
ARTICLE

Distinct transcriptomic and epigenomic modalities
underpin human memory T cell subsets and their
activation potential
James R. Rose1,3, Bagdeser Akdogan-Ozdilek1,3, Andrew R. Rahmberg 2, Michael D. Powell1,

Sakeenah L. Hicks1, Christopher D. Scharer 1 & Jeremy M. Boss 1✉

Human memory T cells (MTC) are poised to rapidly respond to antigen re-exposure. Here,

we derived the transcriptional and epigenetic programs of resting and ex vivo activated,

circulating CD4+ and CD8+ MTC subsets. A progressive gradient of gene expression from

naïve to TCM to TEM is observed, which is accompanied by corresponding changes in chro-

matin accessibility. Transcriptional changes suggest adaptations of metabolism that are

reflected in altered metabolic capacity. Other differences involve regulatory modalities

comprised of discrete accessible chromatin patterns, transcription factor binding motif

enrichment, and evidence of epigenetic priming. Basic-helix-loop-helix factor motifs for AHR

and HIF1A distinguish subsets and predict transcription networks to sense environmental

changes. Following stimulation, primed accessible chromatin correlate with an augmentation

of MTC gene expression as well as effector transcription factor gene expression. These

results identify coordinated epigenetic remodeling, metabolic, and transcriptional changes

that enable MTC subsets to ultimately respond to antigen re-encounters more efficiently.
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Memory T cells (MTC) arise after a naïve T cell responds
to an initial interaction with antigen and play an
essential role in mounting a robust secondary response

upon reinfection. These cells, composed of both CD4 and CD8
expressing T cells, exhibit enhanced effector functions and a
heightened response to subsequent activations with antigen1.
Human MTC are extremely long-lived, with one study finding
antigen-specific T cells still detectable in individuals 75 years after
vaccination, suggesting a capacity for self-renewal not seen in
shorter-lived effector cells2. Naïve and memory CD4+ and CD8+

T-cell subsets are commonly subdivided based on cell surface
expression of CCR7, CD45RA, and CD62L into naïve (Nav,
CCR7+CD45RA+), central memory (TCM, CCR7+CD45RA–),
effector memory (TEM, CCR7–CD45RA–), and terminally differ-
entiated effector memory (TEMRA, CCR7–CD45RA+)3,4. CCR7
and CD62L are highly expressed in TCM and naïve T cells and
enable cellular homing to secondary lymphoid organs. TEM

exhibit lower expression of both CCR7 and CD62L and are
thought to instead localize to inflamed tissues where they exhibit
a higher degree of effector function5. Additionally, naïve T cells
can be separated from TEM and TCM cells by higher expression of
the CD45RA isoform6, which is downregulated in TCM and TEM

cells. However, a subset of effector-memory-like human CD8+

T cells in the blood express high levels of CD45RA
(CCR7–CD45RA+) while simultaneously expressing effector
function genes such as GZMB and PRF1 (encoding granzyme B
and perforin, respectively)7. These cells (TEMRA) are believed to
be highly differentiated effector cells or potentially even senescent
versions of effector MTC, which arise after chronic infections
with virus8–10. Despite their importance in immunological
memory, the full spectrum of transcriptional and epigenetic
characteristics of these main memory subsets, the transcription
factor programs associated with each, and how they play a role in
memory responses remains to be fully understood.

Previous studies have profiled various epigenetic and tran-
scriptional aspects of CD8+ MTC11–13; however, the full phe-
notypic and epigenetic characteristics of the subsets found within
the entire circulating human MTC compartment remains largely
under-defined. At the same time, changes to the transcriptomic
and epigenetic landscape of T cells after initial activation of naïve
cells have been shown to be important in both establishing the
differentiated memory subsets, and in rapid recall response upon
re-stimulation14–16. Understanding how these memory-subset-
specific epigenetic changes affect their formation and function
upon re-encounter with antigen will ultimately inform more
effective therapeutic design.

To better understand the epigenomic parameters of human
MTC subsets and how such parameters dictate gene expression,
we investigated transcriptional and epigenetic differences between
CD4+ and CD8+ memory cell subtypes (TCM, TEM, and TEMRA)
from human blood, as well as in response to ex vivo stimulation.
Analysis of changes in mRNA transcripts and chromatin acces-
sibility revealed that MTC share a substantial set of genes
expressed at similar levels irrespective of linage and cell subset.
Moreover, we observed evidence of a progressive increase in the
amount of differentiation from naïve T cells, to TCM, and finally
to TEM and TEMRA memory populations. One set of genes that
were upregulated, included those that reflected changes in
metabolic capacity of the MTC subsets. Biochemical analyses
confirmed differences in the metabolic capacity of various MTC
subsets. Combining gene expression and chromatin accessibility
analyses before and after stimulation identified a series of pat-
terned regulatory modalities that may define memory-subset
differentiation, as well as increased reactivity in response to sec-
ondary activations. Such dynamic regions of chromatin were
enriched for motifs known to bind a small group of transcription

factors (TFs) from the basic leucine zipper (bZIP), high
mobility group (HMG), T-box, and basic helix-loop-helix
(bHLH) families. Altogether, these data lay out the full spec-
trum of transcriptional and epigenetic differences of the primary
memory-subset categories found in human blood, while also
identifying the unique transcription factor networks associated
with memory-subset differentiation and highlighting loci that
may be important in establishing a memory cell’s response to
activation upon secondary antigen exposure.

Results
The shared transcriptional programs of human CD4+and
CD8+ MTC. To define the transcriptional profiles of the major
subsets of MTC, naïve, TCM, and TEM cells from CD8+ and CD4+

lineages were FACS separated from the blood of four human
donors using CCR7 and CD45RA as distinguishing cell surface
markers (Fig. 1a, b, and Supplemental Fig. 1a). Naïve T cells were
defined as CCR7+CD45RA+; TCM as CCR7+CD45RA–; and TEM

as CCR7– CD45RA–. CD8+ TEMRA T cells (CD45RA+CCR7–), a
terminal effector subset was also included for comparison (Sup-
plemental Fig. 1b-c). To elucidate transcriptional differences
between naïve and memory subsets RNA-sequencing (RNA-seq)
was conducted on sorted populations. The mRNA content of each
sorted subset group was assessed for shared and unique tran-
scripts defining MTC from naïve T cells. Relative to their naïve
counterparts, TCM and TEM cells exhibited 805 and 1,486 differ-
entially expressed genes (DEG), respectively (Fig. 1c, Supple-
mental Data 1). Comparing subsets between lineages (CD4+ vs.
CD8+) showed that TEM and TCM cells each shared approxi-
mately 30% of their DEG, highlighting conserved relationships
between the CD4+ and CD8+ lineages. Gene ontology analysis of
the lineage specific and shared DEG showed that genes shared
between lineages were highly enriched for pathways related to
T-cell activation, co-stimulation, lymphocyte homeostasis, and
cytokine response/production in both TCM (Supplemental Fig. 2a)
and TEM subsets (Supplemental Fig. 2b). TEM DEG shared
between CD4+ and CD8+ T cells were also more highly enriched
for antigen processing and presentation, as well as GTPase sig-
naling pathways.

Examples of genes expressed in both lineages included the
transcription factors LEF1 and TCF7, which were more highly
expressed in both CD4+ and CD8+ TCM and naïve T cells.
PDCD1, encoding PD-1, and MHC class II genes encoding HLA-
DR were expressed higher in TEM cells of both lineages (Fig. 1d).
Other genes exhibited lineage-specific expression patterns,
including integrins (e.g., ITGAL/CD11a, ITGA4/VLA4), which
were expressed more highly in CD8+ MTC; whereas the
chemokine receptors CCR4 and CCR6, which have been
implicated in homing to specific peripheral tissues such as the
skin17,18, were more expressed in CD4+ MTC (Fig. 1e). Lineage-
specific DEG encoding components of the interleukin-2 receptor
(IL2R)19 were also observed, with CD4+ MTC expressing higher
levels of the α chain (IL2RA, Fig. 1f), while CD8+ MTC expressed
considerably higher levels of IL2RB (Fig. 1f). These differences
emphasize the fact that while all MTC share important gene
pathways, which make them unique from naïve cells, transcrip-
tional differences can also distinguish each lineage and/or subset
underlying their distinct immunological functions.

