so the dependence on � is dropped 
from the above equations. In the presence of a DRF environ-
ment, the total effective Hamiltonian �eff can be written as,

where �el is our block diagonal electronic Hamiltonian in 
the absence of the environment defined above, and �DRF is 
the Hamiltonian describing the perturbation on each of the 
blocks of �el due to the DRF environment. In the following 
section, we note the nature of perturbation of �DRF on the 
blocks of the �dia matrix

Effect on �dia
LE

 block In the calculation of the matrix 
elements of the �dia

LE
 block , the effect of the environment 

is accounted for in two steps—(1) As an additional poten-
tial term, vDRF , given by Eq. 44 in the calculation of the 
ground state subsystem orbitals via Eq. 15 and (2) In the 
calculation of the diagonal (LE energies) and off-diagonal 
(LE couplings) matrix elements in Eq. 22 via the linear 
response of vDRF in Eq. 47.

Effect on �dia
CT

 block The effect of the environment is 
explicitly accounted for in the calculation of the set of sub-
system orbitals for the individual fragments, i.e. A({�i

A
} ), 

B({�i
B
} ), and A+({�i

A+
} ), B−({�i

B−
} ) or A−({�i

A−
} ), B+

({�i
B+
} ) in the relevant diabatic states belonging to either 

the reactant or the product state via vDRF given by Eq. 44 
and entering the ground state Kohn–Sham calculation in 
Eq. 15. It therefore affects the CT energy (i.e. the diagonal 

(47)vDRF[��](ri,�) = −
∑

s

�
ind
s,�
[��](�)T

(1)

si,� ,

(48)�
eff = �

el +�
DRF,

Table 1   Summary of the equations/approximations used to evaluate the different blocks of �dia

Blocks Equations Description/References

�
dia

LE
⟨Φ

sub
�Ĥel�Φ

sub
⟩

(
A

sub
B
sub

−Bsub − A
sub

)(
X

sub

Y
sub

)
= �

(
X

sub

Y
sub

)

    (Eq. 21)
sub ∈

{
A∗B,AB∗

}
 ; FDEu-TDDFT; Refs. Neugebauer (2007), 

König et al. (2013)
⟨Φ𝜇

A∗B
�Ĥel�Φ𝜈

AB∗⟩ ∫ ∫ �A,�(�)f (�, �
�)�B,�(�

�)d�d��    (Eq. 22) FDEc-TDA; Ref. König et al. (2013)

�
dia

CT
⟨ΦX�Ĥel�ΦX⟩ Hdia

XX
− Hdia

00
    (Eq. 27) X ∈

{
CT1, CT2

}
 ; FDE-ET; Refs. Pavanello and Neugebauer 

(2011), Pavanello et al. (2013), Solovyeva et al. (2014), 
Ramos et al. (2015)

�
dia

LE−CT
⟨ΦA∗B�Ĥel�Φ

CT1
⟩

∑
a �a���S

′
a�A

S′
a�B

−
∑

i �iS�A ,�BS
�
i,�A

S�
i,�A

    (Eq. 36)

Generalized FODFT; Refs. Senthilkumar et al. (2003, 2005); 
see SI for remaining couplings

⟨ΦA∗B�Ĥel�Φ
CT2

⟩ −
∑

i �i���S
�
i�A
S�
i�B

+
∑

a �aS�A ,�BS
�
a,�A

S�
a,�A

    (Eq. 41)
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elements of this block) and the electronic coupling with 
the ground state through Eqs. 25 and 26.

Effect on �dia
LE−CT

 block The effect of the environment is 
taken into account in the ground state Kohn–Sham Hamil-
tonian , ĤKS , in Eq. 33 of the combined system of A + B as 
well in the calculation of the reference fragment molecular 
orbitals of A and B via vDRF , given in Eq. 44.

