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Proteins and RNAs are fundamental parts of biological systems, and their interactions af-
fect many essential cellular processes. Therefore, it is crucial to understand at a molecular
and at a systems level how proteins and RNAs form complexes and mutually affect their
functions. In the present mini-review, we will first provide an overview of different mass
spectrometry (MS)-based methods to study the RNA-binding proteome (RBPome), most of
which are based on photochemical cross-linking. As we will show, some of these meth-
ods are also able to provide higher-resolution information about binding sites, which are
important for the structural characterisation of protein–RNA interactions. In addition, classi-
cal structural biology techniques such as nuclear magnetic resonance (NMR) spectroscopy
and biophysical methods such as electron paramagnetic resonance (EPR) spectroscopy and
fluorescence-based methods contribute to a detailed understanding of the interactions be-
tween these two classes of biomolecules. We will discuss the relevance of such interactions
in the context of the formation of membrane-less organelles (MLOs) by liquid–liquid phase
separation (LLPS) processes and their emerging importance as targets for drug discovery.

Introduction
Protein–RNA interactions are involved in many cellular processes, including, but not limited to RNA
maturation, stability, translation, and host defence [1] (Figure 1). RNA-binding proteins (RBPs) play a
crucial role in these fundamental cellular functions. Consequently, mutations that lead to aberrant RBPs
or RBP-binding sites can have severe pathological implications. A typical eukaryotic cell contains tens to
hundreds of thousands of protein and RNA species, whose dynamic interactions generate a huge number
of transient and stable protein–RNA complexes. In the past, the number of existing RBPs has been signifi-
cantly underestimated [1–3]. However, the recent improvements in RNA sequencing and mass spectrom-
etry (MS) have facilitated the identification of RBPs from individual samples and up to the proteome-wide
scale, defining the RNA-binding proteome (RBPome) [2,4].

Approaches to study the RBPome
Protein–RNA interactions can be studied from two angles, either by identifying proteins that are bound to
a specific RNA or by identifying all RNAs that are bound to a specific protein. Nowadays, most methods
are based on UV cross-linking (XL) of such ribonucleoproteins (RNPs) coupled to RNA sequencing or
MS. Despite an increasing number of methodologies to study RBPs by MS, most follow a very similar,
three-step strategy. In brief, the sample of interest is cross-linked by applying irradiation with UV light at
254 nm to covalently link RNA and protein at their contact site at virtually zero length distance. In a second
step, the cross-linked molecules (RNA–protein conjugates or adducts) are enriched. This enrichment can
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Figure 1. Examples for protein–RNA interactions in the cell

(1) Spliceosome, (2) ribosome, (3) miRNA-binding proteins, (4) RBPs related to viral replication, and (5) oligomers and aggregates

of RBPs.

be achieved by many different means and will be discussed in more detail below. Finally, the enriched sample is further
purified and cleaned for MS analysis.

In the last decade, many research groups have successfully developed protocols based on UV cross-linking MS to
not only study single RNPs but also the RBPome of different organisms and cell types. Those methods can be divided
into six main groups based on their enrichment strategy of RNA–protein or RNA–peptide conjugates (Figure 2):

1. The family of RNA interactome capture (RIC) protocols comprises a variety of more specialised workflows (vRIC
[5], qRIC [6], eRIC [7], cRIC [8], RBDmap [9], serIC [10]) as well as peptide cross-linking and affinity purification
(pCLAP [11]), which are all based on the enrichment of poly-adenylated RNA with oligo(dT) beads. This step is
highly biased towards mRNAs, but allows stringent enrichment conditions due to the very specific and strong
interaction between polyA tails and the beads.

2. RICK (RNA interactome using click chemistry) and CARIC (click chemistry-assisted RIC) utilise a non-native
base, 5-ethynyluridine (5-EU) [12,13]. 5-EU is incorporated in newly transcribed RNA, modified by azide-biotin
in a click chemistry reaction, and can be pulled down with streptavidin beads. Due to the high-affinity interaction
between biotin and streptavidin, this approach also allows for stringent enrichment conditions.

