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Summary
Background Observational studies have investigated the effect of serum lipids on kidney function, but these findings
are limited by confounding, reverse causation and have reported conflicting results. Mendelian randomization (MR)
studies address this confounding problem. However, they have been conducted mostly in European ancestry in-
dividuals. We, therefore, set out to investigate the effect of lipid traits on the estimated glomerular filtration rate
(eGFR) based on serum creatinine in individuals of African ancestry.

Methods We used the two-sample and multivariable Mendelian randomization (MVMR) approaches; in which
instrument variables (IV’s) for the predictor (lipid traits) were derived from summary-level data of a meta-analyzed
African lipid GWAS (MALG, n = 24,215) from the African Partnership for Chronic Disease Research (APCDR)
(n = 13,612) & the Africa Wits-IN-DEPTH partnership for Genomics studies (AWI-Gen) dataset (n = 10,603). The
outcome IV’s were computed from the eGFR summary-level data of African-ancestry individuals within the
Million Veteran Program (n = 57,336). A random-effects inverse variance method was used in our primary
analysis, and pleiotropy was adjusted for using robust and penalized sensitivity testing. The lipid predictors for
the MVMR were high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and
triglycerides (TG).

Findings We found a significant causal association between genetically predicted low-density lipoprotein (LDL)
cholesterol and eGFR in African ancestry individuals β = 1.1 (95% CI [0.411–1.788]; p = 0.002). Similarly, total
cholesterol (TC) showed a significant causal effect on eGFR β = 1.619 (95% CI [0.412–2.826]; p = 0.009).
However, the IVW estimate showed that genetically predicted HDL-C β = −0.164, (95% CI = [−1.329 to 1.00];
p = 0.782), and TG β = −0.934 (CI = [−2.815 to 0.947]; p = 0.33) were not significantly causally associated with the
risk of eGFR. In the multivariable analysis inverse-variance weighted (MVIVW) method, there was evidence for a
causal association between LDL and eGFR β = 1.228 (CI = [0.477–1.979]; p = 0.001). A significant causal effect of
Triglycerides (TG) on eGFR in the MVIVW analysis β = −1.3 ([−2.533 to −0.067]; p = 0.039) was observed as well.
All the causal estimates reported reflect a unit change in the outcome per a 1 SD increase in the exposure. HDL
showed no evidence of a significant causal association with eGFR in the MVIVW method (β = −0.117 (95% CI
[−1.252 to 0.018]; p = 0.840)). We found no evidence of a reverse causal impact of eGFR on serum lipids. All our
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sensitivity analyses indicated no strong evidence of pleiotropy or heterogeneity between our instrumental variables for
both the forward and reverse MR analysis.

Interpretation In this African ancestry population, genetically predicted higher LDL-C and TC are causally associated
with higher eGFR levels, which may suggest that the relationship between LDL, TC and kidney function may be U-
shaped. And as such, lowering LDL_C does not necessarily improve risk of kidney disease. This may also imply the
reason why LDL_C is seen to be a poorer predictor of kidney function compared to HDL. In addition, this further
supports that more work is warranted to confirm the potential association between lipid traits and risk of kidney
disease in individuals of African Ancestry.

Funding Wellcome (220740/Z/20/Z).

Copyright © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Research in context

Evidence before this study
A plethora of observational and/or epidemiological studies
have reported inconsistent associations between serum lipids
and kidney function. Drawing causal inferences from such
studies is limited due to confounding, possible reverse
causation, and other biases. Mendelian randomization studies
which can infer such causality while limiting non-heritable
environmental confounders have majorly been conducted in
European-ancestry populations. Most of these findings have
limited generalizability in African ancestry individuals.

Added value of this study
We employed univariable and multivariable Mendelian
randomization methods and revealed evidence of a causal
association between serum lipids and estimated glomerular
filtration rate based on serum creatinine among individuals
from continental Africa. The unexpected positive causal

association between bad cholesterol (LDL and TC) suggests a
possible U-shaped association between serum lipids and
kidney function which should be given further attention by
future investigators.