Resting TEM/TEMRA cells exhibit progressively greater tran-
scriptional differentiation from naïve progenitors than TCM. A
total of 4,943 DEG distinguished naïve cells from CD4+ and
CD8+ MTC subsets. Principal component analysis (PCA) of
these DEG indicated that the bulk of this variation separated
naïve T cells from TCM, TEM, and TEMRA subsets (Fig. 2a).
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Differentiation from naïve cells showed progressive increases in
both up and down DEG from TCM to TEM in both CD4+ and
CD8+ T cells and finally to TEMRA in CD8+ T cells subsets
(Fig. 2b). Fold-change levels of DEG in CD8+ T-cell memory
subsets were compared using hexagonal “tri-wise” visualization
(Fig. 2c)20. These plots contain three axes corresponding to each
subset and each radiating axis represents fold-change levels. DEG
that fall directly on each axis represent those expressed exclu-
sively by that subset, while those sharing high fold-change levels
across two groups relative to the third subset fall midway between
spokes. This analysis revealed that many of the DEG with highest
fold change were shared between TEM and TEMRA subsets but
absent in TCM cells. Overlaying genes from several gene ontology
gene sets relevant to MTC showed that genes involved in path-
ways related to cell cytotoxicity as well as NK-related genes
involved in cell killing were exclusively upregulated in TEM and
TEMRA subsets (Fig. 2d). Alternatively, a custom gene set repre-
senting genes expressed by stem-like T cells derived from Hudson
et al. 21, as well as gene ontology gene sets representing the WNT-
beta catenin pathway were highly upregulated in the TCM subset
relative to either effector subset (Fig. 2d).

Fuzzy c-means clustering of the DEG was used to identify gene
modules across the CD8+ and CD4+ MTC subsets. Fuzzy
c-means clustering allows genes to be assigned membership to
multiple overlapping clusters before an ultimate single cluster
classification is determined by ranking the magnitude of
membership score for that gene. This analysis identified five

distinct modules of gene expression programs within the DEG of
CD8+ T cells across all memory subsets (Fig. 2e, Supplemental
Data 2). Modules 1 and 3 corresponded to genes that were
upregulated in CD8+ TEM and TEMRA cells compared to naïve
T cells. Gene ontology analysis showed that genes in module 1
were most highly expressed in TEMRA cells and enriched for
pathways related to cell killing, cytolysis, and innate immune
response (Supplemental Fig. 3a). Module 3 genes were expressed
equally in CD8+ TEM and TEMRA cells and enriched for pathways
related to apoptosis, MAPK activity, and tyrosine kinases
(Supplemental Fig. 3b). Modules 4 and 5 represented genes
repressed in CD8+ TEM and TEMRA subsets but more highly
expressed in naïve or TCM cells (Fig. 2f) with individual genes
plotted and colored according to cluster membership (Fig. 2g).
These were enriched for DNA methyltransferases such as
DNMT3A or pathways related to T-cell differentiation, respec-
tively (Supplemental Figs. 3c, d). Module 2 contained fewer genes
than any of the other modules and included those expressed in
both CD8+ TCM and TEM memory subsets with low expression in
both naïve and TEMRA cells. This module was highly enriched for
pathways related to T-cell receptor activation, co-stimulation, and
IL-2 production (Supplemental Fig. 3e).

Applying the same clustering method to CD4+ subsets showed
a similar pattern of clustering with five total gene modules
(Fig. 2h, i, Supplemental Data 3) with individual genes plotted
(Fig. 2j). Modules 1, 3, and 4 were most highly expressed in CD4+

TEM cells (Fig. 2i) but showed differences in gene ontology
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Fig. 1 MTC display distinct patterns of shared and differentially expressed genes that define their subsets and lineage. a Experimental workflow for
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pathway enrichment (Supplemental Fig. 3f-h). These included
secretory granules and carbohydrate metabolism (module 1),
cytokine secretion, and T-cell activation (module 3), and MAP
Kinase activity or cytolysis (module 4). The expression of genes in
module 5 was highest in CD4+ naïve T cells and contained
similar gene set enrichments to module 5 in CD8+ MTC

(Supplemental Fig. 3i), including self-renewal related transcrip-
tion factors, such as LEF1. Module 2 was expressed in both CD4+

TCM and TEM subsets as in the CD8+ lineage. Pathway
enrichment for this module showed enrichment for several
metabolism-related pathways including cofactor and lipid
biosynthesis (Supplemental Fig. 3j). As with CD8+ MTC,
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important co-stimulatory/co-inhibitory molecules, such as
CTLA4 and ICOS, were also present in CD4+ module 2 and
expressed by both TCM and TEM subsets. Thus, both CD4+ and
CD8+ lineages showed a progression of increasing gene
expression changes relative to naïve in TCM, TEM, and finally
TEMRA MTC subsets.

MTC subsets exhibit distinct migration and metabolism
characteristics. Contained within the above modules were genes
representing the potential for important functional differences
across MTC subsets, including genes involved in T-cell migra-
tion and metabolism. For example as expected3, CD4+ and
CD8+ naïve and TCM cells expressed high levels of both CCR7
and SELL (L-selectin). Whereas CD4+ TCM and TEM exclusively
expressed CCR4 and CCR2 (Fig. 2k). CD8+ TEM/TEMRA cells
had the highest expression of S1PR5, which has been shown to
be associated with promoting egress of lymphocytes from sec-
ondary lymphoid organs or bone marrow (Fig. 2l)22. MTC in
general were found to have upregulated a greater number of
metabolism-related genes compared to resting naïve T cells
(Fig. 3a). Subset-specific differences were observed in expression
of genes responsible for fatty acid metabolism, glycolysis, and
oxidative phosphorylation (Fig. 3a). Many of these genes relate
to the regulation of acetyl CoA or lactate metabolism as
exemplified by expression differences of the genes PDK1, PDP1,
and LDHB. For example, in CD8+ TEM and TEMRA cells (Fig. 2j),
LDHB, which encodes lactate dehydrogenase enzyme subunit B
has been previously associated with aerobic glycolytic metabo-
lism in effector T cells, as well as in cancer23,24.

Several assays to measure and compare the metabolic states of
naïve and MTC were performed. Using the Seahorse-based
Glycolysis Stress Test assay on unstimulated CD4+ T-cell subsets,
an extracellular acidification rate (ECAR) was determined
(Fig. 3b). In response to glucose, CD4+ MTC did not exhibit a
significant difference in glycolysis; however, TCM and TEM

populations showed significantly higher glycolytic capacity
(Fig. 3c) and glycolytic reserve (Fig. 3d) compared to naïve
CD4+ T cells, suggesting that they have higher potential to
increase ATP production via glycolysis under stress or other
physiologically energy-demanding conditions. Anti-CD3/CD28
bead stimulated CD4+ T-cell subsets showed an elevated level of
glycolysis compared to unstimulated cells, which was consistent
with metabolic reprogramming phenomena in response to
stimulation (Fig. 3b). No significant difference between the
stimulated MTC subsets regarding glycolysis, glycolytic capacity,
or glycolytic reserve was observed, suggesting that regardless of
subset, CD4+ MTCs can achieve similar glycolytic
metabolic rates.

Due to the limitations in obtaining purified subset cell
numbers, we could not perform a similar set of assays on
CD8+ T cells. Instead, two flow cytometry-based assays were used
to assess oxidative phosphorylation (OXPHOS) and fatty acid

metabolic states of both the CD4+ and CD8+ T cells (Fig. 3e–h).
In the first assay, cells were stained with MitoTracker Green
(MTG), a mitochondrial specific dye that provides a relative
assessment of mitochondrial mass, and tetramethylrhodamine
methyl (TMRM), an OXPHOS marker that accumulates in
functional mitochondria caused by differential membrane
potential25,26. Unstimulated TCM and TEM populations had
higher frequencies of cells with highly functional mitochondria
(MTGHi and TMRMHi) compared to naïve populations in both
CD4+ and CD8+ T cells (Fig. 3f). Stimulated CD4+ and CD8+

TCM and CD8+ TEM subsets also had higher frequency of cells
with functional mitochondria than naïve populations (Fig. 3h). In
contrast, a lower percentage of CD8+ TEMRA had functional
mitochondria and this number decreased when the cells were
stimulated, which is consistent with previous studies showing
mitochondrial impairment of this population9,27.

In a second assay, we performed the single cell energetic
metabolism by profiling translation inhibition (SCENITH)
assay that measures metabolism of individual cells based on
relative translation rates and the incorporation of the puromy-
cin into elongating ribosomes in the presence and absence of
metabolic pathway inhibitors to assess glycolysis, OXPHOS, or
fatty acid metabolism28 (Fig. 3i–p). The SCENITH data
confirmed the Seahorse results showing that unstimulated
CD4+ TEM had higher glycolytic capacity than the naïve
CD4+ T cells (Fig. 3i). In addition, all CD8+ MTC showed
higher glycolytic capacity than the naïve CD8+ T cells. Glucose
dependence; however, was significantly lower in only CD8
TEMRA (Fig. 3j). Overall, unstimulated naïve T cells exhibited
more mitochondrial dependence than the MTC (Fig. 3k).
Together with the mitochondria staining data, these results
suggest that the unstimulated MTC subsets have elevated
OXPHOS metabolism compared to naïve populations, a finding
that is also consistent with the RNA-seq data; however, resting
naïve T cells depended on mitochondria more than the MTC
subsets. CD8+ TEM and TEMRA cells exhibited an elevated fatty
acid and amino acid oxidation capacity (FAO and AAO)
compared to naïve CD8+ T cells (Fig. 3l). In general, when these
cells were stimulated they reprogrammed their metabolism to be
less dependent on mitochondria and instead increased glyco-
lytic capacity to its maximum (Fig. 3m, n). We did not detect
any significant difference in the metabolisms of stimulated
naïve, TCM and TEM populations of CD4+ and CD8+ T cells
(Fig. 3m–p). However, CD8+ TEMRA cells showed less glycolytic
capacity and glucose dependence, but higher mitochondrial
dependence and FAO and AAO capacity than naïve
CD8+ T cells. Taken together these data show the distinct
transcriptional differences between naïve and MTC, the
resulting functional consequences to cell metabolism and
phenotype, and that these differences appear to increase in
both number and magnitude as cells differentiate towards an
effector-memory phenotype.

