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Worldwide, populations face significant burdens from neurodegenerative disorders (NDDs), especially
Alzheimer’s and Parkinson’s diseases. Although there are many proposed etiologies for neurodegenera-
tive disorders, including genetic and environmental factors, the exact pathogenesis for these disorders
is not fully understood. Most patients with NDDs are given lifelong treatment to improve their quality
of life. There are myriad treatments for NDDs; however, these agents are limited by their side effects
and difficulty in passing the blood–brain barrier (BBB). Furthermore, the central nervous system (CNS)
active pharmaceuticals could offer symptomatic relief for the patient’s condition without providing a
complete cure or prevention by targeting the disease’s cause. Recently, Mesoporous silica nanoparticles
(MSNs) have gained interest in treating NDDs since their physicochemical properties and inherent ability
to pass BBB make them possible drug carriers for several drugs for NDDs treatment. This paper provides
insight into the pathogenesis and treatment of NDDs, along with the recent advances in applying MSNs as
fibril scavengers. Moreover, the application of MSNs-based formulations in enhancing or sustaining drug
release rate, and brain targeting via their responsive release properties, besides the neurotoxicity of
MSNs, have been reviewed.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Neurodegenerative diseases (NDDs) are permanent damage and
loss of neurons in various parts of the central nervous system
(CNS). This deterioration, especially in the intellectual or cognitive
locus, can negatively affect the patient’s clinical condition and life-
style. Recently, genetic and environmental factors have been iden-
tified as potential risk factors for certain types of NDDs
(Manoharan et al., 2016). NDDs encompass a variety of debilitating
conditions that affect the nervous system and lead to progressive
deterioration of mental and physical abilities. These include well-
known disorders such as Alzheimer’s disease (AD) and Parkinson’s
disease (PD), and other less common conditions, such as Hunting-
ton’s disease, and ataxia (Migliore and Coppedè, 2009).

AD is significantly prevalent among older people and responsi-
ble for dementia in 60–80 % of patients (DeTure and Dickson,
2019), which may be either sporadic or familial. Alzheimer’s
patients experience mood swings, irritability, aggressiveness,
memory problems, and a moderate decline in vital functions
(Petrovic et al., 2007). The main pathological hallmarks of AD
include the formation of extracellular amyloid plaques, composed
of aggregates of amyloid-b peptides, and intracellular neurofibril-
lary tangles, composed of hyperphosphorylated tau protein
(Castellani and Perry, 2013; Castellani et al., 2022). Additionally,
these lesions can be induced by the mutations of certain genes,
such as PSEN1 and PSEN2 (Kabir et al., 2020; Weggen and Beher,
2012). On the other hand, PD is the second most common neurode-
generative disorder, characterized by age-related progressive
degeneration of dopamine-producing neurons in the substantia
nigra, leading to motor dysfunction such as tremors, stiffness and
difficulty with movement (Bahbah et al., 2021; Magrinelli et al.,
2016). The incidence of PD increases with age, while its prevalence
is about 1900 cases per 100,000 individuals over 80 years
(Pringsheim et al., 2014). The degeneration of dopaminergic neu-
rons in the substantia nigra pars compacta region of the brain is
a defining characteristic of PD, and is closely linked to the accumu-
lation of Lewy bodies. Moreover, the overexpression or mutation of
the a-syn gene is a major contributing factor to the development
and progression of PD (Ouerdane et al., 2022).

Treatment of Alzheimer’s and Parkinson’s disease poses signifi-
cant challenges due to the complex nature of these neurodegener-
ative disorders. Treating AD includes Acetyl cholinesterase
inhibitors, which block the degradation of Acetylcholine (Ach) by
cholinesterase enzymes, leading to increased Ach concentration
within the synaptic cleft (Eldufani and Blaise, 2019; Sharma,
2019). Besides, the N-methyl D-aspartate receptors antagonist pre-
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vents glutamate receptors from being overactivated, as a result,
restoring the influx of Ca2+ ions to the normal. Unfortunately,
regardless of the effectiveness of the previously mentioned thera-
pies, they can only provide symptomatic relief but are inept in
treating the underlying causes or preventing the recurrent epi-
sodes of these diseases (Carvajal et al., 2016). Whereas the treat-
ment of PD includes levodopa (L-Dopa) that is a dopamine
agonist, and monoamine oxidase B inhibitor. Despite being the
most potent oral drug, L-Dopa often leads to motor fluctuations
with doses of � 600 mg/day (Parkinson Study Group, 2004). The
fluctuations observed with dopamine agonist monotherapy are
much less common than on L-Dopa monotherapy. Nevertheless,
dopamine agonists may also cause additional side effects such as
hallucinations, somnolence, and leg edema. However, the existing
approaches to treat PD are based on symptomatic alleviation that
attempts to adjust dopamine levels in the brain or correct move-
ment impairments (Dietrichs and Odin, 2017; Parkinson Study
Group, 2004; Holloway et al., 2004; Reichmann, 2016).

Several drug discovery studies have been concerned with devel-
oping novel treatments for PD (Green et al., 2019). Meanwhile,
other drug development studies were concerned with encapsulat-
ing different CNS-acting agents, such as apomorphine in solid lipid
nanoparticles (SLNs) (Loureiro et al., 2017) and nanostructured
lipid carriers (NLCs) (Cunha et al., 2021). For instance, Hsu et al.
(2010) studied three different formulations (NLCs, SLNs, and lipid
emulsions) containing entrapped apomorphine. The study results
confirmed that lipid emulsions were the best at providing sus-
tained delivery of apomorphine. However, in vivo real-time biolu-
minescence proved that NLCs could build up in specific areas in
the brain, unlike the other formulations (Tapeinos et al., 2017).
Since many drugs for AD and PD treatment are incapable of cross-
ing the Blood-Brain Barrier (BBB), lipid-based formulations have
gained substantial interest as candidates for treating NDDs because
of their small size and the feasibility of passing the BBB.

Although polymeric nanostructures offer numerous advantages,
for example, tunable particle size, shape, and high loading capacity,
they also exhibit some demerits, such as immunogenicity, biocom-
patibility, and the presence of organic solvent residuals. Neverthe-
less, numerous modification approaches have been developed to
curtail these issues (Patel et al., 2012; Tapeinos et al., 2017).
Recently, drug delivery systems (DDSs) are becoming increasingly
essential to minimize the limitations of conventional therapies,
such as lacking selectivity and their poor bio-distribution (Bhatia,
2016). A well-designed DDS can greatly enhance the therapeutic
outcome of a drug by precisely delivering it to the targeted site
while preserving the integrity of the drug molecule, thus minimiz-



Fig. 1. (A) Key caustive factors in Parkinson’s disease, (B) Neuropathological features of Alzheimer and parkinsons diseases, (C) Steps of amyloid plaque formation. This
Figure was created by Biorender.com with permission number: ES24P6SJ3E.
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ing the undesired side effects. Furthermore, current development
in nanotechnology has shown the merits of nanoparticles (particles
smaller than 100 nm) as effective drug carrier due to their unique
physicochemical and biological properties (Yetisgin et al., 2020).