Implications of all the available evidence
Our findings support a causal association between lipid traits
and kidney function in continental Africans. However, due to
the unexpected causal association observed in this
population, our findings warrant future investigations with
bigger sample size and individual-level data access to further
confirm true causality between serum lipids and kidney
function. We also caution generalizing findings from African
ancestry individuals in global cohorts to those in continental
Africa as there might be notable genetic and environmental
differences between these two groups.
Introduction
Chronic kidney disease (CKD) is defined as a reduction
in kidney function indicated by estimated glomerular
filtration rate (eGFR) <60 ml/min per 1.73 m2 or kidney
damage markers or both that persist for at least three
months.1 It has a significant impact worldwide, with an
estimated prevalence of 10–15% globally as a direct
cause of mortality, morbidity, and comorbidity among
other complex traits.2 The prevalence of CKD in Africa is
equally high with most sub-Saharan African countries
showing generally a >10% prevalence. Managing CKD
in its advanced stages requires huge amounts of re-
sources, and this is quite cumbersome on most sub-
Saharan Africa (SSA) economies.

Serum lipids: high-density lipoprotein (HDL) and low-
density lipoprotein (LDL) cholesterol, rank among the
highest commonly measured biomarkers in clinical
medicine.3 Most epidemiological studies have reported
an association between these lipids and kidney function,
indicating that low HDL cholesterol is associated with
poor kidney function and CKD progression.4–6 In a well-
powered study of 2 million United States veterans who
were followed up for a median of 9 years, Bowe et al.,7

reported on the association between HDL cholesterol
concentrations and various CKD end points. The authors
reported individuals with low HDL cholesterol concen-
trations (<30 mg/dL) have the highest risk for CKD or
CKD progression.5 Other studies have found that higher
levels of blood total cholesterol (TC), LDL, TC: HDL ratio,
TG: HDL ratio, and lower levels of blood HDL choles-
terol, are associated with a higher risk of incident CKD.8

However, evidence from these epidemiological and
observational studies is limited by its inability to
demonstrate a causal relationship and inconsistencies
between several studies.9–12 Further still, most of such
high-powered studies have not only been limited by
sample selection bias towards majorly European ances-
tries, but also confounding from environmental factors.
www.thelancet.com Vol 90 April, 2023
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By fulfilling key assumptions, Mendelian randomi-
zation studies can enable causal inference while limiting
environmental confounding and reverse causation.3,13–15

However, similar to observational studies, the associa-
tion of serum lipids and eGFR has been conflicted, even
in the MR studies. Studies like that by Coassin et al.,
indicated that HDL cholesterol does not influence
eGFR, and they further proposed pleiotropic effects on
eGFR for some of the associated SNPs.8 Other findings
elsewhere conflicted these findings and reported a
genetically higher HDL concentration being associated
with higher eGFR.16,17 Such studies, however, have been
subject to sample selection bias due to the lack of ethnic
diversity in the Genome-Wide Association Studies
(GWASs) used which are primarily based on European
ancestry individuals.18,19 A two-sample Mendelian
randomization analysis of data from the most extensive
lipid and CKD cohorts supported genetically higher
HDL cholesterol concentration as causally associated
with better kidney function.20 Further still, a recent
study by Humaira et al., found no significant association
between serum lipids and kidney function, and reported
a weak effect of increased LDL-c levels and higher
eGFRcrea.21 This analysis and several others were per-
formed on European ancestry individuals, and the re-
sults cannot be confidently generalized to non-European
ancestry individuals.19,22–25

In this study, therefore, we set out to use bi-
directional and multivariable MR methods to investi-
gate the causal relationship between serum lipid profiles
and kidney function using estimated glomerular filtra-
tion rate based on serum creatinine (eGFRcrea) as a
marker. We leveraged datasets from individuals of
African-ancestry selected from the Million veteran pro-
gram (MVP) and Meta-analysed continental African
Lipid GWASs (APCDR and AWI-Gen), which we called
MALG (n = 24,215).
Methods
GWAS data sources
We selected eGFR instruments from GWAS summary
statistics of all individuals of African ancestry within the
U.S. Veteran’s Administration million veteran program,
MVP (N = 57,336).26 Genetic instruments for lipid traits
were obtained from summary statistics of MALG
(n = 24,215)—13,612 African-ancestry participants from
the African Partnership for Chronic Disease Research
(APCDR) & the Africa Wits-IN-DEPTH partnership for
Genomics studies (AWI-Gen).27 More information about
the African cohorts (AWI-Gen + APCDR) from which
the lipids instrumental variables were obtained are
detailed elsewhere.26–30