3. RNAXL further enriches for RNA–peptide conjugates with titanium dioxide solid-phase extraction after UV
cross-linking and protein digestion with trypsin. Since the enrichment of RNA conjugates occurs at the peptide
rather than the protein level, such a sample can identify the binding position of RNA and protein at single amino
acid resolution as will be discussed in the next chapter [14].

4. The RBR-ID method does not include a dedicated enrichment step, but compares peptide intensities between
cross-linked samples prepared with 4-thiouridine(4-SU)-labelled RNA and non-cross-linked samples. The mass
shift introduced by covalently bound RNA will lead to a decrease in signal for successfully cross-linked peptides
between the two samples [15].

5. 2C (silica-based solid-phase extraction), TRAPP (total RNA-associated protein purification), and RBS-ID utilise
silica beads/membranes for nucleic acid enrichment [16,17].

6. The family of liquid–liquid phase extraction methods – orthogonal organic phase separation (OOPS),
phenol–toluene extraction (PTex), and XRNAX (and recently developed derivatives, e.g., PPE, photoCAX, and
targeted RNA–protein identification using OOPS (TROOPS)) – isolate protein–RNA conjugates based on their
physiochemical properties [18–23]. Protein–RNA conjugates share properties of RNA and protein. During
liquid–liquid phase extraction in an aqueous-organic (e.g., phenol/chloroform) system, cross-linked material will
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form a layer in between the organic and aqueous phase. This interface layer can be extracted and further puri-
fied. A recently developed method that might be interesting, not from a systems-wide, but from a biochemical
perspective is TROOPS. TROOPS is based on a previously published liquid–liquid phase extraction method to
generate an intermediate, RBP-RNA-XL enriched sample that is used as input for a pulldown of a cross-linked
RNA of interest [23].

Differences between existing protocols summarised above and methodological details of MS analysis are de-
scribed elsewhere in detail [24–27], including tables with aggregated information about the above-mentioned meth-
ods [26,27].

Although UV-XL-MS is currently the gold standard to study RBPomes, it has some major disadvantages to consider,
including low cross-linking efficiency (estimated at <5%) and differences in reactivity depending on protein and
nucleotide sequences, the relative orientation of amino acid side chains and nucleobases at the interaction site [28,29].
To overcome the low cross-linking efficiency of native RNA, a range of chemically modified bases, most prominently
4-SU, have been introduced; they are more photoreactive and significantly boost cross-linking efficiency. Another
strategy that tries to overcome nucleobase preferences and the potentially low sample penetration of UV light uses
chemical cross-linking reagents. These are often bifunctional chemicals that react with peptides on the one end and
RNA on the other end. A comprehensive list of chemical cross-linkers can be found in the review by Fabris and
co-workers [30].

From RBPome to structural read-out
In the past decade, the characterisation of RBPomes deriving from different samples and species has led to many
insights into the world of RNA biology. RBPome-wide studies have catalogued an inventory of hundreds to thou-
sands of RBPs in different species (4300 RBPs in human) (https://rbpbase.shiny.embl.de/) [2,4]. These data enable
the collection of broad information about RBPs, frequently revealing insights into their structural organisation, like
for instance the lack of canonical RNA-binding domains (RBDs) and the binding of RNA to unstructured regions in
proteins [9]. Apart from that, many proteins that have been identified in RBPome-wide studies do not have a function
known to be involved in RNA biology. Beckmann et al. named this group of RBPs ‘enigmRBPs’ [4], which includes
many metabolic enzymes, particularly in the glycolysis pathway [31,32].