Several types of novel DDSs include a wide range of materials
such as silica- and carbon-based porous nanoparticles (Wang
et al., 2018; Zhang et al., 2018), responsive liposomes (Lee and
Thompson, 2017), SLNs (Geszke-Moritz and Moritz, 2016), den-
drimers (Chauhan, 2018), self-emulsifying emulsions (Singh,
2021), polymeric and magnetic nanoparticles (Assa et al., 2017;
Tabatabaei Mirakabad et al., 2014). The nanoparticle-based DDSs
were employed for brain targeting and have shown to be good can-
didates for improving the efficacy of the active ingredient and lim-
iting its adverse effect. Biomedical applications of silica have
expanded rapidly in recent years (Huang et al., 2022). For example,
mesoporous bioactive glass (MBG), provides good biocompatibility
and bone regeneration ability via loading different proteins or
drugs within the surfaces of MBG (Zhang et al., 2012). Additionally,
MSNs have been thoroughly investigated in controlled drug release
due to their physicochemical properties, such as homogeneous
pore network, large surface area, low toxicity, and improved bio-
distribution of the loaded cargo (Vallet-RegÃ, 2010).
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Silica nanoparticles (SiNPs) are inert and can be easily loaded
with various fluorescent probes or surface-modified with function-
alizing agents (Ow et al., 2005; Qian et al., 2008). For instance,
Schmidt et al., (2018) loaded MSNs with brain-derived neu-
rotrophic factor, which were able to remainin the neurons of the
ganglia and achieve a sustained release of the neurotrophic factor
for 80 days. Furthermore, the in vivo studies conducted by
Barandeh et al., (2012) showed that MSNs can penetrate neurons
without exerting any cytotoxic effect on drosophila. Also, MSNs
can cross the BBB in mice, and their transport efficiency is reliant
on size and not affected by drug loading (Jampilek et al., 2015;
Liu et al., 2014). To the best of our knowledge, there are no reviews
on the applications of MSNs as scavengers of neurotoxic fibrils pre-
cipitating the progression of NDDs. In addition, the ability of MSNs
to control drug release through enhancing, sustaining, and target-
ing the delivery of the active principals to CNS has been discussed.
2. Pathogenesis of Parkinson’s disease

Various key molecular events have been identified in in vitro
and in vivo modelling studies, along with the findings of the

http://Biorender.com
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post-mortem analysis of PD patients. These events include a-
synuclein (a-syn) misfolding and accumulation, dysregulation of
protein homeostasis, impaired mitochondrial function, neuroin-
flammation, and oxidative stress, resulting in a vicious cascade of
insults that eventually cause irreversible cellular damage
(Fig. 1B) (Kumar and Singh, 2015; Soares Martins et al., 2021).
The synaptic protein alpha-synuclein (a-syn) is considered the pri-
mary constituent of Lewy bodies and neurites, which are abnor-
mally accumulated inclusions in the dopaminergic neurons in the
substantia nigra pars compacta and cause neuronal death
(Fig. 1A) (Kalia and Lang, 2015; Raza and Anjum, 2019). a-syn is
not only a pathogenic hallmark of PD but also of dementia with
Lewy bodies and multiple system atrophy (Rocha et al., 2018). In
the early stages, PD patients exhibit motor dysfunction, and mis-
folded a-syn is mainly found in areas responsible for motor func-
tion. While at the late stages of the disease, misfolded a-syn is
located in cortical structures controlling higher cognitive process-
ing (Henderson et al., 2019). Besides, Masuda-Suzukake et al.,
(2013) support the belief of a-syn migration between neurons
via synaptic terminals in a prion-like manner, where misfolded
a-syn can propagate the formation of Lewy bodies in the recipient
neuron in mice.

Mutation of the human a-syn gene leads to an autosomal dom-
inant form of PD through overexpression of a-syn. Furthermore,
dysregulation of protein homeostasis mechanisms induces the
accumulation of misfolded a-syn. For instance, the mutation in
GBA1 causes the loss of-enzymatic activity of GCase (essential in
autophagy), resulting in lysosomal substrate accumulation. In
addition, the overexpression of mutant GBA1 results in glucosylce-
ramide accumulation and promotes the p62 and a-syn aggregation
(Bae et al., 2014; Stojkovska et al., 2018). Moreover, loss-of-
function mutations in PARK2 impair parkin E3 ligase activity and
promote the aggregation of a-syn and the formation of Lewy bod-
ies (Madsen et al., 2021). This is ascribed to the failure of interac-
tion between mutant Parkin and a-syn, causing early-onset
autosomal recessive PD.

Certain species of a-syn are involved in inhibiting mitochon-
drial protein import by binding to the TOM20 receptor and pre-
venting its co-receptor TOM22 from binding to it, resulting in
oxidative stress and impaired mitochondrial functions (Di Maio
et al., 2016). These species might also potentiate neuroinflamma-
tion via microglial activation and cause elevated production of
reactive oxygen species (ROS) (Duffy et al., 2018). Mitochondrial
dysfunction originating from exposure to neurotoxins has a poten-
tial role in PD pathogenesis. For example, MPTP exposure causes a
rapid onset of the parkinsonian phenotype and deterioration in the
dopaminergic neurons in the substantia nigra, mainly through
inhibiting mitochondrial complex I activity. Additionally, muta-
tions in specific genes such as PARKIN, and PINK1, responsible
for the clearance of damaged mitochondria through mitophagy,
lead to early-onset autosomal recessive PD (Borsche et al., 2021;
Malpartida et al., 2021; Mani et al., 2021).

Inflammatory processes were identified as the main contribu-
tors to the pathogenesis of PD. Although neuroinflammation is
supposed to be a neuroprotective process and compensate for neu-
ronal damage, its neurotoxic effects can exacerbate the dopaminer-
gic neuronal damage. Neuronal loss is usually accompanied by
inflammatory changes in microglia, astrocytes, innate immune
cells, and infiltrating peripheral immune cells (Gelders et al.,
2018; Mani et al., 2021; Park et al., 2018). Even though the trigger
of the immune system is still unknown, debris of degenerating
neurons such as human neuro-melanin is suspected of inducing
neuroinflammation (Badanjak et al., 2021; Vila, 2019).