Fig. 2 Resting MTC subsets in peripheral blood show progressive levels of differentiation from naïve. a Principal component (PC) analysis plot of DEG
from RNA-sequencing data showing each sample separated by first two components. b Bar plot representing number of up and downregulated DEG for
each memory subset compared to naïve T cells. c Three-way representation of DEG expression between CD8+ TCM, TEM, and TEMRA. Each dot represents a
single DEG; dots falling directly on an axis represent exclusive upregulation in each group, and concentric rings represent degree of log2-fold-change
differences between groups. d Overlay of C with genes belonging to two gene sets (NK cell and cytotoxicity) upregulated in CD8+ TEM and TEMRA cells, or
genes representing WNT-Beta catenin and stem-like T-cell expression are upregulated in CD8+ TCM cells. e, h Heatmaps showing DEGs in CD8+ or
CD4+ naïve and memory subsets clustered by fuzzy c-means clustering. Highlighted examples for each module are listed. f, i Line plots showing mean
expression of all genes in each cluster by subset (error bars represent ±1 SD). g, j Line plots showing expression of individual genes in cluster colored by
membership score for respective cluster. Average across modules shown by black line. k Heatmap of selected genes representing differences in expression
of migration-related genes. Data represents the mean expression of each cell subset. l Gene expression bar plots showing reads per kilobase million (rpkm)
for the indicated genes. Data are plotted as mean ± SD; asterisks indicate DEG as detected by DESeq2 algorithm.
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The chromatin landscape of memory subsets correlates with
transcriptional differentiation. To determine the extent to
which the differences in gene expression were coordinated with
changes to the chromatin organization in MTC subsets, the assay
for transposase accessible chromatin-sequencing (ATAC-seq)29

was performed on the MTC subsets described above. This ana-
lysis resulted in the identification of 57,315 differentially acces-
sible regions (DAR) between naïve, TCM, TEM, and TEMRA cells of

both CD4+ and CD8+ T-cell lineage groups (Supplemental
Data 4). As with the RNA-seq data, principal component (PC)
1 separated effector-memory subsets (TEM, TEMRA) from TCM and
naïve T cells in a progressive manner (Fig. 4a). Hierarchical
clustering of the DAR also revealed CD8+ effector-memory and
naïve T cells as being the most distinct, with central memory
and all CD4 MTC subsets sharing more similarity to naïve cells,
and CD8 TEM/TEMRA cells clustering closely together (Fig. 4b).
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Fig. 3 MTC subsets exhibit distinct metabolic features. a Heatmap of selected genes representing differences in metabolism. Data represent the mean
expression of each cell subset. b Line plot showing Seahorse-derived ECAR data (mpH / min / 105 cells) over time for unstimulated and stimulated naïve,
TCM, and TEM CD4+ T cells. Shaded regions indicate regions of metabolic relevance as labeled. Arrows indicate time of inhibitor addition (G, glucose; O,
oligomycin; and DG: 2-deoxy-glucose). c, d Bar plots showing glycolytic capacity and glycolytic reserve calculated for unstimulated and stimulated CD4+

T cells, respectively. Error bars indicate ±SD. e Representative flow cytometry plots showing gating strategy for unstimulated cells using MitoTracker green
(MTG) and tetramethylrhodamine methyl (TMRM). f Bar plots showing frequency of MTGHITMRMHI cells in naïve and MTC subsets. g Flow cytometry
plots as in (e) for stimulated cells. h Bar plots showing frequencies as in (f). Bar plots showing metabolic attributes calculated from SCENITH data as
indicated for unstimulated (i–l) and stimulated (m–p) cell types. Error bars indicate ±SD. For all experiments, 3–6 independent samples were analyzed.
One-way ANOVA, with multiple comparisons were used to determine significance. *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig. 4 Effector-memory subsets exhibit a greater number of changes to chromatin accessibility compared to central memory subsets. a PCA plot of
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DAR are highlighted by boxes. e Volcano plots showing DAR that are more accessible in CD4+ TEM vs CD4+ TCM, CD8+ TEM vs CD8+ TCM, and CD8+

TEMRA vs CD8+ TEM. Number of DAR in each direction are totaled at the top of each plot.
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Differential accessibility at regions that mapped to DEG was
found to be positively correlated for each of the memory subsets
(Fig. 4c, Supplemental Fig. 4a-b). Comparing the magnitude of
these differences by fold change of both DEG and nearby DAR
showed that gene expression and chromatin accessibility
increased in both quantity and intensity in effector-memory cells
compared to smaller differences from naïve T cells in central
MTC (Fig. 4c). Some examples of DAR near DEG include the
PRF1 locus (Fig. 4d), which was found to have gained accessibility
only in effector-memory subsets. Alternatively, chromatin at two
regions upstream of the LDHB gene, which is downregulated in
these subsets (Fig. 2j), was found to have decreased in accessibility
in the effector-memory T cells (Fig. 4d). In a similar fashion,
accessibility around gene loci expressed more highly in naïve or
TCM cells, such as genes encoding LEF1 and the G protein cou-
pled receptor GPR15 (involved in T-cell homing), showed lower
chromatin accessibility in TEM subsets (Supplemental Fig. 4c and
d). Overall CD4+ MTC exhibited relatively fewer DAR between
TCM and TEM subsets compared to the large number of accessi-
bility changes between CD8+ MTC subsets (Fig. 4e), and chro-
matin accessibility differences between CD8+ TEM and terminally
differentiated TEMRA were the fewest in number (Fig. 4e). Col-
lectively these data demonstrate that the transcriptional differ-
entiation found in memory subsets is highly correlated with
changes to chromatin accessibility.

Differentiated chromatin between MTC subsets is enriched for
bZIP, HMG, T-box, and bHLH transcription factor motifs.
Transcription factors play key roles in orchestrating the global
gene expression changes involved in establishing and maintaining
cell type differentiation and establishing distinct gene regulatory
states30. To identify potential transcription factors regulating
differentiation of MTC subsets, we analyzed the variation of
chromatin accessibility between subsets at sites with known
binding motifs for transcription factors in the genome using
chromVAR31. ChromVAR identifies motifs around which chro-
matin accessibility varies the most in a given set of samples (in
this case cell subsets). We found that the chromatin accessibility
around binding motifs for AP-1 (Jun, FOS, BATF), T-box (T-
BET, EOMES), and HMG family transcription factors (LEF1) was
the most highly variable across all MTC and naïve T cells
(Fig. 5a). Visualization of the ChromVAR analysis data using
tSNE projection distinguished samples by MTC subtype (Fig. 5b).
Overlaying the ChromVar deviation score for individual tran-
scription factor motifs onto the tSNE projection showed that TEM

cells had higher scores for T-box factors such as T-BET, encoded
by TBX21 (Fig. 5c), while naïve T cells and TCM samples showed
higher scores for LEF1 binding sites (Fig. 5d). Higher ChromVar
scores were also found at AP-1 and IRF family binding motifs in
the effector-memory samples (Supplemental Figs. 5a-f).

To further interrogate the various transcription factor
regulatory networks involved in differentiating the MTC subsets
the PageRank algorithm32 was used to correlate the presence of
transcription factor binding motifs in accessible regions with
changes in target gene expression, ultimately calculating a rank of
transcription factor importance to the network. PageRank
identified several transcription factors that increased in network
rank in at least one MTC subset relative to naïve T cells and
recapitulated naïve-associated transcription factors such as LEF1
and TCF7 (Fig. 5e). To compare subset differences, the fold
change in PageRank scores from naïve cells was plotted against
RNA expression for each factor in CD8+ TCM and TEM cells
(Fig. 5f-g, Supplemental Fig. 5g-i). These data also corroborated
the ChromVAR analysis by indicating both higher relative
expression and PageRank scores for AP-1 and T-box factors,

such as FOSL2, T-BET, and EOMES in the effector-memory
subsets.