Computational details

All calculations have been carried out with the Amster-
dam Density Functional (ADF) program (Baerends et al. 
2018; Te Velde et al. 2001) using the double-zeta polarised 
(DZP) basis set and the range-separated CAMY-B3LYP 
exchange and correlation (XC) functional. The CAMY-
B3LYP XC functional is implemented with the XCFun 
library (Ekström et al. 2010, https://​dftli​bs.​org/​xcfun/) and 
is a modified version of the original CAM-B3LYP (Yanai 
et al. 2004) with a different switching function. The per-
formance of this functional in conjunction with the basis 
set for the calculation of the Q band energies has shown 
reasonable agreements before (López-Tarifa et al. 2017) 
with Milne et al. (2015) and hence was used consistently 
throughout this work. For the Frozen Density Embedding 
(FDE) calculations, the GGA functional BLYP (Becke 
1988; Lee et al. 1988) and PW91k (Lembarki and Cher-
mette 1994) were used for the non-additive exchange-cor-
relation and kinetic energy part of the embedding potential 
through out this work. For the calculation of the elements 
of �dia

LE
 block, the Time-Dependent DFT (TDDFT) exten-

sion of the Frozen Density Embedding (FDE) scheme 
in the linear response regime (Neugebauer 2007; König 
et al. 2013) as implemented in ADF was used to calcu-
late two lowest excitation ( Qy and Qx ) for each of the 

chromophores, Chla611 and Chla612. In order to include 
the polarization effects, 3 freeze-and-thaw cycles were 
performed for each of the chromophores. The coupling 
between the local excitations was then subsequently calcu-
lated using the Tamm–Dancoff approximation in the FDEc 
formalism (König et al. 2013) as mentioned before. For the 
calculation of the diagonal elements of the �dia

CT
 block, i.e. 

the CT energies, separate unrestricted calculations in the 
FDE framework were performed for each of the chromo-
phores in the neutral ground state and the charge-separated 
state to generate a total of 4 unrestricted fragments. Three 
freeze-and-thaw cycles were performed for each of the 
fragment in order to introduce polarization effects. For the 
inter-subsystem contributions,we used the BLYP (Becke 
1988; Lee et al. 1988) XC functional to evaluate Eqs. 29 
and 30. A schematic overview of the workflow is shown in 
Fig. 4. The elements of the �dia

LE−CT
 block were calculated 

using a recently developed stand-alone code Reduction of 
Orbital Space Extent (ROSE), specifically designed for 
localization of molecular orbitals. Senjean et al. (2021) 
The environment was modelled in the DRF framework 
as mentioned earlier, with Mulliken charges obtained 
from a Self-Consistent Charge Density Functional Tight 
Binding approach (Elstner et al. 1998) (SCC-DFTB) with 
third order corrections, using the parameter set 3ob-3-1 
(Lu et al. 2015) as implemented within the AMS (Rüger 
et al. 2018) engine of ADF. The atomic polarizabilities 
were taken from the standard Thole’s set of atomic polar-
izabilities (Thole 1981; Van Duijnen and Swart 1998) as 
given inside ADF. [In addition, for the Magnesium and 
Phosporous atom, polarizability values were taken from 
Ref. Stout and Dykstra (1995) and Lupinetti and Thakkar 
(2005), respectively]. All the elements of the �dia matrix 
were calculated on a total of 103 frames with 51 in the first 
set and 52 in the last set separated by 400 ps in each win-
dow, from the classical trajectory [labelled as trajectory 

Fig. 4   Workflow for the calcula-
tion of charge transfer (CT) 
state energies using frozen 
density embedding (FDE)