Ethics statement
Participant consent and ethical approval were obtained
in the original studies.
www.thelancet.com Vol 90 April, 2023
Univariable Mendelian Randomization
After instrument harmonization and selection, the
inverse-weighted variance (IVW) method was used to
perform the bi-directional MR analysis. In the absence
of directional pleiotropy and heterogeneity between
exposure and outcome, the estimates from this method
have been reported to be reasonably accurate.28 We
checked for the possible presence of horizontal pleiot-
ropy between instrumental variables by including the
MR-Egger regression method and MR-PRESSO. Evi-
dence of horizontal pleiotropy was based on the MR-
Egger intercept value deviating significantly from zero
with a p-value ≤ 0.05.28,31 The weighted median method
was used as the method of choice in case of observed
pleiotropy.32

Multivariable Mendelian Randomization
The Multivariable Mendelian Randomization method
can be applied for multiple genetic instruments
regardless of their association with the exposure.33 In
this MVMR method, the instrumental variables may be
associated with more than one risk factor but they must
fulfill the equivalent instrumental-variable assump-
tions.34 Thus, we applied this method by considering all
the instrumental variables for HDL, LDL, and TG to
determine their independent effects on eGFR.

Sensitivity analyses
We performed analyses using only IVs that met the
three MR assumptions: The relevance assumption, the
independence assumption, and the exclusion restriction
assumption. All the exposure instrumental variables
used in subsequent sensitivity analyses were signifi-
cantly associated with the exposure for both the UVMR
and MVMR at p < 5E-8. This ensured validity of the first
MR assumption. Furthermore, we ensured validity of
the second MR assumption by selecting only IVs with
L.D < 0.01 after clumping at a 500 kb window. The
downstream sensitivity analyses were then performed
on these instruments that fulfilled the first 2 MR as-
sumptions. We performed a sensitivity analysis using
the penalization method in which the contribution of
some of the instrumental variables (e.g., heterogeneous
or outlying IVs) to the analysis is down-weighted (or
penalized).32 We also performed the systematic leave-
one-out approach to determine potential pleiotropy per
SNP so as to test adherence to the exclusion restriction
assumption. The resultant effect was assessed using the
robust penalized IVW estimate. The change in results
before and after SNP removal was then assessed. We
then checked for heterogeneity between instrumental
variables determined by Q statistics at p-value ≤ 0.05.
We assessed for our instrument-strength by calculating
the F-statistic as detailed elsewhere.35 We further tested
for adherence to the third assumption of MR; the
exclusion restriction assumption, by using various
methods like the PhenoScanner to eliminate any
3
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instruments that showed horizontal pleiotropy.36 We
also assessed for horizontal pleiotropy using the MR-
Egger regression based on its intercept terms and the
Mendelian randomization pleiotropy RESidual sum and
outlier (MR-PRESSO).37 We further conducted a power
analysis to estimate the smallest effect we could assess
per exposure.38

Statistical analysis
We performed the MR analyses using the two-sample
random-effects inverse-variance weighted (IVW)
method implemented in the Mendelian Randomization
R package.39 This method determines the causal esti-
mates for instruments that meet the instrumental vari-
able assumptions reported elsewhere.14 To account for
the documented horizontal pleiotropy between lipids,
we conducted a multivariable MR (MVMR) including
instrumental variables from HDL, LDL, and TG at
p-value < 5 × 10−8. We further checked for reverse
causality by conducting an MR analysis considering
eGFRcrea from MVP as exposure and lipid traits from
MALG as outcome. The genetic instruments included in
this study for all analyses were selected as those
significantly associated with the risk of lipid traits at p-
value < 5 × 10−8 in the MALG dataset with clumping at
500 kb. Statistical significance for causal associations
was considered at p-value < 0.05. In multiple testing, an
adjusted p-value after Bonferroni correction, p-value <
0.05/3 = 0.016 was considered statistically significant.
All analyses were performed using Mendelian
Randomization packages in R.