According to the Braak hypothesis, the pathological hallmarks
of intra-neuronal a-syn aggregations arise from the olfactory bulb
and the nerves in the gut. Then a-syn spreads to the brain through
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the olfactory tract and the vagus nerve. The occurrence of some
clinical symptoms, such as constipation ten years before motor
symptoms, can further support this hypothesis (Braak et al.,
2006; Henderson et al., 2019). Furthermore, bowel inflammation
induced by E. coli-producing amyloid protein curli or bacterial
products, such as lipopolysaccharide, allows a-syn build up in
the gut or brain (Baizabal-Carvallo and Alonso-Juarez, 2020;
Chiang and Lin, 2019). Several studies have shown that resecting
the vagus nerve and appendix may limit the probability of devel-
oping PD (Jankovic and Tan, 2020).
3. Pathogenesis of Alzheimer’s disease

Pathogenesis of AD starts with the sequential processing of
amyloid precursor protein by b-secretases (BACE1) and c-
secretases to produce two main types of Ab polymers, Ab40 and
Ab42. Ab42 is more toxic, less soluble, and more aggregation-
prone than Ab40. Gene mutations like PSEN1 and PSEN2 were found
to participate in early-onset autosomal-dominant AD through
excessive production of the more toxic forms of amyloid as Ab42
leading to faster progression of neurodegeneration. Ab undergoes
oligomerization and then polymerization into insoluble amyloid
fibrils that aggregate into plaques, resulting in neurotoxicity
(Fig. 1C) (Shen and Kelleher III, 2007; Tiwari et al., 2019). Further-
more, this polymerization results in tau pathology induction
through activating kinases, leading to hyperphosphorylation of s
protein and aggregation into insoluble neurofibrillary tangles
(NFTs). NFTs are highly insoluble patches in the neuronal cyto-
plasm that impair communication between neurons and lead to
apoptosis (Fan et al., 2020; Grundke-Iqbal et al., 1986; Vergara
et al., 2019). The accumulation of plaques and tangles is followed
by microglia recruitment around plaques, leading to microglial
activation and triggering innate immune responses against Ab pla-
ques and NFTs (Heneka et al., 2015; Tiwari et al., 2019).

ACh significantly affects cognitive functions and other physio-
logical processes, including memory. The progressive degeneration
of cholinergic neurons occurring in the brains of AD patients con-
sequently leads to impaired cognitive function and memory loss.
It was also demonstrated that b-amyloid could reduce ACh release
and choline uptake. This is possibly due to interactions between
ACh esterase and Ab peptide as well as the neurotoxicity of Ab oli-
gomers. Additional factors involving the usage of cholinergic
receptor antagonists (scopolamine) and reduction in glutamate
concentration and D-aspartate uptake might lead to the progres-
sion of neuronal damage (Breijyeh and Karaman, 2020; Ferreira-
Vieira et al., 2016; Monczor, 2005).
4. Classification of silica

Mesoporous silica is a versatile class of silica with a pore size
range between 2 and 50 nm, making it useful for applications such
as drug delivery, catalysis, and sensing (Jafari et al., 2019). There
are several different types of mesoporous silica, including MCM-
41, SBA-15, and SBA-16, each with unique pore sizes and structures
that can be tailored for specific applications (Wang, 2009). A typi-
cal approach in synthesizing MSNs typically involves a template-
assisted approach using surfactants or block copolymers or the
evaporation-induced self-assembly method, which combines a sil-
ica precursor, surfactant, and solvent to form the desired meso-
porous structure (Kumar et al., 2017). The structure of MSNs can
be tailored using various structure-directing agents during synthe-
sis, including cetrimonium bromide and poloxamers. For instance,
incorporating cetrimonium bromide as a templating agent results
in the formation of mobile crystalline material (MCM) systems,
while poloxamers lead to the formation of Santa Barbara amor-
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phous (SBA) systems (Narayan et al., 2018). These methods are
simple and efficient in creating the ordered mesoporous silica
structure. Additionally, there are other types of silica materials,
such as nonporous silica, microporous silica, and hierarchical por-
ous silica, each with unique properties and applications. This sec-
tion will delve into the various types of silica as follows:

4.1. Silica gel

Silica gels can be defined as porous and granular forms of amor-
phous silicas, consisting of a complex net of microscopic pores that
can adsorb water and other organic solvents; as a result, silica gel
has been used as a drying agent in dehumidification operations. In
addition, silica gel can be applied in chromatography and separa-
tion techniques (Loy, 2003; Pourhakkak et al., 2021).

4.2. Fumed silica

The fumed silica manufacturing process includes the combus-
tion of volatile silanes, for example, silicon tetrachloride, in an
oxygen-hydrogen flame. The pyrogenic origin nature of the manu-
facturing process allows fumed silica to have a structure of finely
dispersed, aggregated particles and a large surface area with high
activity (silanol group). As a result, fumed silica is used in various
applications, such as a free-flowing additive in powder-like solids
and as an active filler and thickening agent of liquids (Barthel
et al., 2005).

4.3. Precipitated silica

Precipitated silica can be produced from a water glass solution
followed by adding sulphuric acid under specific conditions. Large
particles and tiny particles can be generated by tuning the desired
specific surface area. Precipitated silica is mainly used for food
manufacture as a flow regulator (e.g. SIPERNAT�) and recently in
the pharmaceutical industry (Müller et al., 2008). Furthermore,
precipitated silica has been employed in water purification
because of its heavy metal adsorption capacity (Agaba et al., 2018).

4.4. Spherical silica

Nonporous amorphous SiNPs are usually used for cosmetics
manufacturing and printer toners. Nevertheless, spherical silica
Table 1
Characteristics of different classes and subtypes of mesoporous silica.

Class Subtype Pore volume
(cc/g)

Pore diameter
(nm)

MCM MCM-41 >1.0 1.5–8
MCM-48 >1.0 2–5
MCM-50 >1.0 2–5

SBA SBA-11 0.68 5.8
SBA-12 0.83 3.1
SBA-15 1.17 6–10
SBA-16 0.91 5–15

FDU FDU-2 0.98 2.3–3
FDU-11 1.88 2.7
FDU-12 0.27–0.48 36
FDU-13 1.83 1.7

KIT KIT-5 0.45 9.3
KIT-6 1.37 10.5

Other types COK-12 0.45–1.23 5.5–6
FSM-16 0.96 3.2–3.9
HMM-33 – 4–15
TUD-1 0.5–1.7 2.5–25

MCM: Mobil Composition of Matter, SBA: Santa Barbara amorphous; FDU: Fudan Univer
Oppervlaktechemie en Katalyse/Centre for Research Chemistry and Catalysis, FSM: fold
Technical Delft University.
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has been implemented in developing DDSs in recent years (Xu
et al., 2019). Because of their characteristics, including large sur-
face area-to-volume ratio, chemical stability, and ease of surface
modification, it was also employed in chromatography and separa-
tion techniques (Wei et al., 2012), besides molecular imaging as a
platform for contrast agent incorporation (Yong et al., 2009).

4.5. Colloidal silica

Colloidal SiNPs can be produced through the base-catalyzed
hydrolysis and polycondensation of tetraethyl orthosilicate (TEOS)
in an alcoholic medium with variation in the concentration and
ratios of water, ammonia, and TEOS to control the particle size
(Arantes et al., 2012). Recently, colloidal nanoparticles have been
involved in many technological applications, for instance, the
development of opal photonic crystals (Santamaría Razo et al.,
2008) and coating material (Rubio et al., 2005).

4.6. Mesoporous silica

MSNs can be synthesized with a template made of micellar rods
reacting with TEOS, forming nanosized spheres or rods with a reg-
ular arrangement of pores. MSNs exhibit numerous attractive
physicochemical properties, including uniform adsorption, bio-
compatibility, large pore volume to the surface area, easy surface
modification and low cytotoxicity. Because of these attributes,
MSNs were employed in drug delivery, biosensing and bioimaging
(Grumezescu et al., 2013; Lakshmi and Pola, 2020). In Table 1, we
discuss several important classes of mesoporous silica that can be
used in different drug delivery applications.