https://dftlibs.org/xcfun/
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“A” in the original nomenclature by Ligouri et al in refer-
ence (Liguori et al. 2015)] computed using GROMACS 
Molecular Dynamics package (Van Der Spoel et al. 2005). 
Such a separation of the frames was motivated by the con-
formational changes observed in the particular selected 
trajectory between Chla612 and Chla611 towards the end 
of the simulation in reference (Liguori et al. 2015). The 
input geometric structure from each frame of the trajectory 
for the QM calculations was prepared in two steps. First, 
we use the visualization program VMD (Humphrey et al. 
1996) to visualize and select chromophores Chla612 and 
Chla611 and the neighbouring residues (protein, chromo-
phores and lipids) within a distance of ≈ 7 Å from each of 
the chromophore porphyrin rings in the first and last set of 
snapshots of the trajectory and save the coordinates for the 
resulting snapshots. In the second step, we process each of 
the frames using the RDKit (http://​www.​rdkit.​org) library, 
wherein the DRF environment is separated from the QM 
region consisting of Chla612 and Chla611, followed by 
the addition of all the missing hydrogens, correction of the 
bond order of the porphyrin ring of the two chlorophylls 
and removal of the phytol chains of the chlorophylls in 
order to reduce the computational cost [removal of the 
phytol chain have been shown previously to not signifi-
cantly affect the site energy calculations (López-Tarifa 
et al. 2017)]. Thereafter, we calculate all the elements 
of the �dia in three different sets of calculations for each 
frame, for the �dia

LE
 , �dia

CT
 and �dia

LE−CT
 blocks, respectively, as 

mentioned above. The generation of the input geometries 
and the corresponding preparation of inputs for the sub-
sequent ADF calculation were done in a fully automatised 
way using the Python Library PLAMS (Handzlik et al. 
2018) as interfaced with ADF. As a final note, we would to 
mention that the numerical costs are dominated by the (not 
well optimized) calculation of the �dia

CT
 block which takes 

17 h of the 20 h in total needed per snapshot on one node 
(with 128 cores) of the Dutch supercomputer Snellius.

Results and discussion

The supramolecular picture

Förster resonance energy transfer (FRET) (Förster 1948) 
and Marcus electron transfer (ET) (Marcus and Sutin 1985) 
processes are both usually described in terms of local and 
non-local diabatic states. This is straightforward in subsys-
tem DFT, but also in supermolecular TDDFT with approxi-
mate exchange-correlation functionals, the resulting adi-
abatic states can sometimes still be interpreted in a diabatic 
picture. This is especially so if the local Frenkel (LE) type 
excitons and the charge-separated (CT) states are energeti-
cally well separated. This identification is difficult, however, 

when low-lying CT states, occurring either as an artefact 
of the method itself or otherwise, start to mix with these 
local excitations. In a previous work (Sen et al. 2021) on 
the Chla611–Chla612 dimer, we studied such a mixing of 
the CT states upon decreasing the distance between the two 
chlorophylls from 9 to 5 Å. In that work we used a super-
molecular approach but quantified the amount of mixing 
in terms of a charge transfer number (Plasser and Lischka 
2012) which indicated a sharp increase of LE–CT mixing 
upon decreasing the interchromophoric distance. How-
ever, due to the delocalized nature of the Highest Occupied 
and Lowest Unoccupied Molecular Orbitals (HOMO and 
LUMO) for that conformer, a clear interpretation in terms 
of diabatic LE and CT states remained elusive. In this work 
we provide such an interpretation and construct the indi-
vidual matrix elements of �dia to get a better picture of the 
couplings and energetics of these diabatic states. In the next 
section, we focus on the individual matrix elements of �dia 
for selected snapshots of the MD trajectory spanning the 
beginning (sampled by first set of snapshots) of the simula-
tion where the Chla611 and Chla612 chromophores are still 
far apart as well as the end of the simulation (sampled by last 
set of snapshots) where they are relatively close.

The diabatic picture

Local excitation (LE) and charge transfer (CT) energies

In Fig. 5 we show the four relevant ( Qx1 , Qy1 , Qx2 , and Qy2 ) 
local excitation energies of the two chlorophylls (Chla612 
and Chla611) along with two lowest CT state energies, CT1 
( Chla611+∕Chla612− ) and CT2 ( Chla612+∕Chla611− ), 
which represent the diagonal elements of the blocks �dia