One transcription factor, MSC (encoding for musculin or
ABF-1), was observed to have the highest rank score in all MTC
subsets while being absent in naïve T cells. MSC has been
previously identified as a transcriptional repressor capable of
binding to E-box elements and implicated in the activation
pathways of B cells, as well as the differentiation of peripheral
CD4+ Treg cells33,34. Intracellular staining of MSC showed
expression in all subsets with significant increases in stimulated
T-cell subsets (Supplemental Fig. 6a), suggesting a potential role
in T-cell activation. Analysis of the PageRank-generated regula-
tory network for MSC identified its potential for regulating many
important genes in MTC subsets, including repression of LEF1
and TCF7 (Fig. 5h). The MSC target gene network was enriched
for several key pathways such as cell activation, adhesion,
cytokine production, and differentiation (Fig. 5i).

bHLH Family Factors AHR and HIF1A potentially regulate
different environmental responses in CD8+ TCM and TEM

MTC subsets. Reconstructing transcription factor regulatory
networks via PageRank-predicted interactions emphasized the
centrality of key transcription factors LEF1, TCF7, T-BET, and
EOMES, as well as differences in TF importance by subset. MSC
was predicted by PageRank to regulate LEF1 and TCF7, poten-
tially leading to higher repression of these factors in CD4+ TEM

and other effector-memory subsets (Fig. 6a). The bHLH tran-
scription factor AHR was highly induced as seen by intracellular
protein staining in all T-cell subsets (Supplemental Fig. 6a).
Intriguingly, AHR also showed both high relative expression and
PageRank score exclusively in the CD8+ TCM subset, while bHLH
transcription factor, HIF1A (hypoxia-inducible factor 1α), was
more highly ranked by PageRank in CD8+ TEM cells (Fig. 6b,
Supplemental Fig. 5k). AHR protein levels were increased in all
subsets upon stimulation. HIF1A was increased after stimulation
in all T-cell subsets except for TEM, which maintained more
constant concentrations of this protein (Supplemental Fig. 6a).
AHR has been implicated in sensing xenobiotics and T-cell
homing to tissues35, while HIF1A has previously been associated
with sensing hypoxic conditions and modulating metabolism in
these circumstances36. HIF1A and AHR are known to have an
antagonistic relationships with respect to target genes and their
own expression37,38. GSEA using the list of genes putatively
regulated by AHR showed significant enrichment of these genes
in those upregulated in CD8+ TCM vs CD8+ TEM (Fig. 6c).
Expression of several of these genes in the leading edge of GSEA
enrichment were positively correlated with AHR expression in
MTC and were exclusively expressed in TCM (Fig. 6d). Two of
these genes, VBP1 and PVT1, along with HIF1A are part of the
hypoxia response39,40. Two DAR with greater accessibility in
TCM, were found near the promoter region of the VBP1 gene, one
of which contains a binding motif known to bind AHR (Fig. 6e).
VBP1 encodes for the protein VHL which is the substrate
recognition subunit of an E3 ligase known to target HIF1A for
degradation39. Another DAR with higher accessibility in TCM

and naïve T cells was found at the promoter of the INPP4B
gene, encoding inositol polyphosphate-4-phosphatase type II B
(Fig. 6e). This region contains three AHR binding motifs as well
as a motif specific for HIF1A binding, suggesting potentially
competitive regulation between these two factors. In total, these
data suggest that bZIP, HMG, and T-box family transcription
factors are important for memory-subset differentiation, and
additionally bHLH family factors, such as MSC, AHR, and
HIF1A may play key roles in regulating distinct subsets and their
transcriptional programs before and following stimulation.
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Genes that are uniquely upregulated in stimulated memory-
subset cells include Induced and Augmented transcripts. To
better understand the transcriptional and epigenetic properties
that allow memory T-cell subsets to rapidly respond to stimula-
tion, all five MTC subsets, as well as naïve T cells were stimulated
using anti-CD3/CD28 beads ex vivo for 42–48 h. RNA-seq ana-
lysis of the stimulated T cells showed a profound change in

transcriptional programs after stimulation and much of this
response was homogeneous across the different MTC subsets.
This is highlighted by PCA wherein PC1 (52.59% variation)
separated resting cells from all those that have been activated
(Fig. 7a). GSEA showed that activated naïve cells more strongly
upregulated pathways such as MYC target genes to a greater
extent than in MTC, while activated MTC more strongly
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Fig. 5 bZIP, HMG, T-box, and bHLH factors differentiate MTC subsets by chromatin accessibility. a Plot showing the top 50 transcription factors ranked
(x-axis) according to variability (ChromVar) in chromatin accessibility (y-axis) around their corresponding binding motifs. b tSNE plot showing reduced
dimensional visualization of variability of chromatin accessibility data for each memory-subset sample at all differential sites. c, d tSNE plot from B colored
by ChromVar variability around TBX21 (T-BET) and LEF1 binding motifs, respectively. e Heatmap of the log2-transformed fold change in PageRank statistics
for each MTC subset (compared to naïve). f, g Scatter plots showing log2FC of RNA expression (x-axis) and PageRank statistic log2FC (y-axis) between
memory and naïve samples for labeled CD8+ MTC subsets. h Heatmap of RNA expression from gene network of MSC transcription factor with bar plot
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upregulated genes associated with IL-2, STAT5 signaling, and
other immune response signaling pathways (Fig. 7b). Despite a
large degree of consistency in response to stimulation in the
different memory subsets, gene sets related to fatty acid meta-
bolism, glycolysis, and MTOR signaling were enriched to varying
degrees in GSEA between TCM and TEM cell subsets after sti-
mulation (Fig. 7c).

To identify genes that were differentially expressed upon
stimulation in MTC subsets, expression patterns were examined
that were specific to MTC. Overall, the data revealed the presence
of three main groups of genes that change in expression
compared to naïve T cells before and after stimulation as
hypothetically illustrated in Fig. 7d. Each group has two
expression states: (a) its constitutive expression in unstimulated
MTC vs. naïve; and (b) its change in expression following
stimulation. Expressed genes had high fold-change differential
expression between naïve and MTC, which naïve T cells induced

only after stimulation. Induced genes were similarly expressed in
both resting naïve and MTC and are induced in only the MTC
group following stimulation. Augmented genes showed expres-
sion differences between MTC and naïve cells in both the resting
and stimulated states (Fig. 7d). Overlaying these categories on
gene expression differences of naïve versus memory resting and
stimulated T cells showed that the majority of such DEG were
positively upregulated in MTC (Fig. 7e). The memory Induced
gene category was highly enriched for cytokine genes including
IL4 (Fig. 7h), IL1A, and IL22. These genes were uniquely
expressed by MTC subsets to varying degrees after stimulation
but repressed in activated naïve T cells at 48 h after the same
stimulation. To confirm these results, we measured a panel of
common cytokines using intracellular staining coupled with flow
cytometry (Supplemental Fig. 7). Some cytokines, such as IL-2
and TNFα were expressed in a significant number of cells by all
activated T cells studied. In contrast, the production of effector
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T-cell-associated cytokines (IFNγ, IL-1α, IL-4, IL-17, and IL-5)
was differentially increased in various MTC after stimulation
compared to stimulated naïve T cells (Fig. 7f). Il-22 protein was
significantly induced in naïve and TEM CD4+ MTC. The TEM

MTC subsets of both CD4+ and CD8+ lineage produced the
highest level of cytokines after stimulation in comparison to naïve
or TCM cells (Supplemental Fig. 7). The stimulation-independent
Expressed gene category contained the most DEG overall, but
each memory subset also exhibited Induced and Augmented
genes (Fig.7g). Genes found within the Expressed category for
TEM cells included important effector T-cell molecules, such as
granzyme H, encoded by GZMH; T-BET; and CXCR3, a
chemokine receptor associated with TH1 CD4+ T cells and
effector CD8+ T cells41 (Fig. 7h). Both CD8+ and CD4+ TEM

cells showed higher numbers of Induced and Augmented genes
than TCM. Intriguingly, MSC was also found to exhibit an
Augmented expression pattern in these cells after stimulation,
while remaining repressed in stimulated naïve T cells (Fig. 7h).
Thus, despite both MTC and naïve T cells activating several
similar gene programs upon TCR stimulation, MTC subsets have
unique induction/expression profiles upon stimulation, a prop-
erty that may provide them with a greater degree of efficiency and
capacity upon rechallenge.

Augmented gene expression is correlated with epigenetic
changes introduced by earlier activation of naïve cells. To
determine the of role chromatin accessibility in the unique
response to stimulation described above, ATAC-seq was per-
formed on the stimulated memory and naïve T cells. Similar to
the global transcriptional response to stimulation, PCA of the
ATAC-seq datasets showed that the greatest amount of variation
separated stimulated from unstimulated cells, and that differences
between memory subsets were diminished in the stimulated
samples (Fig. 8a). Individual peaks of accessibility in the ATAC-
seq analysis followed a set of a patterns that we have termed
patterned accessibility regions (PAR) (Supplemental Data 5).
PAR are defined by chromatin state before and after stimulation.
Five categories of PAR emerged from the analysis: conserved,
stimulated, primed, memory, and naïve (Fig. 8b). Conserved-PAR
were unchanged across all subsets and stimulation states, whereas
stimulation-PAR were present only after stimulation. Each of
these two PAR groups occurred equally in both naïve and MTC
and made up the majority of the accessible chromatin regions
found in the ATAC-seq data in all memory subsets (Fig. 8c,
Supplemental Fig. 8a). Conserved-PAR were also found to be
more highly enriched in promoter regions than other PAR
categories (Supplemental Fig. 8b). PAR specific to MTC occurred
in one of three ways: memory-PAR were specific to MTC and
were unchanged by stimulation; naïve-PAR were present in
resting naïve T cells, but neither their stimulated counterparts nor
in MTC; and finally primed-PAR were accessible in resting and
stimulated MTC and became accessible upon activation in naïve
T cells. Primed-PAR were more than twice as abundant as
memory- or naïve-PAR.