Although L-Dopa is considered the agent with high efficacy in
treating PD symptoms, its efficacy decreases over time; therefore,
larger doses are necessary to maintain the desired response. For
this reason, alternative DDSs were developed to achieve a sus-
tained action, slow and continuous release of L-Dopa, and extend
its effectiveness (Bardajee et al., 2020; López et al., 2015).

Morales and his colleagues (2021) demonstrated that L-Dopa-
loaded MSNs of different shapes and sizes could be prepared by
amidation of L-Dopa with fatty acids such as decanoyl chloride
and oleoyl chloride to form anionic surfactants. These novel surfac-
tants were designed to form nanomicelles containing L-Dopa as
drug-based structured-directing agents. As an advantage of this
synthetic process, several steps of surfactant removal and
Symmetry Reference

Hexagonal (Karaman and Kettiger, 2018)
Cubic (Kruk et al., 2000)
Lamellar (Kruk et al., 2000)
Cubic (3D) (Kruk et al., 2000)
Hexagonal (3D) (Karaman and Kettiger, 2018; Kruk et al., 2000)
Hexagonal (2D) (Kruk et al., 2000)
Cubic (Karaman and Kettiger, 2018)
Cubic (Chircov et al., 2020; Farjadian et al., 2019)
Tetragonal (Chircov et al., 2020; Poyatos-Racionero et al., 2020)
Cubic (Chircov et al., 2020; Huang et al., 2010)
Orthorhombic (Chircov et al., 2020; Poyatos-Racionero et al., 2020)
Cubic (Narayan et al., 2018)
Cubic (3D) (Hochstrasser et al., 2020; Kleitz et al., 2003a)
Hexagonal (Chircov et al., 2020; Karaman and Kettiger, 2018)
Hexagonal (2D) (Chircov et al., 2020; Zimowska et al., 2016)
Disordered (Chircov et al., 2020; Shen et al., 2002)
Disordered (Chircov et al., 2020; Heikkila et al., 2007)

sity; KIT: Korean Advanced Institute of Science and Technology, COK: Centrum voor
ed sheets of mesoporous materials, HMM: Hiroshima Mesoporous Material, TUD:



Fig. 2. L-Dopa % release profile from the HMSNs synthetized based on the templates (A) N-decanoyl-L-Dopa, (B) and N-oleyl-L-Dopa. (C) Diagram depicting the pore structure
of SBA-15 and PHTS; (D) The L-DOPA % release profile for six different types of MSNs. This Figure was reproduced under Creative Commons license from ref. (Morales et al.
2021; Swar et al. 2019).
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subsequent drug incorporation have been avoided. Additionally,
findings of drug release revealed that the developed MSNs-based
DDS were pH-responsive since there was hardly any release under
acidic conditions in the stomach pH (1.2) (Fig. 2A and B). However,
under neutral conditions in the intestinal pH (7.4), L-Dopa was
released in a continuous and sustained manner.

Swar et al. (2019) evaluated the efficiency of L-Dopa loading and
its in vitro release via UV–vis spectroscopy from six types of meso-
porous silica materials [MCM-41(HO), MCM-41 (S), MCM-48, SBA-
15, PHTS, and MCF] which are varying in pore diameters and mor-
phologies. As for drug loading capacity per 10 mg of the prepared
mesoporous silica materials, SBA-15 had the highest loading
capacity amongst all other mesoporous silica particles. MCF was
found to have the second-highest loading capacity due to its large
pore size. The loading capacity of MCM-41(S), MCM-41(HO) and
MCM-48 were similar as their pore sizes were relatively similar,
while PHTS had the least loading capacity among all types, possibly
because of plugged pores, as seen in Fig. 2C. The release of L-Dopa
was sustained, and SBA-15 released about 85 % in 1 hr, which was
the highest amount. The L-dopa release from MCF and the other
three types of MCM was (83 %, 81 %, 80 %, and 78 %, respectively),
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while L-Dopa was released in the least amount from PHTS (74 %)
(Fig. 2D).
5. Neurotoxicity of mesoporous silica nanoparticles

BBB is a highly effective barrier that protects the most delicate
and complex organ in the human body, the brain (Nair et al., 2018).
This complex system consists of endothelial cells, pericytes, astro-
glia, perivascular mast cells and basal lamina and controls the flow
of ions, chemicals, and macromolecules from the blood to the
brain. This barrier protects brain cells from toxic substances and
circulating medications in the blood and other body fluids
(Urayama and Banks, 2006). There are several ways in which
nanoparticles can cross the BBB, including i) By expanding tight
junctions between endothelial cells or imparting local toxicity
resulting in penetrating the BBB and delivering the drug either
bound or free of NPs; ii) by transcytosis; iii) by endocytosis, or
iv) NPs may follow one mechanism or a combination of the previ-
ously mentioned mechanisms, however mechanisms (ii), (iii), and
(iv) are considered to be the prevailing ones (Mendiratta et al.,
2019; Saraiva et al., 2016).



Fig. 3. (A) Neurite length distribution following treatment with paraquat (PQ), Retinoic acid (RA), their combination alone or in conjugation with curcumin loaded-MSNs (*,
p < 0.05; **, p < 0.01; ***, p < 0.001). (B) A flow cytometric analysis for cellular uptake of MSNs, MSNs-RhoG, and MSN-RhoG/TAT at 37 and 4 �C. (C) Investigation of the cellular
uptake mechanism of MSN-RhoG/TAT in N2a cells in the presence of chemical inhibitors for ATP depletion (sodium azide and 2-deoxyglucose), and endocytosis inhibitors
(filipin III, chlorpromazine, and amiloride). This Figure was reproduced under Creative Commons license from ref. (Cheng et al. 2019).
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Due to their adequate biocompatibility, silica-based nanostruc-
tures were proposed for many biomedical applications (Rosenholm
et al., 2010). MSNs exhibit well-defined structures with high speci-
fic surface area and large pore sizes. Despite their characteristic
physicochemical properties, MSNs also raise concerns about their
safety (Tang et al., 2012). In light of the scant evidence, evaluating
the extent of neurotoxicity caused by such tiny nanoparticles is not
feasible. It is still essential to assess the safety and toxicity of MSNs
prior to any clinical applications (Landsiedel et al., 2012). A study
by Cheng et al. (2019) examined neuron-related disorders by
exposing Neuro-2a cells to various concentrations of MSN for 4
hr. MSN-treated N2a cells were then evaluated by neurite length
distribution and flow cytometry to assess the cellular absorption
effectiveness, and the outcomes demonstrated increased neurite
growth and dose-dependent cell uptake (Fig. 3A and B). Based on
the water-soluble tetrazolium-1 assay results, MSNs demonstrated
no substantial impact on cell viability. Pandey et al. (2018) inves-
tigated the effect of Rivastigmine and MCM-41L nanoparticles on
hemolysis in a time-dependent manner. Nonetheless, the toxicity
was significantly lower than that of Rivastigmine in its pure form
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(Fig. 4A). This result was ascribed to the MCM-41L NPs shielding
the drug after encapsulation and/or the encountered steric hin-
drance. This system improved the bioavailability and brain deliv-
ery of Rivastigmine without causing substantial hemolysis
(Fig. 4B and C).