Role of funding source
Funding sources had no role in the conduct or reporting
of the research.
Fig. 1: A schematic representation of bi-directional MR analyses: (a)
Forward univariable MR; (b) IVs for lipid traits should not have an
association with eGFR; (c) IVs for lipid traits are not related to
measured or unmeasured confounding. HDL, high-density lipopro-
tein; LDL, low-density lipoprotein; TG, triglycerides; eGFR, estimated
glomerular filtration rate; SNP, single-nucleotide polymorphism; MR,
Mendelian Randomization; F/R, Forward/Reverse; IVs, Instrumental
variables.
Results
The bi-directional MR analysis was performed as shown
in Fig. 1. Further details on the instrumental variables
chosen can be found in Supplementary Data.

Association of estimated glomerular filtration rate
with lipid levels
Univariable MR
The associations between genetically predicted lipid
traits and eGFR are shown in Table 1, Fig. 2,
Supplementary Figure S2. We found no evidence of a
statistically significant causal association between
genetically predicted HDL-C and eGFR (β = −0.164, 95%
CI = −1.329 to 1.00; p = 0.782). The effect estimates (β)
[95% confidence intervals (CIs)] for the other lipid traits
on eGFR were 1.1 ([0.411–1.788]; 0.002), 1.619
([0.412–2.826]; 0.009) and −0.934 ([−2.815 to 0.947];
0.33) for LDL, TC, and TG respectively. There was evi-
dence of a significant causal association between
genetically predicted LDL cholesterol and eGFR.
Similarly, TC showed a significant causal effect on
eGFR (Fig. 2). Genetically predicted Triglycerides (TG)
were not significantly associated with eGFR as well.
Details of the exposure instrumental variables are
shown in Supplementary Table S1.

The reverse MR analysis showed no significant
causal association between eGFR and all four lipid traits,
as shown in the Supplementary Figure S1 and
Supplementary Table S1. For the reverse MR, the effect
estimate ([95% CI]) for HDL, LDL, TC, and TG was 0.01
([−0.011 to 0.012]; p = 0.873), 0.007 ([−0.005 to 0.018];
p = 0.265), 0.008 ([−0.005 to 0.021]; p = 0.225) and 0.00
([−0.011 to 0.011]; p = 0.984) respectively. eGFR showed
no evidence of a reverse causal effect on this pop-
ulation’s genetically predicted lipid traits.

Multivariable MR
The MVMR analysis showed statistically significant
causal associations for genetically predicted lipid traits;
LDL and TG on eGFR (Fig. 3; Supplementary Table S2).
LDL cholesterol had a significant positive causal effect on
eGFR, consistent with that observed in the forward uni-
variable analysis (β = 1.228 ([0.477–1.979]; p = 0.001)).
There was evidence of a significant causal effect of
genetically predicted TG on eGFR (β = −1.3 ([−2.533 to
0.067]; p = 0.039)). HDL was not significantly associated
with eGFR, just like in prior analyses.

Sensitivity analyses
We accounted for the pleiotropic effects between instru-
mental variables using MR-Egger, penalized robust
MR-Egger, leave-one-out analysis, simple median, and
www.thelancet.com Vol 90 April, 2023
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Exposure Outcome BETA SE 95% CI p-value

HDL eGFR −0.164 0.594 −1.329 to 1 0.782

LDL eGFR 1.1 0.351 0.411 to 1.788 0.002a

TC eGFR 1.619 0.616 0.412 to 2.826 0.009a

TG eGFR −0.934 0.96 −2.815 to 0.947 0.33

LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein
cholesterol; TC, Total Cholesterol; TG, Triglycerides; IVW, Inverse Variance
Weighted; SE, standard error. aStatistically significant (p < 0.05).

Table 1: Univariable IVW Mendelian Randomization results.