Although protein abundance is an important parameter in the cellular context, not only protein quantity but also
protein localisation, post-translational modifications (PTMs) and conformational changes are vital for correct protein
function. In the case of RBPs, binding to their target RNA and associated changes in, e.g., protein conformation add
an additional layer of information that needs to be disentangled in order to understand a protein’s function or an
observed phenotype.

Multiple high-throughput approaches that utilise UV cross-linking to characterise the interaction between
RNA and protein molecules down to single amino acid resolution have been described in the literature.
RNA-sequencing-based approaches focus on extracting bound RNA from RNPs and perform sequencing on the re-
covered RNA. Regions that bind to the protein(s) will show reduced coverage by sequencing due to covalently linked
amino acids at the binding site. Such differences in RNA coverage can be used for RNA footprinting, but require access
to sequencing infrastructure. Trendel et al. proposed another approach that can be directly applied to MS-generated
datasets. Their method takes advantage of the open modification search (OMS) strategy, which can identify virtu-
ally any peptide modification that results in a mass shift. An example for a widely used OMS software is MSFragger
[33]. By treating RNA residues as a peptide PTM, OMS does not only identify whether a peptide is cross-linked to
RNA but it also proposes the RNA composition (although not necessarily the correct nucleotide order). Additional
postprocessing tools such as PTM-Shepherd can in some cases narrow down the binding site to a single amino acid
[34]. Similarly, RBS-ID can precisely identify the RNA-binding sites at a single amino acid resolution by perform-
ing a complete digestion of the cross-linked RNA using hydrofluoric acid. This strategy focuses on uridine as the
most commonly cross-linked base and has identified almost 2000 binding sites at single amino acid resolution with
conventional software (‘closed search’) [35].

Among the specific software tools for RNA cross-linking data, Urlaub and co-workers developed RNPXL [14]. For
the identification of cross-linking sites, it is necessary to enrich peptide–RNA conjugates rather than protein–RNA
conjugates. Metal oxides such as titanium dioxide bind compounds containing phosphate groups (e.g., on the RNA
backbone or on phosphorylated amino acid) in a pH-dependent manner [36]. A similar strategy is employed by
iTRAPP, which relies on a two-step enrichment protocol, TRAPP and TiO2, and the cross-linking search engine called
xiSEARCH [16]. RBDmap is a modified version of RIC that applies sequential digestion and polyA-tail enrichment
of the cross-linked protein–RNA complexes to determine the region of the protein that is involved in RNA binding
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Figure 2. The protein–RNA UV cross-linking workflow

Schematic overview of the three steps – cross-linking, enrichment, and postprocessing – of an RBPome-wide UV cross-linking MS

experiment. Cross-linking: RNPs can be cross-linked directly in cells (as depicted) using UV light, most commonly at 254 nm for

native RNA, at 365 nm for 4-SU modified RNA or – less commonly – using chemicals. Note that cross-linking may also be performed

in solution on lysates or purified complexes. Enrichment: this step is highly variable between protocols and can be split into six

different modes of enrichment as described in the text. An alternative classification of protocols may be based on the input and/or

output material for enrichment, which can be either protein–RNA (cross-links are represented as yellow stars) or peptide–RNA

conjugates (as highlighted above the boxes). Although helpful, such a classification is practically more difficult to make, as RNA

and protein digestion steps can be sequential or uncoupled. Postprocessing: postprocessing of enriched conjugates includes

digestion with proteases and RNases (this step is dependent on the protocol used), clean-up of the digestion products, data

acquisition by liquid chromatography tandem mass spectrometry (LC-MS/MS) and data analysis. Data analysis may be performed

with conventional MS software or specialised XL-MS software tools (e.g., RNPXL) [14].

[9]. Binding positions at a peptide level are also defined by pCLAP and RBR-ID methods [11,37]. Although these
studies only identified binding regions in the small fraction of RBPs that are known today, they highlight the impact
of UV cross-linking MS on structural biology, as in some cases 50% of the binding sites were found in intrinsically
disordered regions (IDRs), which are difficult to model by conventional structural methods (discussed further below)
[9].