In examining the relationships between PAR types and gene
expression, we observed that the presence of at least one primed-
PAR was strongly correlated with upregulation of DEG in MTC
for both resting and stimulated states (Fig. 8d). A similar
influence of stimulated-PAR was found in the stimulated but not
the resting MTC transcriptional data (Fig. 8e). The presence of
memory-PAR was found to be correlated with both resting and
stimulated expression in MTC, while the presence of naïve-PAR
biased gene expression in most nearby genes towards higher
expression in naïve T cells (Supplemental Figs. 9a, b). Comparing
these nearby DEG to the MTC-specific gene programs as defined

by unique expression after stimulation (Expressed, Augmented,
or Induced) revealed that nearly 80% of the upregulated genes in
the augmented category had at least one primed peak in cis
(Fig. 8f). Additionally, compared to the genome-wide prevalence,
primed- and memory-PAR made up a significantly higher
proportion of all the accessible regions surrounding DEG that
were augmented in MTC (Fig. 8g). This is exemplified by the
PDCD1 locus, a gene showing augmented expression in MTC,
which is also composed primarily with primed-PAR (Fig. 8h).
These data support an epigenetic mechanism of enhanced recall
in which primed-PAR are inscribed in the epigenome upon
previous activation of naïve T cells42 and occur within regions of
the genome that are associated with higher expression levels of
important genes in MTC.

PAR contain distinct sets of transcription factor motifs that
segregate T cells by lineage and memory subtype. To identify
transcription factors associated with each of the identified PAR
categories, motif discovery, and enrichment analysis was per-
formed using HOMER43. To control for uneven power, driven by
unequal numbers of individual peaks in each category (Fig. 8c),
enriched transcription factor binding motifs in DAR were com-
pared across all five peak categories by relative ranking of
enrichment p-values (Fig. 9a). Enrichments of HMG family
transcription factors (LEF1 and TCF7) were more highly ranked
within naïve-PAR, and CTCF-motif enrichment was ranked
highest in the constitutively accessible conserved-PAR (Fig. 9b).
Interestingly, several transcription factor motifs were enriched in
both primed- and stimulation-PAR, including the AP-1 family
factors (Fig. 9b). Motifs specific for other transcription factors
were enriched in both primed-and memory-PAR, including the
T-box factors EOMES and T-BET.

Enrichment rank scores of transcription factor motifs asso-
ciated with primed-PAR across the different memory subsets in
CD8+ and CD4+ T cells clustered according to cell lineage
(Fig. 9c); whereas transcription factor motifs enriched in
memory-PAR clustered according to memory cell subtype
(Fig. 9d). Differences between memory subsets were also
observed, with CD4+ T cells showing slightly higher percentages
of primed-PAR containing AP-1 factor motifs (Fig. 9e). The
percentage of memory-PAR containing T-BET motifs was highest
in CD8+ TEM cells and lowest in CD4+ TCM, a finding that is
consistent with the role of T-box factors in effector T-cell
programming (Fig. 9f)44. The PageRank algorithm was used to
compare the relative importance of different transcription factors
in terms of their effect on target DEG after stimulation. EOMES
was found to have the highest PageRank score in stimulated
CD8+ MTC (compared to stimulated naïve), as well as the
greatest fold change in augmented gene expression (Fig. 9g, i), a
finding consistent with its role in maintaining CD8+ T-cell
memory44,45. PageRank scores for EOMES and T-BET were
similar. T-BET expression was lowest in naïve cells but varied
across MTC subsets and was induced to similar levels irrespective
of subset (Fig. 9h). Protein measurements of both intracellular
EOMES and T-BET via flow cytometry showed that each were
increased after stimulation (Supplemental Fig. 6a); however,
EOMES levels were already significantly high in resting CD8 TEM

and remained unchanged at these high levels after stimulation.
T-BET levels were induced to the highest degree in naïve T cells
in both CD4+ and CD8+ lineage groups. Likewise, the PageR-
ank score and expression of IRF8 were highest in stimulated naïve
T cells (Fig. 9g). Expression data showed that stimulation induced
high levels of IRF8 in naïve cells, but all memory subsets induced
significantly lower levels of IRF8 after the 48 h of stimulation
(Fig. 9h) compared to naïve T cells. Collectively these data show

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04747-9

12 COMMUNICATIONS BIOLOGY |           (2023) 6:363 | https://doi.org/10.1038/s42003-023-04747-9 | www.nature.com/commsbio

www.nature.com/commsbio


that both distinct and overlapping sets of transcription factor
binding motifs are enriched in each of the identified PAR
categories. Moreover, the expression of many of the transcription
factors known to bind such motifs (IRF8, EOMES, T-BET, and
LEF1) are coordinated to regulate and enable unique aspects of
MTC differentiation following stimulation.

Discussion
In this study we used an integrated transcriptomic and epigenetic
sequencing approach to understand the cellular programming of
the largest memory-subset groups found in human blood and
how these programs change in response to ex vivo stimulation. In
addition to specific and differential relationships between subsets
and lineages, a series of regulatory modalities, pathways, and
transcription factors were found to be associated with specific
MTC genes. States of chromatin accessibility in key genes within

MTC revealed a robust mechanism to control gene expression in
response to secondary activation that allow MTC to respond
more efficiently and with fewer epigenetic reprogramming steps.
Regardless of cell lineage, MTC subsets shared nearly one third of
the DEGs that distinguish them from naïve T cells, suggesting a
common memory signature. However, expression differences
between each MTC subset and naïve T cells were also observed in
gene pathways related to important functions such as cytotoxicity,
metabolism, and self-renewal.

It is known that MTC exploit distinct metabolic pathways
based on their differentiation and memory status46–48. Here, in
addition to the transcriptional evidence, we provided additional
characterization of the metabolic states of naïve and MTC sub-
sets. Consistent with previous studies49, we showed that resting
MTC populations predominantly utilize OXPHOS and fatty acid
oxidation for their main or primary metabolic needs and switch
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their metabolism to aerobic glycolysis when they are stimulated
ex vivo. In addition, some of the MTC subsets use the other
pathways to different degrees as a secondary means of metabo-
lism. Previous studies revealed that although both resting naïve
and MTC rely on OXPHOS, naïve T cells harbor less mito-
chondrial mass50. In addition, mitochondria of MTC display

more elongated structures with tight cristae compared to naïve
counterparts, indicating that OXPHOS is highly efficient in these
cells51,52. Supporting these studies, our mitochondria analysis of
T-cell subsets demonstrates distinct distribution of populations
with MTGHi and TMRMHi among the subsets according to their
activation state. In particular, TEM and TCM subsets exhibit
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significantly higher frequency of cells with greater mitochondria
mass and potential than naïve T cells. By contrast, CD8+ TEMRA

cells did not show a significant difference compared to their naïve
counterpart, and stimulation of these cells further decreased the
frequency of MTGHi and TMRMHi, suggesting that these cells are
metabolically distinct than the other MTC subsets. CD4+ MTC
subsets have a similar fatty acid oxidation capacity; however,
CD8+ TEM and TEMRA subsets show increased capacity for this
metabolic pathway compared to naïve counterparts. Consistent
with previous studies53, all activated T cells decreased fatty acid
utilization.

Recent studies showed that MTC shift towards aerobic glyco-
lysis more rapidly than naïve T cells to facilitate a rapid secondary
response54. We showed that TEM and TCM subsets differ in
expression of genes related to the regulation of metabolism and in
particular to acetyl CoA production with differential expression
of glycolysis-promoting enzymes such as LDH. Our metabolic
data confirm that all resting MTC subsets have higher glycolytic
capacity than their naïve counterparts, suggesting a potential
contribution to more efficient secondary responses. Moreover, the
glycolytic capacity of the effector MTC is significantly higher than
central memory and naïve subsets that might be required for their
rapid effector function.

Overall, our data show evidence of a gradient of differentiation
from naïve T-cell progenitors in MTC subsets which is highest in
TEM. We show that this subset exhibits the greatest numbers of
changes from the naïve T-cell transcriptome as well as higher
numbers of changes to chromatin accessibility. TCM, on the other
hand, maintained the highest expression levels of genes that were
also expressed in naïve T cells, a result consistent with other
recent findings55. In addition shared expression of genes in naïve
T cells and TCM MTC includes the transcription factors down-
stream of the WNT-beta catenin signaling pathway (LEF1 and
TCF1), which have been previously associated with self-renewal
and stem-like properties in mature CD8+ T cells56. It is impor-
tant to note that the naïve CCR7+ CD45RA+ T cells isolated in
this study may also contain a small percent of stem-cell MTC:
however, this population has been shown to make up less than
10% of total CD8+ T cells and so likely had a small effect on our
data57.