In their study, Wu and his colleagues (2011) evaluated the toxic
effect of SiNPs on the brain. In the in vivo studies, they adminis-
tered SiNPs to adult rats via nasal instillation. SiNPs exhibited a
unique distribution in the brain in which the striatum seems to
be a major accumulation site for these particles (Fig. 4D). This
can increase ROS production in the striatum leading to functional
damage. Additionally, SiNPs may be involved in depleting dopami-
nelevels. On the other hand, SiNPs were proven to induce oxidative
stress and exert cytotoxic damage in PC-12 cells via apoptosis
rather than necrosis at a concentration beginning from 50 lg/ml
(Fig. 4E) (Wu et al., 2011). Besides, SiNPs were involved in causing
apoptosis via the activation of the p53 pathway (Fig. 4F).

Moreover, several studies highlighted that MSNs could cause
microglia activation, which in turn could induce an inflammatory
response and generate ROS and reactive nitrogen species, which



Fig. 4. (A) Observations of the percentage hemolysis as a function of time for Rivastigmine, blank (MCM-41B) and Rivastigmine-loaded MCM-41 (MCM-41L); (B) In vivo
pharmacokinetic plasma profile of Rivastigmine and MCM-41L and (C) In vivo brain distribution of Rivastigmine and MCM-41L in Wistar rats. (D) An assessment of the
content of SiNPs in the brains of rats (n = 6) following 1 and 7 days of intranasal instillation of SiNPs. (E) Dose-dependent apoptosis and necrosis in PC12 cells induced by
SiNPs. (F) A western blot densitometric analysis of SiNP-induced expression of p53, p-p53, p21, Gadd45, bax, and bcl-2 in PC12 cells. This Figure was reproduced under
Creative Commons licenses from ref. (Pandey et al. 2018; Wu et al. 2011).
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might negatively affect cell viability (Choi et al., 2010; Tambuyzer
et al., 2009). Further, MSNs are able escape the BBB and accumulate
in specific brain regions, including the striatum and hippocampus,
where it could trigger certain deleterious effects in the in vivo stud-
ies (Halliwell and Gutteridge, 2015; Kishido et al., 2007; Zhou et al.,
2016). The accumulation of MSN in these brain regions led to
oxidative stress and inflammatory changes, which could cause sub-
stantial lipid peroxidation and are believed to possess deleterious
effects on dopaminergic neurons.
6. Implications of MSNs as toxic fibrils scavengers

The imbalance between the high production of ROS and the
scavenging activities leads to oxidative stress, thus could cause
damage to DNA, RNAs, and proteins leading to several chronic
and degenerative disorders (Avramouli et al., 2015). Meanwhile,
this can cause neurological degeneration and toxicity in dopamin-
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ergic neurons in PD (Guo et al., 2018). In a recent study, dopamine-
containing polymers were formulated using Michael-type addition,
and then the polymer was photo-crosslinked via the water-in-oil
emulsion technique to form microspheres (Newland et al., 2016).
In non-toxic concentrations, these microspheres showed excellent
scavenging activity and reduced the dissolved oxygen in physiolog-
ical solutions.

In addition to facilitating intercellular communication, exo-
somes were proven to have scavenging capability, which could
be harnessed to reduce the burden of Ab-peptide and increase its
clearance in mice brains suffering from AD (Yuyama et al., 2014).
Additionally, exosomes counteract Ab-induced disruptions and
apoptosis in the genetically modified neuroblastoma cell line
(N2a cells); this scavenging effect is due to the binding of its gly-
cosphingolipid with Ab-glycan (Soliman et al., 2021).

Viswanathan et al. (2014) modified SBA-15 mesoporous silica
by covalently linking thioflavin-S with the iron oxide in its matrix.
In their in vitro studies, they applied a magnetic field (fishing)
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strategy to the previously mentioned nano-formulation, in which
the process of targeting and separating the plaque was achieved.
This magnetic nanoconjugate exhibited the ability to eradicate
the KLVFF peptide, which is a recognition motif in Ab that has been
involved in plaque formation. This treatment strategy cannot be
considered a complete cure for AD since another drug must be
loaded into the mesoporous matrix to disrupt aggregation.

Wang et al. (2019) formulated silica–cyclen nanocomposite
using cyclen as a metal chelator and SiNPs as a carrier, and it
was tested on PC12 cells. The results showed that the SiO2–cyclen
effectively inhibited Ab aggregation by reducing ROS produced by
the Cu–Ab40 complex and protected cells from metal-induced Ab
toxicity. Moreover, the in vivo results showed that the SiO2–cyclen
nanocomposite could pass BBB.

Recently, Sant et al. (2021) applied silica nanobowls (NBs) with
a lipid-polymer coating to facilitate the isolation of transient and
soluble Ab aggregates. Silica NBs were composed of a silica core
coated with a lipid polymer coating of a mixture of 1, 2-dioleoyl-
sn-glycero-3-phosphoethanol-amine and polymer (Poly (N-
isopropyl acrylamide)) to prevent nonspecific protein adsorption.
When NBs were incubated with neuroblasts containing Ab, 75 %
of Ab was adsorbed to NBs. However, the adsorption to NBs was
shown to be reversible by mechanical agitation, and the Ab aggre-
gation driving domain was unaffected by NBs during scavenging. In
this way, NBs can be implemented to characterize and diagnose AD
and other NDDs by time-resolved separation of toxic Ab species
from biological samples.

Jung and his colleagues (2020) targeted Ab peptides via anti-Ab
single-chain variable fragments entrapped into ultra-large pore
MSNs with attenuated toxicity. The in vitro investigations showed
that Ab nanodepletors could cause a notable decline in the Ab-
monomers aggregation in a concentration-dependent manner
and effectively mitigate Ab-induced neurotoxicity. Furthermore,
the in vivo evaluation of weekly stereotaxic injections of Ab nan-
odepletors into the brain of AD mice showed a reduction in Ab
levels by � 70 % (Jung et al., 2020). Moreover, Ma and his
colleagues (2018) formulated a redox-activated near-infrared
(NIR) responsive polyoxometalates-based nanoplatform and exam-
ined it in PC12 cells. During the study, polyoxometalates were able
to absorb NIR lasers and generate local hyperthermia to disaggre-
gate Ab fibrils. The polyoxometalates could reach to the brain via
Table 2
The application of MSNs as nanocarriers in Alzheimer’s and Parkinson’s disease.

Drug MSN type Loading technique Comment

Rivastigmine MCM-41 Solvent-adsorption
equilibrium

MCM-41 nanoparticl
127-fold in vivo and
formulation achieved
untreated drug (Fig.

Quercetin N/A The release of Querce
modified silica NPs

Magnetic silica
nanospheres

Nano-encapsulation d
which is an antioxida

L-Dopa MCM-41, MCM-48,
SBA-15, PHTS, MCF.