LE
 

and �dia
CT

 of the diabatic matrix respresentation (Fig. 3).
To quantify these values we also list the averaged LE 

and CT energies in Table 2. As can be seen from Fig. 5 and 
Table 2, the LE energies are minimally effected (the lowest 
Qy2 is red-shifted by ≈ 0.02 eV) by the changed orienta-
tion and reduction of dimer distance in the chromophore 
pair. These energies are also relatively robust with respect 
to the smaller geometry fluctuations occuring between dif-
ferent snapshots with a variance of only 0.001 eV. The CT 
(CT1 and CT2) energies on the other hand show both a much 
larger fluctuation between snapshots and a clear decrease in 
energy going from the more distant geometries in the first 
set of snapshots to the close arrangement in the last set. 
The fluctuations of the CT energies are not unexpected as 
CT states have substantially larger reorganization energies 
than the local excitations as the Franck–Condon point is fur-
ther away from the minimum than is the case for LE states. 
Looking closer at the overall trend for these CT energies 
we note the drop in energies of both of the CT states that 
we anticipated from the earlier supermolecular analysis. We 

http://www.rdkit.org
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see in Fig. 5 both the CT energies coming down and even 
crossing the Qx line at some points. In addition we observe 
that the relative gap between the two CT states decreases 
from an average of |ΔECT| of 0.51 to only 0.07 eV. The latter 
observation can be explained by the asymmetric orienta-
tion and thereby polarization (as represented by the DRF 
embedding potentials) for CT1 and CT2 in the beginning of 
the trajectory. In the final part of the studied trajectory the 
arrangement of the chromophores is more symmetrical and 
the polarization in the CT states is more similar, thereby 
bringing the energies of these two CT states closer together. 
Still, with the absence of an exact symmetry, the two CT 
states are not fully equivalent also in this stage.

From Eq. 31, the CT1 and CT2 energies, |ΔECT| not only 
depend on the absolute energies of the charge localized 
fragments (i.e. EA+ + EB− and EA− + EB+ ) but also on their 
interaction energies ΔEint . The latter, negative, contribution 
to the CT energy is the driving force for the lowering of the 
CT energy towards the end of the trajectory. This enhances 

the mixing of the CT states with the local states and makes 
switching to an adiabatic picture by either diagonalizing the 
diabatic matrix representation or by using supermolecular 
TDDFT necessary. In the first part of the trajectory, the adi-
abatic (black) curves align well with the diabatic LE states, 
with only for the CT states that are hard to describe by den-
sity functional approximations significant deviations visible. 
For the structures from the final part of the trajectory, also 
the lowest supermolecular state is clearly below the lowest 
diabatic LE state, corroborating the influence of CT states 
in lowering this energy.

Effect of the environment on LE and CT energies In order 
to assess the effect of the protein environment on the LE 
and CT energies we repeated the calculation of LE and CT 
energies of the dimer in vacuum. Figure 6 shows the effect 
of the environment on the diabatic states in the beginning 
and at the end of the trajectory. The average site energies 
and the CT energies with and without the environment are 
shown in Table S1 in the supplementary information. We 
note that: (i) all the averaged site energies are red-shifted by 
the environment, both in the beginning and at the end of the 
trajectory, with the exception of the Qy2 and Qx2which remain 
unaltered in the beginning of the trajectory. (ii) The CT ener-
gies are most strongly influenced in the beginning of the 
trajectory, with both the CT energies shifted by the environ-
ment in opposite directions (CT1 red-shifted and CT2 blue-
shifted) thereby increasing the average gap between them. 
This effect can be explained by the asymmetric distribution 
of partial charges in the immediate proximity of both the 
chlorophylls (in particular the DPPG ligand near Chla611) 
in the beginning of the trajectory that we already mentioned 
in the preceding section. Towards the end of the trajectory, 
on the other hand, the stacked and symmetric arrangement of 
the chlorophylls with a reduced interchromophore distance, 

Fig. 5   The 4 LE and 2 CT 
diabatic states of the Chla612–
Chla611 dimer are shown for 
the initial and final (left and 
right of the split on x-axis) parts 
of the trajectory. For com-
parison we also show with black 
dotted lines the lowest six states 
obtained in a supramolecular 
calculations . All units are in 
eV. Also shown in boxes are the 
two structures of the Chla612–
Chla611 dimer from the begin-
ning (left) and end (right) of the 
trajectory