A dedicated workflow that allows the characterisation of RNA–protein interactions of individual complexes or
complex subunits is CLIR-MS (cross-linking of isotope-labelled RNA coupled to MS) [38]. Similar to RNPXL,
CLIR-MS is based on the enrichment of peptide–RNA conjugates with metal oxides and allows the identification
of RNA–protein-binding interfaces down to the single amino acid level. In addition, incorporation of stable isotopes
at specific positions or regions of the RNA sequence allows the determination of the binding sites on the RNA. Thus,
CLIR-MS is very well suited for follow-up studies of proposed RBPs without additional structural information, if
recombinant protein is available.

CLIR-MS has initially been used to pinpoint interaction sites between PTBP1 and one of its natural RNA targets, a
part of the internal ribosomal entry site of encephalomyocarditis virus [38]. Recent applications include interactions
between the SARS-CoV-2 nucleocapsid protein and s2m element, part of the viral RNA genome (discussed below)
[39], and the RNA-binding properties of the ubiquitin-like domain of SF3A1 [40].
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Studying the RBPome in a disease context
Based on their involvement in cellular housekeeping processes, mutated RBPs might be expected to cause system-wide
effects. However, changes in structure and function of RBPs can also induce tissue-specific effects, which make them
interesting (tissue-specific) therapeutic targets for drug discovery [2].

So far, few RBPome-wide studies have addressed the impact of tumorigenesis on the RBPome or vice versa.
Mestre-Farràs et al. performed RIC experiments on both non-cancerous and metastatic cell lines and found that the
RBPome significantly changes its RNA-binding activity in cancerous cell lines [41]. Specifically, the authors showed
that RNA binding is required in the case of PDIA6, an ER-lumen chaperone, for its tumorigenic properties. Inter-
estingly, PDIA6 was found to bind to RNA via a C-terminally located IDR. Other studies have exploited available
RBPome datasets partially generated by UV cross-linking MS to find cancer-related RBPs or biomarkers for multiple
cancer types by large-scale bioinformatic analyses [42–44]. Although these studies only make use of the experimen-
tally determined RBP annotations, they highlight the potential of RBPome data for hypothesis generation and target
selection for further functional studies.

The effect of viral infections on the host RBPome has also been investigated in a series of studies [5,8,45]. Modified
protocols of RIC (cRIC and vRIC) were applied to show that approximately 25% and 33% of the host cell RBPome
undergo remodelling upon infection with SINV or SARS-CoV-2, respectively. Comparison of the RNA interactomes
between viruses and host cells revealed a broad overlap of 60%, suggesting that different viruses may share common
host RBP targets [5,8]. Additionally, Kim et al. developed VIR-CLASP, another method to study RBPome interactions
between viral RNPs and the host cell [45].

Future large-scale RNA interactome screens may thus offer candidate RBPs as new therapeutic targets in the on-
cology and infectious disease areas, among others. However, applications towards drug discovery require detailed
structural characterisation of target proteins and protein–RNA complexes. This cannot be achieved by MS alone, but
requires input from structural biology and biophysics techniques, which will be discussed in the following.

Structural biology and biophysics of RBPs
The majority of RBPs possess a modular architecture, with the key components being globular RBDs, such as RNA
recognition motif, K homology domain, zinc finger, and others [46,47]. Each RBD is characterised by its distinct
specificity and affinity in the RNA-binding process [48]. As some RBD types are characterised by a low RNA sequence
specificity (vide cold-shock domain [49]), they often co-occur (along with high specificity domains) in order to
enhance the specificity and affinity of RNA binding [46]. These domains are flanked and connected by linkers that
are often characterised by a high degree of conformational flexibility, and thus referred to as IDRs. Longer linkers
allow the independent recognition of more than one RNA motif by the connected domains, while shorter linkers can
mediate joint RNA binding across domains [46,48]. However, in recent years, it has become clear that some linkers
may be directly involved in RNA interactions on their own [50–52]. Upon RNA binding, the disordered linker may
adapt its structure via induced folding, called disorder-to-order transition [52]. This can result in a rearrangement and
proper positioning of two RBDs flanked by transitioning linkers and thus the formation of a larger RNA interaction
surface of a protein [53].