Articles
weighted median analyses. We found no evidence of
horizontal pleiotropy between IVs using the MR-Egger
regression intercept analysis. All associations had p-
values > 0.005 for the MR-Egger intercept, as shown in
Fig. 2 and Supplementary Table S4. This was the same
case for the reverse MR analysis (Supplementary
Table S1). We further estimated any horizontal pleiot-
ropy using the leave-one-out approach and found no evi-
dence of any confounding due to pleiotropy between
SNPs with all p-value > 0.05 (Table 2). The Phenoscanner
analysis indicated no association between the SNPs and
any other traits that could confound the exposure-outcome
relationship, as the instrumental variables were only
associated with lipid traits. The Phenoscanner analysis
indicated no association between the SNPs and any other
Fig. 2: Forest plot of the beta estimates and their 95% confidence interva
univaribale MR method. IVW, inverse-variance weighted; HDL, high-densit
total cholesterol.

www.thelancet.com Vol 90 April, 2023
traits that could confound the exposure-outcome rela-
tionship. A Steiger filtering analysis to test for direction-
ality confirmed that the lipid traits have a causal effect on
eGFR. We tested for weak instruments by calculating the
F-statistics. We found no difference in associations be-
tween lipid traits and eGFRcrea after dropping weak in-
struments as shown in Supplementary Table S2. MR-
Egger analysis and weighted median analysis showed no
evidence of horizontal pleiotropy for both the forward and
reverse analyses. The power calculation for the forward
MR analysis ranged from 55 to 100% while that of the
reverse was 100% (Supplementary Table S5).
Discussion
In this African-ancestry MR study, we investigated the
causal effect of genetically predicted lipid traits on
eGFRcrea using a two-sample and multivariable MR
approach. In the primary MR-IVW forward analysis,
LDL-C and TC showed evidence of a significant causal
association with eGFR. Therefore, we report signifi-
cant evidence that genetically predicted lipids; LDL
and TC are causally associated with eGFRcrea in this
African population. However, the reverse MR-IVW
analysis indicated a non-significant causal association
between eGFRcrea and either of the genetically pre-
dicted lipids.
ls between genetically predicted lipid traits and eGFR using the IVW
y lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; TC,

5
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Fig. 3: Forest plot showing the beta estimates and 95% confidence intervals of Multivariate MR of lipids vs eGFR traits. HDL-C, high-density
lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TG, Triglycerides.

SNP MR-Egger intercept SE 95% CI p-value

rs1800588 −0.058 0.084 −0.222 to 0.107 0.493

rs17111732 −0.038 0.098 −0.229 to 0.153 0.698

rs116513376 −0.061 0.085 −0.227 to 0.106 0.476

rs59523416 −0.056 0.084 −0.220 to 0.108 0.503

rs12740374 −0.028 0.073 −0.171 to 0.115 0.703

rs143375141 −0.070 0.085 −0.236 to 0.097 0.413

rs35804417 −0.057 0.084 −0.221 to 0.107 0.497

rs75143493 −0.073 0.075 −0.220 to 0.075 0.334

rs73015020 −0.095 0.079 −0.250 to 0.060 0.229

rs10416720 −0.076 0.089 −0.251 to 0.099 0.393

rs7412 −0.084 0.095 −0.271 to 0.102 0.375

rs3810308 −0.107 0.083 −0.270 to 0.056 0.199

rs326 −0.073 0.088 −0.246 to 0.100 0.406

rs2070895 −0.054 0.088 −0.227 to 0.119 0.538

rs12721054 −0.035 0.069 −0.170 to 0.101 0.613

rs114139997 −0.054 0.077 −0.204 to 0.096 0.477

Table 2: Leave-one-out sensitivity analyses for all SNPs in the multivariable MR.

Articles

6

Our findings in the main analysis on HDL and TC
differ from those reported on MR analyses in European
ancestry cohorts by Lanktree et al. and other
groups.16,17,40 They reported a significant association be-
tween higher HDL levels with higher eGFR. Here, we
report no evidence of association between genetically-
proxied HDL cholesterol and better kidney function in
this African cohort. However, our findings tally with
those from other studies conducted on European
ancestry individuals which reported a non-significant
www.thelancet.com Vol 90 April, 2023
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effect of HDL on eGFR levels, and hence kidney func-
tion.8,21 Notably, elevated HDL has been shown to lower
the mortality rate of CKD within observed ranges.41