One mechanism by which MTC may be able to alter the way in
which they respond to antigen stimulation compared to naïve
T cells is through modification of chromatin structure. Large
numbers of chromatin accessibility and epigenetic modifications
such as DNA methylation changes have been observed previously
in mouse CD8+ MTC after acute or chronic viral infections13,58.
Here, we found that all human CD8+ and CD4+ MTC contain
large numbers of DAR compared to naïve T cells. These DAR fell
within loci that were correlated with differential gene expression,
and which progressively increased in both number and magni-
tude from central memory to effector MTC subsets. It remains
unclear whether this variation in epigenetic changes between
central and effector MTC reflects a one-way linear differentiation

path in CD8+ T cells as previously suggested by some models59,
or results from a more complicated plastic development
trajectory58,60. However, fewer differences were found when
comparing the chromatin of CD8+ TEM to TEMRA, suggesting a
closely shared differentiation pathway for these cells. Interest-
ingly, accessibility differences between circulating CD4+ TCM and
TEM were subtle, reflecting their close relationship. This may
reflect a heterogenous population not as well captured by tradi-
tional TCM and TEM definitions, as the diverse roles CD4+

effector T cells play in the immune response is likely to lead to a
memory population that is equally as diverse. Upon activation,
however, CD4+ TEM show a greater degree of transcription and
chromatin accessibility changes (greater than CD4+ TCM), which
may be related to the activation requirement of effector functions
of different CD4+ T-cell effector subsets.

Transcription factor motifs associated with DAR and DEG
identified sets of potential factors that could be responsible for
defining MTC transcriptional networks. T-box, AP-1, and HMG
family transcription factor binding motifs were enriched within
DAR that separate memory from naïve T cells, particularly those
that distinguish effector memory. Supporting these results, the
T-box factors T-BET and EOMES are known to be important in
the formation of CD8+ effector T-cell programming and memory
cell populations respectively44,61. The HMG factor LEF1 has also
been implicated in early T-cell differentiation62. Members of the
bHLH family of transcription factors, such as AHR, HIF1A, and
MSC were found to be important for distinguishing between the
memory subsets. AHR and HIF1A are capable of sensing changes
in environmental conditions38,63. An AHR binding motif found
within a DAR near the promoter of VBP1 (encoding VHL)
suggests one potential mechanism by which AHR modulates
metabolic differences of CD8+ TCM and TEM, as conditional
deletion of this gene has been shown to promote constitutive
glycolysis in CD8+ T cells reminiscent of that exhibited by TEM

64.
Our data suggests that AHR plays a greater a role in the CD4+

MTC and CD8+ TCM subsets, including the highest protein
expression of AHR in TCM after stimulation. The integrated assay
data also suggested that HIF1A might be more important in the
CD8+ TEM population. However, interestingly, protein data for
this factor showed that TEM populations were the only subset
studied for which HIF1A concentration did not increase after
stimulation. Ultimately other mechanisms (such as dynamic
degradation by AHR-regulated genes like VBP1 (VHL)) could be
a part of differential environmental sensing mechanisms between
MTC subsets65. The evidence for unique regulation of HIF1A and
its targets in TEM shown here suggests a potentially important
role in this MTC subset which will require further experi-
mentation to elucidate.

MSC was the most highly ranked transcription factor in all
MTC by the PageRank algorithm, but its expression was absent in
naïve T cells. MSC is a repressor capable of binding E-box ele-
ments as either a homodimer or heterodimer with E2A (TCF3)
and was initially found to be highly expressed in activated B cells

Fig. 9 Transcription factor motif and expression patterns differentiate between memory and naïve T-cell response to stimulation. a Heatmaps of
enrichment rankings for transcription factor binding motifs in each of the PAR categories for CD8+ TEM cells and percent of PAR with the target motif for
the selected example motifs. b Bar plots showing percent of input peaks containing indicated motifs (red) and percent background regions containing motif
(blue) for five motifs representing enrichment specific to one or more of the PAR categories. c, d Phylogenetic dendrogram of transcription factor binding
motif enrichment ranks found within Primed (c) and Memory (d) PAR compared across MTC subset groups. The reproducibility of tree structures was
tested using bootstrapping analysis with the percent reproducibility shown in white boxes for each node. e, f Bar plots showing examples of differences in
percent input PAR containing the indicated motifs across MTC subsets for primed (e) and memory (f) PAR. g Scatter plot showing log2FC of RNA
expression (x-axis) vs PageRank statistic (y-axis) of CD8+ TEM compared to naïve T cells for transcription factors known to bind to motifs found to be
enriched in primed or memory-PAR. h Bar plot showing rpkm values for indicated genes in both resting and stimulated samples. Error bars indicate ±SD.
Asterisks indicate relevant significant differences as detected by DESeq2 algorithm.
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where it has been shown to play a role in promoting memory B
cell differentiation33,66. We showed that it is also highly expressed
in activated T cells as well. The potential interactions of MSC with
E2A is particularly interesting in the context of memory T cells as
motifs specific for this factor were found to surround several
genes repressed in activated CD8+ T cells in mice13. MSC is
expressed by several CD4+ effector T-cell subsets, including Tfh,
Th17, and Treg cells in mice34,67. In human Th17 cells, MSC
inhibits cellular response to IL-2 via STAT5B signaling68. Studies
using genetic mouse models have shown that MSC deficiency
leads to spontaneous gut and lung inflammation with age34 while
also enhancing inflammation and IL-22 secretion in inflamma-
tory bowel disease models69. Despite its clear role in a variety of
settings and evidence of its importance for MTC gene regulatory
networks shown here, it is largely unclear exactly how MSC
participates in regulating MTC, and what role it plays in activa-
tion of naïve and MTC respectively.

Stimulation of T cells led to dramatic changes in both gene
expression and chromatin accessibility. Various cytokines genes
(IL4, IL1A, and IL22) were induced after 48 h of stimulation in
MTC but not in naïve T cells, potentially reflecting a mechanism
for expediting effector gene expression that is unique to antigen-
experienced cells. We showed that induction of these cytokine
transcripts translates directly to higher levels of cytokine protein
in MTC relative to naïve cells under similar stimulation condi-
tions. This effect is most prominent in TEM subsets of both
CD4+ and CD8+MTC which express the highest levels of their
respective effector cytokines. MTC also constitutively express a
large number of genes that are not expressed in naïve T cells but
are upregulated following stimulation. Continuous expression of
effector genes in this category reflects the ability of MTC to
maintain certain effector functions, even in the absence of active
infection, as exemplified by increased expression of the gene
CXCR3 known to play a role in trafficking CD4+ and CD8+

T cells to peripheral sites of inflammation41. Several MTC-
specific genes were augmented in their expression, having high
levels in the resting state that were increased further following
stimulation. These genes were correlated with accessible chro-
matin loci that were present only in MTC prior to stimulation,
suggesting that these genes were poised for expression upon
rechallenge. The transcription factor EOMES exemplifies this set,
with higher expression in MTC potentially facilitating its central
role in the maintenance/programming of these cells44,70.

Binding motifs specific for known activation-induced tran-
scription factors such as AP-1 family members (e.g., BATF) and
their binding partners NFAT and IRF were highly enriched in
both stimulation- and primed-PAR, suggesting that these regions
may also be maintained in an open state in MTC in order to more
rapidly respond to TCR stimulation. Binding site motifs for
transcription factors at primed-PAR separated the samples by
lineage (CD4+ vs CD8+) suggesting distinct epigenetic control of
activation for each lineage. Interestingly, binding motifs within
memory-PAR separated the samples by subset (TCM vs TEM)
irrespective of lineage. The exact cues leading to specific MTC
subset differentiation remain elusive; however, it is likely that
epigenetic mechanisms targeting these memory-subset-specific
PAR play a role when paired with simultaneous expression of
master regulator transcription factors.

Transcription factor motifs may play multiple roles depending
on whether they are maintained in an accessible state within naïve
or MTC, and when matched with expression of their corre-
sponding TF. For example, in all MTC, IRF8 motifs are enriched
in primed- and stimulation-PAR, but network analysis suggests
that this factor plays a greater role in expression changes of
activated naïve T cells than in activated MTC, due perhaps to its
lowered expression in MTC. Coupled with IRF8’s known role in

driving effector T-cell generation in mice71,72, this may suggest
repression of IRF8 as an important aspect of T-cell memory.
Conversely, as noted above, the expression of EOMES is aug-
mented in CD8+ MTC before and after stimulation while
expression of the competing factor T-BET is similar between
naïve and MTC after stimulation. Expression of EOMES after
stimulation in CD8+ MTC is slightly decreased after stimulation,
but still expressed to a greater extent than in stimulated naïve
cells, perhaps leading to a higher overall ratio of EOMES/T-BET
expression in stimulated MTC. This along with the presence of
EOMES/T-BET binding motifs within both memory- and
primed-PAR highlights a potential mechanism by which EOMES
helps drive memory-specific gene expression, particularly in
CD8+ TEM cells, which express high levels of this factor in a
resting state. In its absence, T-BET controls the effector cell
transcriptional response after activation61. Accordingly, higher
resting expression of T-BET and greater accessibility of its target
sites in TEM may drive the effector-like phenotype of this subset.