SBA-15 showed the f

N/A SDA removal and dru

Berberine MCM-41 Passive method Berberine inhibited th

Pramipexole MCM-41 Solvent impregnation
with post-coating step

Pramipexole loading
induced toxicity in n

L-Dopa
methyl
ester HCl

N/A Rotary evaporation When the hydrophob
reduced (p < 0.05)

N/A: Not applicable (The specific type of silica nanoparticle was not stated).
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receptor-mediated transcytosis and showed antioxidant activity
via scavenging the Ab-induced ROS.

Furthermore, Taebnia et al. (2015) assessed the influence of sur-
face chemistry and concentration of MSNs on the fibrillation of
recombinant human a-syn protein in PC12 cell line. They found
that a-syn fibril formation can be reduced by using positively
charged MSNs, such as 3-(2-aminoethyl amino) propyl
trimethoxysilane and polyethyleneimine-MSNs. The results were
primarily influenced by electrostatic interactions between the pos-
itive charge on PEI-MSNs and the negative charge on a-syn protein
preventing the protein aggregation. In contrast, aggregation and
fibril formation were induced by the repulsion between
negatively-charged carboxyl-MSNs and a-syn protein. It was also
shown that increasing MSNs charges and concentrations resulted
in greater inhibition or acceleration of fibrillation of a–syn.
7. Mesoporous silica nanoparticles as a drug carrier in NDDs

Various barriers exist to CNS drug delivery, including the BBB,
limited dissolution, insufficient bioavailability, and a lack of target-
ing ligands. On the other hand, nano-formulation-based DDSs pro-
vide several advantages as improving dissolution, absorption,
bioavailability, and lowering side effects as a result of reaching
the desired site of action (Kumar et al., 2012; Mendiratta et al.,
2019). In Table 2, potential applications of MSNs in treating Alzhei-
mer’s and Parkinson’s disease are presented.

7.1. Enhancing the drug dissolution rate

Many pharmaceutical products are poorly water-soluble and
are limited by their poor dissolution rate and low oral bioavailabil-
ity (Boyd et al., 2019), (Attia et al., 2021a). In order to overcome the
drawbacks of these pharmaceuticals, nanomaterials with non-
ordered porous structure were employed as carriers
(Baumgartner and Planinšek, 2021). The mechanism beyond these
nanomaterials acts by confinement of the active principals into
nanopores; therefore, their dissolution rate is enhanced
(Baumgartner and Planinšek, 2021). Nday et al., (2015) loaded
Quercetin as a poorly water-soluble antioxidant into MSNs and
tested the effect of this nano-formulation on Cu+2-induced oxida-
tive stress in AD through hybrid nanoparticles. Two functionalized
types of silica xerogels (CTAB and PEG3000) were used for Querce-
Ref

es improved the delivery of Rivastigmine to Wistar rats brain by
improved bioavailability by 12.3-fold (Fig. 3B). Also, the
brain concentration of Rivastigmine was 9-times greater than the

3C)

(Pandey
et al., 2018)

tin from PEG3000-modified silica NPs was higher than CTAB- (Nday
et al., 2015)

oes not affect the multifaceted biological action of quercetin,
nt and anti-amyloid

(Halevas
et al., 2020)

astest L-Dopa release profile (Swar et al.,
2019)

g-loading steps were avoided (Morales
et al., 2021)

e expression of BACE1, which resulted in curbing Ab40/42 formation (Singh
et al., 2021)

to surface-coated MCM-41 exhibited efficiency in reducing H2O2-
euronal SH-SY5Y cells as well as oxidative damage in PD

(Tzankov
et al.,
2019a)

icity of silica was increased, the drug release rate was significantly (Kiss et al.,
2021)
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tin loading and observed for targeting the viability of neuronal and
glial rat primary hippocampal cell cultures against CuGly, as a
source of Cu (II). The Quercetin-specific release mechanism was
not determined, but it was suggested that the burst release might
be due to the irregularity in the xerogels’ shape and attributable to
the increased surface area of xerogels exposed to the surrounding
release medium (Prokopowicz, 2007). However, the fast release of
Quercetin was detected in the first 60 min, and then the release
rate declined. The internal and external structure of the pores
and the CTAB- or PEG3000-modified silica matrix interaction
determined the cumulative Quercetin release. The modified silica
had internal pores and surface area, so the drug particle resides
approximately on its surface (Liong et al., 2008). Moreover, it
was assumed that Quercetin-PEG3000 interaction was lower than
Quercetin-CTAB interaction; as a result, a high release of Quercetin
from PEG3000-modified silica particles was detected. This system
led to several advantages, including the bioavailability enhance-
ment of Quercetin, and a featured result was the protective effect
of Quercetin-PEG against the CuGly in a low concentration.
7.2. Sustaining the drug release rate

The physicochemical properties of nanoparticles, such as size,
shape, surface charge, and composition, play a crucial role in deter-
mining their pharmacokinetics within the human body, including
factors such as the circulation time course and absorption rate
(Ernsting et al., 2013). Sometimes, it could be preferable to lessen
the absorption rate to get a more acceptable clinical response
(Jani et al., 2009). When it is applicable to produce a prodrug on
a molecular level, a product requiring less frequent administration
to achieve the desired biological activity within the target time
profile. Additionally, limited side effects, fluctuation of drug levels
in blood and plasma, and enhanced patient compliance are other
advantages of sustained drug delivery (Kumar et al., 2012). The
desired efficacy may arise from more localization of the drug,
enhanced drug bioavailability, or a sustained period of action
(Dixit et al., 2013). The sustained-release delivery systems were
intensely studied for many years and yielded promising solutions
within the pharmaceutical area (Shargel et al., 1999). Furthermore,
a drug delivery approach can attain an extended therapeutic effect
via the gradual release of the active ingredient over a prolonged
period (days to months) after certain modifications to the formula-
tion (Reddy and Rao, 2015). For these reasons, there is increasing
demand for novel sustained-release strategies to replace tradi-
tional therapies (Natarajan et al., 2014).

MSNs were reported to achieve higher loading capacity, inhibit
the variation of drug concentration in the blood and decrease side
effects. In theory, when a cap covers MSNs at the molecular level,
the capping molecule demonstrates the ability to control drug
release (Vivero-Escoto et al., 2010). Therefore, upon exposure to
suitable conditions (light, enzymatic, pH variations), the suscepti-
ble linkages will be broken and liberate entrapped molecules
(Attia et al., 2021b). Singh et al., (2021) synthesized MCM-41 via
the Stöber process, loaded them with Berberine, an isoquinoline
alkaloid, using the ‘‘passive method”, and finally covered them
with liposomes coating following the thin-film hydration method.
The lipid coating on these MSNs was believed to introduce a phys-
ical barrier for Berberine against the physiological buffer, thus
leading to a delayed drug release (Zhou et al., 2017). The synthe-
sized MSNs-Berberine displayed a significantly higher (p < 0.05)
Acetylcholinesterase inhibitory activity than the MCM-41 and pure
berberine solutions. Through the down-regulation of BACE1
expression, the lipid-coated Berberine-loaded MCM-41 exhibited
antioxidative activities, decreased the malondialdehyde level, and
inhibited the amyloid fibrillation in AD.
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Similarly, Tzankov et al., (2019a) studied the release of
pramipexole loaded by solvent impregnation method into MCM-
41 particles and coated with chitosan and/or sodium alginate. Chi-
tosan, a polysaccharide, facilitates the transportation of polar drugs
across epithelial membranes (Illum, 2002). Pramipexole prevents
H2O2-induced oxidative damage without free radical formation in
human neuroblastoma SH-SY5Y cells (Tzankov et al., 2019b). In
uncoated MCM-41, the total amount of pramipexole was released
within the first 15 min. The double-coated particles reached full
release after 300 min, which was explained by electrostatic inter-
action between components with a negative charge on the surface
of MCM-41 with the positively charged chitosan. At the same time,
chitosan-coated particles haved attracted an extra coating with
negatively charged sodium alginate.