Our causal association between LDL and eGFR dif-
fers with findings from elsewhere.4,10 The Chronic Renal
Insufficiency Cohort Study reported no association be-
tween LDL-C levels and the change rate of eGFR in low
proteinuria individuals at baseline.42 However, similar to
our findings, a study conducted in European ancestry
individuals reported a weak effect of LDL-c and eGFR
based on serum creatinine, and similarly observed no
association between other serum lipids and kidney
function except apolipoprotein B.21 We, therefore, sug-
gest better powered future studies within the same Af-
rican ancestry to clarify the true association between
serum lipids and kidney function as measured by eGFR
in this ancestry. Importantly, high LDL levels have been
linked to poor kidney function by observational and
Mendelian randomization studies, we therefore further
suggest future studies to explore a U-shaped association
in a stratified MR study to better resolve this association.

The reverse univariable analysis showed no evidence
of a significant causal association between eGFR and
lipid traits. Our findings from the reverse association
between eGFR and serum lipids are consistent with
findings elsewhere.21

In the main univariable analysis, we report that high
LDL and TC levels had a strong significant causal effect
on eGFR levels. In the multivariable MR analysis, low TG
levels had a protective effect on eGFR. Unlike TC,
genetically predicted low TG levels showed a consistent
causal effect on eGFR between the MVMR and the main
forward univariable analysis, showing significance in the
latter. Findings from other studies have reported a con-
flicting association between TG and eGFR, but these have
been based on European ancestry populations.16,21,43,44

Evidence from observational studies supports a greater
triglyceride to HDL cholesterol ratio as associated with a
decline in eGFR.20,45 These observational studies are,
however, limited by confounding and inability to deter-
mine direction of effect.

The respective directions of effect from the MVMR
analysis were quite similar to those observed in the
forward univariabe MR analysis. In this MVMR anal-
ysis, both LDL and TG had protective causal effects on
eGFR. The un-expected direction of effect of genetically
predicted LDL and TG on eGFR reported in this study
might be due to the low statistical power in this study.
Noteworthy, a recent study reported an inconsistent
evidence between higher atherogenic lipids including
LDL-C, TG, and Apo B and weak increase in eGFR.21 A
higher eGFR association with higher LDL-C and TG has
been previously associated with glomerular hyper-
filtration rates that occur in individuals with car-
diometabolic conditions.46 We couldn’t verify the role of
underlying cardiometabolic conditions towards the ob-
servations in this study. We recommend a more
www.thelancet.com Vol 90 April, 2023
powered study on African-ancestry individuals, ac-
counting for such clinical parameters to further clarify
our findings.

Our study strengths were in the use of continental
African-derived GWAS summary statistics (MALG) and
assessing a possibility for a reverse causation between
eGFR and serum lipids. We also performed sensitivity
analyses including multi-variable MR-Egger to deter-
mine reliability of our instrumental variables as detailed
under the methods section.

Study limitations
The study was limited by a lack of access to individual-
level data as we only had access to GWAS summary
statistics. This meant that we couldn’t verify a possible
U-shaped relationship between serum lipid traits and
eGFRcrea. We were also not able to correct for sample
overlap. We also did not assess for ancestral differ-
ences in the instrumental variables with other ances-
tries, as suggested by Graham et al.47 Our study cohorts
couldn’t be expanded in this study to achieve a larger
sample size to correct for some of the instruments that
exhibited low power. Furthermore, this made it diffi-
cult to explore potential non-linearity of some of the
associations.

Conclusions
This Mendelian Randomization study suggests a causal
association between LDL cholesterol and higher eGFR,
but not HDL cholesterol. We report that genetically
elevated LDL cholesterol levels are associated with
developing higher eGFR. Our findings suggest that the
relationship between non-HDL cholesterol and kidney
function may be U-shaped. This may be a reason why
LDL is seen to be a poor predictor of renal function
compared to HDL, and as such lowering LDL does not
necessarily improve risk of kidney disease. Therefore,
our findings highlight the need for bigger MR studies
focused on African ancestry individuals to accurately
determine the association between serum lipid traits
and kidney function measured by eGFRcrea in conti-
nental Africans.
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