In summary, MTC display lineage and subset-specific gene
expression and chromatin accessibility patterns. These provide
MTC with a unique epigenetic context driven by a history of their
previous activation during encounters with antigen. In total, these
memory-specific features enable MTC to adopt expression pro-
files of effector T cells more rapidly during secondary immune
challenge.

Methods
Human subjects. Whole blood samples from four deidentified individuals were
obtained with informed consent in accordance with Emory University School of
Medicine Institutional Review Board protocols, IRB00045821. PBMCs were sepa-
rated by density gradient centrifugation (Ficoll-Paque, GE Healthcare), treated with
ACK lysing buffer to remove red blood cells, and washed in PBS.

MACS isolation and ex vivo stimulation. CD4+ or CD8+ T cells were isolated
from PBMC samples using MACS microbead (Miltenyi Biotec) isolation kits (CD4:
#130-096-533, CD8: #130-096-495) via negative selection of non-target cells.
Briefly, 1 × 107 cells were resuspended in 40 μl MACS buffer and incubated with
CD4+ or CD8+ biotin-antibody cocktail and then incubated with 20 μL of T-cell
MicroBead cocktail for 10 min. The flow-through was collected from a MACS
separator column and washed with 3 mL MACS buffer. Collected cells were
separated for either immediate flow sorting (resting cells) or incubated for 42–48 h
in complete Roswell Park Memorial Institute (RPMI) media with anti-CD3/CD28
beads (Gibco: #11131D) for ex vivo stimulation. 106 cells were added to cell sus-
pensions in a 2:1 bead-to-cell ratio before being removed prior to flow staining and
sorting.

Flow cytometry isolation of human memory T-cell subsets. Cells were resus-
pended at 1 × 106/100 µl in FACS buffer (PBS, 1% BSA, and 2 mM EDTA), stained
with CCR7-BB515 (BD biosciences: 565870) for 30 min at 37 °C, and then a
cocktail of the following: CD3-V450 (Tonbo Biosciences: 75-0038), CD4-PE/Cy7
(Biolegend; 300511), CD8-FITC (Life technologies: MHCD08014), CD45RA-PE/
TxRed (Biolegend: 304145), Zombie Yellow Fixable Viability Kit (Biolegend;
423104)) for 30 min at 4 °C and then washed with 1 ml of FACS buffer. The
following gating strategy was used to define memory subsets: lymphocytes were
gated based on SSC-A / FSC-A, single cells by FSC-H / FSC-A, and live cells were
based on exclusion of Zombie Yellow Fixable Viability Kit. T cells of the appro-
priate linage were selected using the markers CD3, CD4, and CD8. Memory and
naïve T-cell subsets were isolated using the markers CCR7 and CD45RA. Cell
sorting was performed at the Emory Flow Cytometry Core using a FACSAria II
(BD Biosciences) and BD FACSDiva software (BD Biosciences). Data were ana-
lyzed and figures generated using FlowJo v10.6.2. Supplementary Table 1 contains a
list of all antibodies and the concentrations used.

RNA sequencing. One thousand cells were sorted directly into RLT buffer (79216;
Qiagen) containing 1% 2-mercaptoethanol. RNA was isolated using the Quick-
RNA Microprep kit (Zymo Research; R1050). The SMART-Seq v4 Ultra Low Input
RNA Kit (634894; Takara Bio) was used for cDNA synthesis, and 400 pg of cDNA
was used as input for the NexteraXT kit (Illumina) to create sequence libraries.
DNA libraries were sequenced at the University of Alabama at Birmingham’s
Heflin center for genomics using a NextSeq500.

RNA-sequencing data analysis. Raw sequencing data were mapped to hg38 using
STAR v.2.5.373. Duplicate reads were identified and removed using PICARD
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(http://broadinstitute.github.io/picard/). Reads per kilobase per million (rpkm)
normalized gene expression counts were derived by analyzing coverage across all
exons that fall within unique ENTREZ genes using the GenomicRanges package74.
The Bioconductor package DESeq275 was used to determine differentially
expressed genes (DEG) which were defined as having an absolute log2 fold-change
of ≥1 and a false discovery rate (FDR) of ≤0.05. Differentially expressed genes are
listed in Supplemental Data 1. All detected transcripts were pre-ranked for gene set
enrichment analysis (GSEA)76 by multiplying the sign of the fold change (±) by
−log10 of the p-value. Heatmaps were generated using the CompexHeatmap R
package77. Three dimensional comparisons of differential expression used the
normalized read counts which were averaged across MTC subset groups, log2
transformed, and converted to barycentric coordinates for visualizing using the
Tri-wise R package20. T-cell-relevant gene sets were obtained from the MSigDB
v7.4 database gene ontology collection (GOBP-GO _ NATURAL _KILLER_
CELL_MEDIATED_IMMUNITY; GOBP-LEUKOCYTE_MEDIATED_CYTO-
TOXICITY), or derived by taking the top 100 upregulated genes in CD8
CD101—,Tim3— cells as described by Hudson, et al. 21. Gene modules were dis-
covered by analyzing genes with detected counts, filtering for DEG, and then
filtering for genes which had an expression value ≥3 rpkm across all samples in any
one sample group. Clustering was performed using fuzzy c-means clustering (using
the ‘cmeans’ function of the e1071 R package) after first estimating the fuzzifier
parameter78 and a selecting a c value based on analysis of within sum of squared
error. Module assignments for each gene are listed in Supplemental Data 2 (CD8+

DEG) and Supplemental Data 3 (CD4+ DEG).

ATAC-seq. For each sample, 1000–20,000 cells were sorted into FACS buffer and
Tn5 transposition was performed79. Briefly, cells were resuspended in 12.5 μl 2×
tagmentation DNA Buffer, 2.5 μl Tn5, 2.5 μl 1% Tween-20, 2.5 μl 0.2% Digitonin,
and 5 μl H2O and incubated at 37 C for 1 h. Cells were then lysed with the addition
of 2 μl 10 mg/ml Proteinase-K, 23 μl Tagmentation Clean-up buffer (326 mM NaCl,
109 mM EDTA, 0.63% SDS), and incubated at 40 °C for 30 min. Tagmented DNA
was purified and size selected for small fragments using AMPure XP beads
(Beckman Coulter, A63881) and PCR amplified (Roche, KK2602) with dual
indexing primers (Illumina, FC-131- 2004) to generate a sequencing library. Final
libraries were again purified, and size selected using AMPureXP beads, quantitated
by QuBit (Life Technologies, Q33231), size distributions determined by bioanalyzer
(Agilent 2100), pooled at equimolar ratios, and sequenced at the Emory Non-
human Primate Genomics Core on a NovaSeq6000 using a PE100 run.

ATAC-seq data analysis. Raw sequencing data was mapped to the hg38 genome
using Bowtie v1.1.180. Peaks of accessibility enrichment were called using MACS2
v2.1.081 and annotated to the nearest gene using HOMER43. Differential testing of
accessible peak regions was performed using DESeq2 using the cutoffs of FDR ≤
0.05 and >1.5 log2 fold-change to establish significance. Differentially accessible
regions are listed in Supplemental Data 4. Count-based motif enrichment analysis
was performed using the chromVAR31 R package. For this analysis, peaks iden-
tified by MACS2 were restricted to a fixed width of 250 bp using the ‘resize’
function from the GenomicRanges74 package in R. A matrix of counts for fragment
insertions within these peaks was then generated using the ‘getCounts’ function
from the ChromVAR package using the previously mapped sequencing reads.
Overlapping peaks or those containing no fragment counts were excluded from the
analysis and the motifs for transcription factor binding sites were sourced from the
JASPAR82 database. Discovery of patterned accessibility regions (PAR) was per-
formed using a custom R script, which used FDR cutoffs in either resting or
stimulated comparisons. For example, primed-PAR were defined as significantly
differential between stimulated and unstimulated naïve cells with a non-zero
log2FC as well as significant in differential comparison between unstimulated naïve
and MTC. A list of all PAR assignments for each locus can be found in Supple-
mental Data 5. The HOMER ‘findMotifsGenome.pl’ function was used for de novo
motif enrichment analysis or known motif enrichment from this database. Relative
enrichment rank change values were calculated using HOMER by normalizing the
enrichment p-values for individual motifs in each set of peaks by the total number
of enriched motifs found in that peak set. Resulting values were than z-score scaled
for relative comparison across groups.