Kiss et al. (2021) loaded L-Dopa methyl ester hydrochloride into
surface-modified mesoporous silica (Syloid) using a rotary evapo-
rator. To tune the surface hydrophobicity, trimethylchlorosilane
was used, which led to a significant reduction in L-Dopa release
(p < 0.05). The hydrophobized silica particles can be applied for
the active ingredients with a narrow therapeutic index since the
resulting optimized formulations could possess zero order release
kinetics, which can achieve steady blood levels of L-Dopa. This
would be purposeful for shortening wearing-off periods and reduc-
ing the side effects for PD patients (Antonini et al., 2007; Karkossa
and Klein, 2019).

7.3. Brain-targeted delivery

Although nanomaterials enabled researchers to develop DDS
with desired physicochemical properties; however, surface func-
tionalization and surface coating flexibility are essential features
of an ideal nanocarrier used in targeted drug delivery (ud Din
et al., 2017). A mesoporous nanoparticle is one of these nanocarri-
ers, with a particle size of 50–200 nm and a surface area from 700
to 1000 m2/g. Additionally, these particles have internal mesopores
of 2–6 nm, resulting in a high pore volume from 0.6 to 1 cm3/g. As a
result, they are considered ideal candidates for targeted drug deliv-
ery (Vallet-Regí et al., 2017). There are active and passive targeting
strategies for nanoparticles; passive targeting mainly depends on
the particle’s properties, including its size, charge, and permeabil-
ity (Rabanel et al., 2012). While in active targeting approaches, the
targeting moieties are employed to deliver the cargo to their target
sites (Castillo et al., 2019).

A nanoplatform designed by Cheng et al. (2019) to deliver Cur-
cumin and RhoG, a type of the Rho family GTPase involved in
lamellipodia and filopodia creation that enhances neurite out-
growth, so they formulated an MSN-based nanocarrier and loaded
both Curcumin, and adsorbed plasmid RhoG-DsRed/TAT peptide
complex. In addition to promoting its uptake through cells via
energy-independent non-endocytosis routes and endocytosis
(Fig. 3C), TAT peptide was introduced to the plasmid by electro-
static interaction because it enhances gene expression through
nuclear delivery. The Plasmid RhoG-DsRed/TAT complex served
as a non-covalent gatekeeper by inducing Curcumin release when
the complex is dissociated. In this study, Curcumin@MSN-RhoG/
TAT was found to perform in a manner that protected N2a cells
from Paraquat-induced ROS damage through the delivery of Cur-
cumin as an anti-inflammatory agent. Further, Cur@MSN-RhoG/
TAT has successfully increased the percentage of cells with longer
neurite and protected against ROS damage in N2a cells (Fig. 3A).

A sol–gel process was used by Halevas et al. (2020) to develop
modified magnetic core–shell mesoporous silica nano-
formulations (MMSNs) loaded with Quercetin. The magnetic core
was produced using surface-modified monodispersed magnetite
colloidal superparamagnetic nanoparticles. The surface was then
modified with PEG3000. Physicochemical characteristics and Quer-
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cetin biological activity of the hybrid nanocarriers were evaluated.
Results showed that these nano-formulations were exceptionally
stable in biological conditions. They also exhibited improved solu-
bility and bioavailability of the loaded Quercetin, which retained
its antioxidant and anti-amyloid properties. The generated MMSNs
also retained the superparamagnetic properties of the employed
surface-modified magnetic NPs core, which makes magnetic tar-
geting applications possible.

7.3.1. Internally triggered drug release
Researchers have been developing novel delivery systems for

drugs so as to overcome the limitations of conventional drugs.
The drug is usually released in an uncontrolled manner; however,
the release behaviour in the responsive DDS is initiated and then
modulated by the action of external factors, including physical,
chemical, and biological stimuli (Kalhapure et al., 2015). Several
mesoporous materials were designed to respond to changes in
pH, redox potential, and enzymatic activity, providing ‘‘on-
demand” drug release (Attia et al., 2021b). Therefore, the designed
systems that respond to stimuli show promising results in control-
ling drug release and bio-distribution.

7.3.1.1. ROS-responsive DDS. ROS is an unavoidable byproduct that
is imperative in regulating biological and physiological processes.
Therefore, these oxygen species can cause oxidative stress inside
cells, which was used as the cornerstone for a specific class of
responsive DDSs with a high potential to distribute the drug to tar-
get tissues with high ROS levels. In ROS-responsive DDS, the major
mechanism of release can be attributed to changes in carrier solu-
bility, carrier cleavage, or prodrug linker cleavage (Liang and Liu,
2016).

Numerous studies have been ingestigated the probability of
using Clioquinol to reduce Ab deposits. Geng et al., (2012) loaded
Clioquinol into MSNs modified with arylboronic acids derivative
and covered it with human IgG. The H2O2 resulting from Ab aggre-
gates causes breakage in the arylboronic esters; therefore, the cap-
ping IgG and the confined Clioquinol escape. Following its release
from nanopores, Clioquinol chelates Cu2+ to disassemble Ab pla-
ques. However, the release of Clioquinol was limited to high
H2O2 levels, such as in Ab plaques. To avoid this limitation, Yang
et al., (2016) formulated MSNs that were capped with gold
nanoparticles and loaded them with Clioquinol for targeting pur-
poses. In PC12 cells, this nano-formulation inhibited Cu2+-
induced Ab40 aggregation and exhibited a controlled release of
Clioquinol.

7.3.1.2. Enzyme-responsive DDS. In most biochemical reactions,
enzymes play a significant role by acting as biological catalysts.
On the other hand, many diseases have been linked to abnormal
enzyme expression levels (Shahriari et al., 2019). As a result,
enzyme-triggered nanomaterials have recently gained consider-
able attention because of their various applications in the medical
field. For instance, if certain enzymes are present, the nanosized
DDS can exhibit a high sensitivity by releasing their active ingredi-
ents (Guo et al., 2012).