IDRs show poor RNA sequence specificity, and their interaction is thought to be electrostatically driven [54], as
they often consist of hydrophilic residues and carry a large net charge [52]. Frequently, they also feature repeats of
arginine/serine (RS repeats), arginine/glycine (RG repeats), short linear motifs, low complexity sequences, and elec-
tronegative clusters [46,52,55]. These distinctive patterns reduce the informational content of the linker sequence;
however, they do play a role in the variety of biochemical and physiological processes, such as RNA metabolism, bind-
ing, folding, and transportation [52,56]. IDRs are also rich in PTM sites and are therefore essential for the regulation
and control of many cellular processes. In RBPs, arginine (methylation), tyrosine, and serine (phosphorylation) are
the most frequently modified amino acids. For example, it was shown that methylation of DDX4 and FUS/TLS RBPs
reduced the formation of membrane-less organelles (MLOs) by these proteins [57,58]. Moreover, long homorepeats
of single amino acids may be present, such as poly-A or poly-G, poly-K/R or poly-N/Q [59]. While being involved
in many physiological events, both low complexity domains (LCDs) and long homorepeats have also been found to
facilitate liquid–liquid phase separation (LLPS) events [48,52,59,60]. As a result, MLOs are formed as higher-order
assemblies of RBPs and RNA due to the coacervation of protein–RNA assemblies from the surrounding solvent [61].

These large biomolecular condensates (Figure 3) can be characterised as thermodynamically reversible, highly dy-
namic, and liquid-like, as they are prone to dissociate upon increase in temperature or salt concentration, pH changes,
and can undergo fusion and shear force deformation [54,62]. The membrane-less architecture of liquid compartments
that are separated from the cyto- or nucleoplasm allows a rapid and reversible exchange of their content with the
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Figure 3. Liquid-liquid phase separation of RNA-binding proteins

(A) Schematic representation of coexisting, reversible droplet-like (condensed), and soluble (dispersed) phases in the cytoplasm.

(B) Prediction of disordered protein regions of the RBP PTBP1. Identified regions (highlighted in grey) are mainly located in flexible

linkers, flanking RBDs. Generated using IUPred3 [65]. (C) A summary of commonly exploited methods to study LLPS phenomena

involving RBPs in vitro.

plasma surrounding and provides a distinct microenvironment and physical constraints [48,54]. Typical MLOs con-
sisting of RBPs and RNA include cytoplasmic processing bodies (P-bodies, PBs), stress granules (SGs), and P-granules,
but also nucleoplasmic Cajal bodies, nucleoli, nuclear speckles, and paraspeckles [48,52]. MLOs are involved in a myr-
iad of cellular processes, ranging from protein synthesis, RNA metabolism, transportation, and regulation to stress
response and cell signalling [52,63]. They form rapidly under stress conditions (temperature, pH, starvation) as a
response to environmental stimuli. Furthermore, MLOs were shown in vitro to undergo a spontaneous transition to
more solid-like structures, such as hydrogels and fibrils [54,64].

The mechanisms of formation of liquid droplets remain largely unknown. So far, the majority of studies pre-
dominantly put an emphasis on the role of proteins in LLPS, neglecting the RNA contribution. As it was previ-
ously mentioned, amino acid sequence motifs were shown to govern the coacervation of assemblies, for example,
tyrosines and arginines in FUS [57] or aromatic residues in hnRNPA1 [66]; unspecific hydrophobic, electrostatic,
and hydrogen-bonding interactions were also found to contribute [66,67]. Interestingly, glycine-rich motifs enhance
fluidity of liquid droplets while glutamine and serine residues promote their hardening [57]. On the other hand, RNA
itself was found to undergo LLPS on its own and serves as a nucleation core in the formation of YB-1-rich SGs.