Table 2   The LE and CT energies ⟨E⟩ and their variance �2 averaged 
over the first and the last set of frames of the trajectory

The values for the geometry in the crystal are shown in the last col-
umn. All units are in eV

First50 Last50 CRYS

⟨E⟩ �
2 ⟨E⟩ �

2

Qy1 2.02 0.001 2.03 0.001 2.07
Qy2 2.01 0.001 1.99 0.001 2.02
Qx1 2.27 0.001 2.28 0.001 2.36
Qx2 2.26 0.002 2.21 0.002 2.34
CT1 2.77 0.008 2.59 0.009 2.83
CT2 3.28 0.011 2.52 0.012 3.28
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renders the two charge-separated states less sensitive to 
external perturbations. Looking at the magnitude of the 
environment shifts we conclude that overall the environ-
ment plays a minor role in determining the energies of the 
LE and CT states.

Coupling between the diabatic states

We now consider the couplings between the diabatic states 
(off-diagonal elements of �dia , see Fig. 3) that determine the 

final adiabatic picture. The off-diagonal elements in the LE 
block represent the predominantly Coulomb-like coupling 
between the local excitations which are responsible for 
Förster resonant energy transfer (Förster 1948), whereas the 
elements in the LE/CT block represent the overlap-depend-
ent couplings between the local and CT states, which play 
an equally important role in Marcus electron transfer theory 
(Marcus and Sutin 1985). We note that these LE/CT cou-
plings can describe both electron transfer between the frag-
ment LUMOs (one coupling element), as well as hole 

Fig. 6   The effect of the DRF 
environment on the 4 LE states 
and 2 CT states in the snapshots 
taken from the first and last sets 
of the trajectory (left and right 
of the split on the x-axis). Bold 
lines denote DRF environment 
and dotted lines denote vacuum 
calculation for the Chla612–
Chla611 dimer. All units are 
in eV

Fig. 7   The absolute LE/LE cou-
plings between Qy and Qx ( VQy 
and VQx ) (upper panel) and the 
LE/CT couplings correspond-
ing to hole and electron transfer 
(lower panel, see text for nota-
tions) from the first and last set 
of frames (left and right of the 
split on x-axis) of the trajectory 
are shown. All units are in eV
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transfer involving the two sets of HOMO and HOMO-1 
located on each fragment (three possibilities), excluding 
transfer between the two HOMO-1 orbitals that is of minor 
importance). Table 3 and Figure 7 show the values of all the 
relevant LE/LE and LE/CT coupling elements: between the 
two LE Qy states ( VQy

 ), the two LE Qx states ( VQx
 ), and 

between these and the two possible CT states CT1 and CT2, 
as discussed in the previous sections: VQA

y
,CT1,VQA

y
,CT2 , 

VQA
x
,CT2 , (and VQB

y
,CT1 , VQB

y
,CT2 , VQB

x
,CT1 ), where A and B are 

Chla611 and Chla612, respectively. Note that the coupling 
VQA

x
,CT1 (and VQB

x
,CT2 ) is negligible owing to the mutual 

orthogonality of the HOMO and HOMO-1 for each of the 
fragments A and B (see Eq. 40) and is not shown.

From Fig. 7 the much smaller variation for the LE/LE 
coupling compared to the LE/CT coupling stands out. The 
variation of the LE/LE coupling with the interchromophore 
distance R can be qualitatively described by an interacting 
dipole model (Liguori et al. 2015; López-Tarifa et al. 2017) 
and exhibits a ∼ R−3 (dipole–dipole) dependence. This can 
be contrasted to the exponential dependence ∼ e−�R∕2 on this 
distance that is applicable for the LE/CT coupling (Cave 
and Newton 1996). Both couplings are enhanced in the final 
part of the studied trajectory in which interchromophoric 
distances are much smaller than that in the initial frames.