Integrated analysis and statistics. For principal component analysis, normalized
count data was mean scaled by row (across samples) and then analyzed using the
‘princomp’ function from the stats package in R. Phylogenetic analysis was per-
formed by computing a Euclidean distance matrix between enrichment rank values
and clustering using the ‘hclust’ function in R. Trees were plotted with APE v3.483

as unrooted trees. Bootstrapping was used to assess the reproducibility of clustering
using the ‘boot.phylo’ function with 10,000 permutations. PageRank84 analysis was
performed using both normalized differential expression values derived from the
RNA-seq data as well as raw ATAC-seq data. All statistical analyses were per-
formed with R using DESeq2 for large-scale statistical analysis of RNA-seq or
ATAC-seq data or using Wilcoxon Rank sum tests on individual genes with
p ≤ 0.05 considered significant.

For all metabolic assays, a one-way ANOVA with multiple comparisons was
used to determine significance. Three to six independent samples were used in
these assays as indicated in the legends. Values p ≤ 0.05 were considered significant.

Metabolic flux analysis (Seahorse assay). ECAR was measured with XF96
Extracellular Flux Analyzer (Seahorse Bioscience). Human PBMCs isolated from
three different donors. T cells were enriched by using human Pan T-cell isolation
kit (Miltenyi Biotec). Cells were stained with antibodies to CD3 (BV450), CD4
(APC), CD8 (APC-Cy7), CD45RA (BV650), CCR7 (AF488) and ghost viability dye
(BV510). Then, CD4+ (naïve, TEM, TCM) populations were sorted by FACS. The
cells were cultured in RPMI media supplemented with IL-7 and IL-15 for 2 days
with or without anti-CD3/CD28 beads (1:2 ratio). Cells were harvested, washed,
and then resuspended in XF RPMI media. Cells (180,000–250,000) were trans-
ferred into a poly-D-lysine coated 96-well plate as three technical repeats for each
cell type and centrifuged at 400xg for 5 min to allow the cells to collect into
monolayer at the bottom of the plate. The plate was incubated at 37 °C non-CO2

incubator for 1 h and then placed into the XF96 Extracellular Flux Analyzer. Cells
were monitored under basal conditions and in response to 10 mM glucose, 1 μM
oligomycin, 100 mM 2-Deoxy-Glucose. ECAR values were extracted from Agilent
Seahorse Wave Desktop software and normalized according to the initial cell
number. Glycolysis, glycolytic capacity and glycolytic reserve values were calculated
according to the equations provided at Agilent Report Generator User Guide.

Mitochondrial measurements. T cells were enriched from human PBMCs by
using a human Pan T-cell isolation kit (Miltenyi Biotec). The cells were cultured in
RPMI media supplemented with IL-7 and IL-15 for 2 days with or without anti-
CD3/CD28 beads (1:2 ratio). For assessment of mitochondrial mass, the cells were
incubated with 25 nM MitoTracker Green FM (MTG, Invitrogen) for 1 h. To
investigate the mitochondrial membrane potential of the cells, TMRM dye (Invi-
trogen) was added to a final concentration of 100 nM for the last 30 min of the
above MTG incubation. Cells were stained with anti- CD3 (BV450), CD4 (PE-
Cy7), CD8 (APC-Cy7), CCR7 (APC), and CD45RA (AF700) antibodies. Unfixed
samples were immediately analyzed, and all samples were analyzed on a BD
Fortessa flow cytometer.

SCENITH assays. T cells were enriched from freshly isolated human PBMCs. The
cells were plated in a 96-well round bottom plate and rested at 37 °C, 5% CO2 for
2 h. Some samples were stimulated with anti-CD3/CD28 beads (2:1 ratio) for 1 day.
If the cells were not stimulated, the SCENITH protocol was performed after the 2 h
resting step. In the SCENITH protocol, cells were untreated or treated with 2-
deoxy-glucose (250 mM, Sigma–Aldrich), oligomycin (1.5 µM, Sigma–Aldrich), or
a combination of both drugs for 20 min at 37 °C. Puromycin (10 µg/ml, Sigma-
Aldrich) was added, and the cells were incubated at 37 °C for another 25 min. The
cells were immediately washed with FACS buffer, then the surface staining was
performed. The cells were incubated with anti-CD3 (V450), CD4 (PE-Cy7), CD8
(APC-Cy7), CCR7 (FITC), CD45RA (AF700) antibodies and ghost viability dye
(BV510) in FACS buffer at 4 °C for 20 min. After washing with FACS buffer, the
cells were fixed and permeabilized using Foxp3 intracellular staining kit (Invitrogen
eBioscience) for 1 h at room temperature. Intracellular staining of puromycin was
performed by using 1:1100 dilution of anti-puromycin (AF647) antibodies (Clone
12D10, Sigma-Aldrich) in kit supplied perm/wash buffer. The cells were incubated
at room temperature for one hr, and then washed with perm/wash buffer twice.
Finally, the cells were resuspended in FACS buffer and analyzed by flow cytometry.
The mitochondrial dependence, glucose dependence, glycolytic capacity, fatty acid,
and amino acid oxidation capacity (FAO and AAO) were calculated from the MFI
of puromycin in the different treatments28 with adjustment of range values across
samples within a group if a value within the group was negative. Briefly, percent
mitochondrial dependence is calculated as the difference between control and
oligomycin-treated cells divided by the difference between control and 2-deoxy-
glucose plus oligomycin-treated cells. Percent glucose dependence was calculated as
difference between control and 2-deoxy-glucose-treated cells divided by the dif-
ference between control and 2-deoxy-glucose plus oligomycin-treated cells. Gly-
colytic capacity and FAO and AAO capacity were calculated by subtracting the
percent mitochondrial capacity or percent glycolytic capacity from 100,
respectively.

Detection of intracellular proteins by flow cytometry. For intracellular cytokine
detection experiments, T cells were enriched from PBMC as above and stimulated
for 48 h with anti-CD3/CD28 beads (2:1 ratio). The cells were incubated with both
Golgi Stop (BD Biosceinces) and Brefaldin A (Biolegend) for 5 h at 37 °C. Surface
staining was performed with washed cells using by anti- CD3 (BV605), CD4
(BV785), CD8 (APC-Cy7), CCR7 (AF488), CD45RA (AF700) antibodies and ghost
viability dye (BV510). After washing with FACS buffer, cells were fixed and per-
meabilized for 20 min using the Cytofix/Cytoperm kit (BD Bioscience). The cells
were again washed with permeabilization buffer. Intracellular staining was per-
formed to detect the cytokines by using IL-1α (PE), IL-4 (APC), IL-2 (PE-Cy7), IL-
5 (eflour450), IFNγ (BV711), TNFα (BV650), IL-22 (BUV737), and IL-17 (PerCP)
antibodies in permeabilization buffer. The isotype controls used were Mouse IgG1,
κ Isotype (PE), Rat IgG1, κ Isotype (APC), Rat IgG2a, κ Isotype (PE/Cy7), Rat IgG1
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κ Isotype (eflour450), Mouse IgG1, κ Isotype (BV711), Mouse IgG1, κ Isotype
(BV650), Mouse IgG1 κ Isotype (BUV737), Mouse IgG1 (PerCP). The cells were
incubated at 4 °C for 30 min, and then washed with permeabilization buffer and
resuspended in FACS buffer. The samples were analyzed by flow cytometry.

To detect the transcription factors levels in unstimulated and stimulated T cells
(with anti-CD3/CD28 beads for 2 days), surface staining was performed with anti-
CD3 (BV650), CD4 (BV711), CD8 (APC-Cy7), CCR7 (AF488), and CD45RA
(AF700) for 20 min at 4 °C. After washing the cells, they were fixed and
permeabilized using the Foxp3 intracellular staining kit as above. Intracellular
staining was done using antibodies to EOMES (PE-Cy5.5), T-BET (BV421), HIF1α
(APC), and AHR (PE-Cy7). Following staining for MSC, cells were restained with
an anti-rabbit secondary antibody (PE). The isotype controls used were Mouse
IgG1 κ Isotype (PE/Cy5.5), Mouse IgG1, κ Isotype (BV421), Mouse IgG1 (APC),
Mouse IgG2b κ Isotype (PE/Cy7), Rabbit IgG. The cells were washed with
permeabilization buffer and resuspended in FACS buffer for flow cytometry
analysis.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All sequencing data have been deposited in NCBI Gene Expression Omnibus (GEO)
under the following accession numbers GSE186463 for RNA-seq and GSE186462 for
ATAC-seq. Raw data used to create Fig. 1f, 2b, l, 3c, d, f, h-p, 5i, 7g, h, 8d–g, 9b, e, f, and
h are included in Supplemental Data 6.

Code availability
Code and data processing scripts are available from the corresponding author upon
request and at https://github.com/cdschar/Rose_MTC_genomics or at https://doi.org/10.
5281/zenodo.7692608.
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