Biophysical properties of coacervated structures largely depend on RNA characteristics such as length, sequence,
and secondary structure [68]. So far, LLPS has been studied in vitro on several RBPs, such as DDX4, hnRNPA2,
CAPRIN1, FUS, TDP-43, TIA-1 [52,66], DHH1 [69], PTBP1 [70], SARS-CoV-2 nucleocapsid protein [67], and many
others. As the concept of LLPS gained widespread attention over the last few years, six databases collecting the reports
of proteins and RNAs undergoing phase separation have been established, namely LLPSDB, PhaSePro, PhaSepDB,
DrLLPS, RNAGranuleDB, and RNAPhaSep [68].

Because of the dynamic and conformationally flexible behaviour of LLPS assemblies, the proper choice of research
methods for characterising them remains non-trivial. In in vitro studies, nuclear magnetic resonance (NMR) spec-
troscopy has taken the lead as it provides detailed information on structure, transient interactions, and molecular
motions across different timescales, even of highly dynamic macromolecular regions [61]. In comparison, other
structural biology techniques like cryoelectron microscopy and X-ray crystallography have the disadvantage of pro-
viding only a static picture of analysed molecules and a poor insight into disordered regions of proteins [69]. Notably,
NMR-based experiments elucidated the importance of unspecific and transient interactions between proteins and
RNAs (for FUS, DDX4, hnRNPA1), the role of specific interactions and dimerisation (for TDP-43) and PTMs (for
TDP-43, FUS family proteins, hnRNPA2) in liquid droplet formation [57,60,61,66]. NMR methods are, however,
limited by protein size, show increased redundancy due to the presence of tandem repeats and provide little insight
into the overall shape and mobility of LLPS droplets [71]. Electron paramagnetic resonance (EPR) spectroscopy is,
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in contrast, not limited by these factors. So far, it has been successfully used to determine the intramolecular dis-
tance distribution in liquid droplets of FUS [72] and the role of oligomerisation in phase separation of TDP-43 [73].
EPR-derived detailed structural information requires cryogenic temperatures; however, this raises concerns about
possible structural changes of formed droplets and their macromolecular components [66].

Various fluorescence techniques, such as anisotropy, quenching, Förster resonance energy transfer (FRET) or
steady-state and time-resolved measurements, have been widely utilised to provide insight into many LLPS features,
like formation, dynamics, and compactness of FUS and TDP-43 droplets [57,60,74]. Altogether, these spectroscopic
techniques provide complementary information about protein–RNA interactions, especially for dynamic and often
transient LLPS systems, contributing to further exploitation of these interactions and their manipulation in biological
systems.

In addition, MS-based methods can deliver information on interactions within droplet-like condensates, taking
into account those driven by IDRs as well. Cross-linking MS of protein–protein interactions has been successfully
exploited so far in a few cases of, e.g., FUS and SARS-CoV-2 nucleocapsid protein [75–77], while applications of
protein–RNA cross-linking in connection with LLPS have not yet been reported in the literature.