Effect of environment on the couplings The environ-
mental effect on the LE/LE and the LE/CT couplings are 
shown in Fig. 8 as differences in the absolute couplings. 
Table S2 of the supplementary information also lists the 
averaged couplings in vacuum and in DRF environment. In 
case of non-orthogonal orbitals, the LE/CT couplings are 
not only determined by the different overlap terms, but also 
by the supramolecular KS orbital energies (see section on 
calculation of �dia

LE−CT
 block). The variations of these LE/

CT couplings upon inclusion of the environment are a direct 
consequence of the effect of the environment on both of 
these quantities. A further detailed analysis of this effect 
is beyond the scope of this current work. For the LE/LE 
couplings we see both for the Qy1 , Qy2 and Qx1 , Qx2 a more 
significant effect than seen previously for their energies. The 
increase in coupling upon including the environment effects 
(so relative to a vacuum treatment) can be explained by the 

Table 3   The average of the absolute LE/LE and LE/CT couplings 
⟨E⟩   and their variance �2 averaged over the first and the last set of 
frames of the trajectory

The values for the geometry in the crystal are shown in the last col-
umn. All units are in eV. See text for notations

First50 Last50 CRYS

⟨�V�⟩ �
2 ⟨�V�⟩ �

2

VQy 0.021 6.2 × 10−6 0.029 3.1 × 10−5 0.026
VQx 0.009 2.8 × 10−6 0.017 1.6 × 10−5 0.005
VQyA∕CT1

0.009 4.3 × 10−5 0.014 1.2 × 10−4 0.005
VQyA∕CT2

0.019 1.8 × 10−4 0.054 1.6 × 10−3 0.019
VQxA∕CT2

0.017 2.2 × 10−4 0.062 2.0 × 10−3 0.015
VQyB∕CT1

0.019 1.9 × 10−4 0.055 1.6 × 10−3 0.020
VQyB∕CT2

0.009 4.5 × 10−5 0.014 1.2 × 10−4 0.007
VQxB∕CT1

0.015 9.1 × 10−5 0.128 3.4 × 10−3 0.014

Fig. 8   The difference of the LE/
LE couplings involving Qy and 
Qx ( VQy and VQx , upper panel) 
and LE/CT couplings (lower 
panel, see text for notations) 
between DRF and vacuum 
( VDRF − VVAC ), ΔCouplings , for 
the first and last set of frames 
(left and right of the split on 
x-axis) of the trajectory are 
shown. All units are in eV
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increase of the magnitude of the transition dipole moments 
of all the local excitations. ( Qy1 , Qy2 and Qx1 , Qx2 ; see Fig. 
S1 in supplementary information). This explicit treatment of 
the environment makes it possible to avoid the often applied 
scaling of transition dipole moment to achieve better agree-
ment with experimental data. As such scaling does not pro-
vide additional insights we do not apply this in the present 
work. We note that our results here are in reasonable agree-
ment with the recent works of Sláma et al. (2020) with minor 
differences arising from the different levels of theory and 
MD simulations used in both works. For comparison of the 
LE/LE couplings using the FDEc-TDA approach for the low-
est Qy bands to other methods, we refer to López-Tarifa et al. 
(2017) as well as earlier work (Scholes et al. 1999; Frähmcke 
and Walla 2006; Madjet et al. 2006; Kenny and Kassal 2016; 
Müh et al. 2010; Chmeliov et al. 2015; Duffy et al. 2013) on 
treating these couplings in the most efficient way.

The adiabatic picture

With the energy gap between the LE and the CT states 
decreased and their coupling increased at shorter distances 
(the last part of the trajectory), we expect to see an increased 
mixing between the CT states with the LE states. It had been 
shown previously from a disordered averaged exciton model, 
that such coupling of CT states to LE states can strongly 
modulate the optical spectra (Cupellini et al. 2018). Such a 
pronounced effect of the mixing of the CT states with the 
LE states at the end of the trajectory can indeed be seen 
when switching to the adiabatic picture. Solving for the 
generalized eigen value problem (Eq. 9) in the basis of the 
six diabatic states ( Qy1,Qx1,Qy2,Qx2, CT1 and CT2) for the 
first and last set frames of the trajectory, shows an average 
red-shift of about 0.02 eV of the lowest state. This state 
acquires clear mixed LE/CT character towards the end of the 
trajectory which is in qualitative agreement with the earlier 
supermolecular analysis. This indicates that the composite 
manner of constructing the matrix that is to diagonalized is 
adequate. To compare better with the supermolecular picture 
we show both the new set of adiabatic states as well as the 