RBPs and drug discovery
Drug development relies on detecting compounds that can specifically bind to target molecules and may be potential
candidates for development as a medical treatment. Benchmark techniques to study molecules that may also inhibit
or interfere with protein–RNA interactions specifically include NMR-based screening, X-ray crystallography, and
structural MS. In addition, computational techniques have been proven to be an excellent tool, reducing the time and
cost of drug discovery by predicting the interactions between a protein and a ligand. Finding the suitable ligand is
based on a virtual screening of molecular libraries, which contain data obtained by the above-mentioned traditional
techniques. High-throughput screening is performed based on algorithms that use protein properties and binding site
information to select the suitable molecules with desired protein specificity and affinity [78,79]. In addition to this,
molecular-docking simulations allow protein–ligand interaction predictions at the structural and thermodynamic
level [80]. Li et al. moved one step further by introducing MONN, a deep-learning tool, which explores the mecha-
nisms behind protein–ligand interactions and predicts the binding sites between the two molecules [81]. However,
despite the recent advances in bioinformatics, certain features of interactions still need to be further explored in order
to obtain reliable computational data, such as including flexible protein regions in high-throughput docking or in-
cluding protein–ligand-binding kinetic rate calculations [82]. Combining experimental data, including cross-linking
data in the form of distance restraints, might be a particularly promising direction to overcome the deficiencies of
purely computational methods. This was recently shown for the SARS-CoV-2 nucleocapsid protein in complex with
the viral RNA element, s2m [39] (Figure 4).

As mentioned above, RBPs regulate various biological functions of RNA and vice versa; not only in physiological
but also in disease-affected pathological conditions, and can be related to many human diseases, such as cancer,
autoimmune diseases, neurodegenerative and cardiovascular diseases, as well as viral infection and virus pathogenesis
[83–88]. Consequently, RBPs could be potential therapeutic targets for drug development [89]. However, RNPs are
conformationally highly dynamic systems, which pose many challenges for drug discovery. Strategies to approach
this assignment could be developed based on three objectives:

• Drugs that directly target protein–RNA interactions. These could include compounds that react either with
the protein or with the RNA molecule by accessing their binding sites and blocking protein–RNA interactions
[89–91], as exemplified by recent work on the N protein of SARS-CoV-2 (Figure 4).

• Drugs that render the protein or the RNA dysfunctional. N protein, for instance, plays a key role in the life cycle
of the virus and therefore inducing N aggregation could inhibit viral replication [92,93].

• Drugs that can decrease the levels of pathological protein aggregates as in the case of neurodegenerative diseases
[84].

Furthermore, the exact mechanism on which the drug’s action is based on should be fully understood and it should
ideally remain an irreversible process. Cell permeability, efficient drug delivery, and tissue distribution are some drug
characteristics that should be taken into consideration when a drug is designed [84,94,95]. Additionally, given that
delivering the drug to the desired organ or tissue can be challenging, the use of artificial intelligence and computer
modelling seems to be a way to address these issues [96]. All of the factors are particularly challenging when targeting
the RNA part of protein–RNA interactions.
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Figure 4. Fragment screening to find inhibitors for the interaction between SARS-CoV-2 nucleocapsid protein and the s2m

element of the viral RNA

A computational model of the protein–RNA complex was generated based on information obtained from CLIR-MS and NMR spec-

troscopy (left), and small-molecule fragments were identified that bind to either the protein (shown here on the right) or the RNA

part of the complex. Reproduced from [39].

Conclusions
As we have shown, a diverse set of experimental and computational tools exists to characterise the interactions be-
tween proteins and RNA. MS-based methods have seen an enormous growth in recent years, taking advantage of the
high sensitivity of this method and its ability to deal with samples of high complexity. However, it is apparent that
other methods will continue to play a crucial role to obtain a comprehensive picture of the protein–RNA interactome.
We believe that the integration of different methods will soon provide us with a better understanding even of com-
plex phenomena such as LLPS processes in vitro and in vivo. This should form the basis for further biological and
biomedical discoveries, including new directions towards the treatment of diseases.

Summary
• Cross-linking methods in combination with MS detection have emerged as a key player to char-

acterise individual protein–RNA complexes and the RBPome.

• MS-based methods are complementing structural biology and biophysical techniques to study
protein–RNA interactions.

• An increased understanding of the role of protein–RNA interactions in health and disease suggests
that an integration of MS- and non-MS-based techniques will provide crucial insights into funda-
mental biological processes such as LLPS and a new strategy for drug discovery target selection
and characterisation.
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