six lowest supermolecular excitations in Fig. 9. Like already 
seen in the diabatic picture (Fig. 5), where there is little 
interaction between the CT states and the local states, the 
lowest lying adiabatic states follow closely to those of the 
supramolecular states and retain their local character. The 
two highest lying adiabatic and supramolecular states on the 
other hand, represent states which are predominantly CT in 
character, and get significantly different energies in the two 
approaches. The supermolecular ones are hereby likely to be 
to low in energy due to flaws in the treatment of CT states 
with the available density functional approximations where 
the adiabatized states of the current approach could be too 
high due to missing couplings with states at higher energies.

Nonetheless, this study provides a qualitative assessment 
of the importance of accounting for CT states and electron 
delocalization when studying the energy landscape of pig-
ment-protein complexes, particularly in the case of strongly 
interacting pigments. Furthermore, it shows how pigment re-
organizations following protein conformational changes can 
greatly affect the spectral properties. This spectral tunability 
is fundamental for LHCs to be able to switch between dif-
ferent functional states. Moreover, an improved knowledge 
of the nature of these dimer excitations in different orienta-
tions can provide hints to understand the effects of artificial 
modifications of the Chla611–Chla612 binding pocket on 
the overall absorption spectrum of the complex.

Conclusion

In this work, we looked into changes in energies of the low-
lying states of the chlorophyll dimer Chla611–Chla612 
induced by a conformational change of the dimer in the 
highly disordered terminal emitter domain reported previ-
ously (Liguori et al. 2015). In order to get a better insight 
into these states, we elucidate the effect of this conforma-
tional change on the LE and CT state energies of the dimer 
along with their corresponding couplings using subsystem 
DFT calculations on snapshots from a �s MD simulation 
generated previously. Subsystem DFT provides an alternate 

Fig. 9   The six adiabatic states 
labelled E1–E6 are shown in 
bold in increasing order of their 
energy from the beginning and 
the end (left and right of the 
split on x-axis) of the trajectory. 
Also shown in dotted lines are 
the lowest six supramolecular 
states. All units are in eV
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localized diabatic approach as compared to the delocalized 
picture arising from supramolecular DFT, providing an 
unambiguous identification of the local and CT states. We 
find that the re-orientation of Chla611–Chla612 dimer upon 
equilibration brings down the energies of the Chl–Chl CT 
states, causing an increase in the mixing of the CT and LE 
states (which remain almost unaffected), accompanied by an 
increased coupling between them. This, in combination with 
an increase in the coupling between the local states them-
selves, facilitated by an reduced interchromophoric distance, 
gives rise to red-shifted low-lying mixed excitonic/CT states. 
Previous studies have shown that such mixing of low-lying 
charge transfer states with the Qy band can be operative in 
the the Chla band (Romero et al. 2009; Ramanan et al. 2017; 
Novoderezhkin et al. 2016; Chmeliov et al. 2016) and are 
indicative of the so-called ‘red-emitting states’ in the fluo-
rescence spectra as observed in aggregates, supported by 
femtosecond Transient Absorption(TA) kinetics and Stark 
spectroscopy studies (Kell et al. 2014; Krüger et al. 2010; 
Müller et al. 2010). Moreover, Chl–Chl CT states have also 
been shown to play an important role in regulating energy 
flow through antenna complexes and create energy sinks 
in the reaction centers (RC) of photosynthetic complexes 
(Madjet et al. 2009; Raszewski et al. 2008; Novoderezhkin 
et al. 2005, 2007). Our study therefore provides further evi-
dence that low-lying CT states, prompted by a favourable 
conformational change of the chlorophyll dimer, can play 
an pivotal role in regulating light harvesting and can create 
energy sinks facilitated by an increased excitonic interaction.
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