Godoy-Reyes et al., (2019) developed nanocarriers that are
responsive to acetylcholinesterase. MSNs were capped with acetyl-
cholinesterase and linked through boronic ester. In case ACh is pre-
sent at a sufficient level, the neurotransmitter will be degraded by
acetylcholinesterase into choline and acetic acid, which hydrolyze
boronic cyclic esters. The designed nanocarrier delivers its payload
within <5 min in the presence of ACh. Moreover, the nano-
formulation showed selectivity to ACh while keeping the cargo
entrapped in the presence of epinephrine and other neurotrans-
mitters. ACh levels in human blood do not cause significant cargo
release, whereas a payload release was observed in neuromuscular
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junctions, synaptic cleft and synaptic vesicles in PD patients, where
the ACh concentration ranges from 0.025 to 10 mM. Besides,
Llopis-Lorente et al., (2017) developed ACh-controlled Janus-type
MSNs modified with acetylcholinesterase on a gold interface and
a supramolecular pH-responsive nano valve (b-cyclodextrin-benzi
midazole). Providing that ACh is present, the acetylcholinesterase
were able to induce the unravelling of the nanovalve, and there-
fore, the cargo is released. Their cargo delivery was fast and selec-
tively responsive to Ach. This nanodevice responded to Ach
concentrations > 10 mm, which is lower than the ACh levels in
the blood and within the concentration range present in neuro-
muscular junctions and the striatum.

Zhou et al., (2014) developed calixarene and pillarene-based
DDS with the aim of reducing motor symptoms in PD patients.
The cargo release was in response to ACh as a competitive binding
agent via operating on the supramolecular nanovalves, while the
amount and the speed of the drug release depended mainly on
the ACh level or a changing in the sort of gating macrocycle. The
study results showed that pyridine-modified MSN was preferred
to 3-chloropropyl-modified MSN. That is because pyridine-
modified MSNmaintained its porosity and was attached to the sur-
face of the silica using a covalent bond. Following that, a florescent
dye, Rhodamine 6G, was added to both systems. Release studies
proved that Rhodamine 6G-loaded calixarene-based DDS
responded well to the external ACh. Nevertheless, Rhodamine
6G-loaded pillarene-based DDS needed a higher ACh concentration
to release the drug. Moreover, both systems exhibited negligible
premature release of the active ingredient.

7.3.1.3. PH-responsive DDS. pH-Responsive nanoplatforms have
gained more focus because of their ability to control the drug
release pattern based on a specific stimulus. These synthesized
DDSs are designed to respond to changes in pH by releasing the
active ingredient in a controlled manner and at its site of action.
Consequently, this can result in enhancing the therapeutic efficacy
of various drugs. For instance, cancer tissue is known to have a
lower pH than normal tissue. Thus, a pH-responsive nanocarrier
can detect this change in pH and release the anti-cancer agent
via lysis of the acid-labile linkage (Deirram et al., 2019; Song
et al., 2017).

The possibility of preparing MSN enclosed with L-Dopa was
demonstrated. The concept was applying L-Dopa as a structure-
directing agent via amidation with fatty acids such as decanoyl
chloride or oleoyl chloride to form anionic surfactants that could
be used to produce micelles. The results proved that prepared
MSNs were pH-responsive since there was hardly any release
under acidic conditions in the stomach (pH = 1.2), while at the neu-
tral conditions in the intestines (pH = 7.4), a continuous and sus-
tained manner was observed (Morales et al., 2021).

7.3.2. Externally triggered drug release
7.3.2.1. Electric-responsive DDS. Electric responsive nanocarriers
have recently emerged as a novel approach for the treatment of
serious diseases, in particular, cancer and neurodegenerative disor-
ders. These systems can release their load in different ways, for
example, sustained, pulsed or on demand when triggered by exter-
nal electric impulses. Furthermore, using electric impulses can
stimulate cell fusion and improve the permeability of cells to the
active ingredient (Kolosnjaj-Tabi et al., 2019).

The combination of non-pharmacological and pharmacological
approaches (Clioquinol) has improved cells’ survival and neurite
growth. Wu and his colleagues (2015) synthesized an electrically
responsive drug release system by embedding Clioquinol into
graphene-MSNs nanohybrids, which possess a high loading capac-
ity and a sustained release profile. An electropolymerized polymer
polypyrrole film was then used to seal the pores (Wu et al., 2015).
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It was demonstrated that electrical stimulation could enhance drug
release and achieve better inhibition of Ab-Cu2+-induced Ab aggre-
gation. Aside from this, electrochemical stimulation has shown
efficacy in vitro and/or in vivo for stimulating neurite and axon
extension. Following the Clioquinol release from polypyrrole/
graphene-MSNs films, cell death under electrical stimulation and
cytotoxicity were reduced.
7.3.2.2. Near-Infrared radiation-responsive DDS. NIR-responsive
DDSs are considered one type of the novel smart drug delivery sys-
tems. These systems depend on NIR light to achieve drug release at
a particular site and time with a high level of convenience. In addi-
tion to the on-demand release, NIR-responsive DDS exhibits good
dermal penetration. The mechanism of this responsive DDs
depends on the absorption of the NIR light and converting NIR to
heat by certain photosensitizers such as gold. As a result, the tem-
perature elevation in the surrounding microenvironment triggers
drug release (Li et al., 2019).

Liu et al., (2020) developed a novel platform to enhance the per-
meability of BBB via loading Quercetin on mesoporous silica-
encapsulated gold nanorods with yolk-shell structures. In the
in vitro studies, a model of BBB was developed using transwell
inserts cultured with cerebral endothelial cells and astrocyte-like
cells. The study results proved that following NIR-II irradiation,
the passage of Quercetin through the BBB indicated that there
was an enhancement in the permeability of BBB via photo-
thermal conversion. Furthermore, upon I.V. injection of these
nanoplatforms followed by NIR-II irradiation, they were not only
able to improve the Quercetin accumulation in the brain but also
were able to limit the neurological abnormalities in PD model mice
in vivo.
8. Future perspective

Mesoporous silica has shown promising potential in various
clinical studies, particularly as a drug delivery platform and in den-
tal implant therapy. Clinical research has demonstrated that using
tetracycline-loaded MSNs in dental implant therapy can signifi-
cantly reduce the bacterial count of the implant-abutment junction
and improve implant stability (Mirzaali et al., 2023). Furthermore,
this approach has shown success in the drug delivery of a single
dose of fenofibrate, which was administered to healthy volunteers
to tackle solubility-related bioavailability problems with better
clinical efficacy (Bukara et al., 2016). Throughout this review, it
has been shown that MSNs can effectively serve as carriers for
therapeutics in the treatment of AD and PD with the ability to scav-
enge Ab peptides and a-syn, which are known to play a significant
role in the development and progression of these diseases. Despite
these promising results in preclinical studies, the prolonged use of
MSNs in treating these chronic conditions is still questionable and
might raise concerns about potential toxicity. A recent clinical trial
study by Hagman et al. (2020) evaluated the safety of oral dosing of
mesoporous silica in male participants. The study found that oral
consumption of mesoporous silica up to 9 g daily was safe and
did not result in any major adverse events or safety concerns. This
suggests that mesoporous silica may be a viable food additive for
weight loss in future studies, with a good safety profile. Further-
more, in vivo studies have shown that hollow MSNs are biodegrad-
able with low toxicity and have no significant adverse effects on
vital organs, providing a promising avenue for their use in various
biomedical applications (Kong et al., 2017). However, further
research is required to fully elucidate the applicability and long-
term safety of these nanostructured materials and to ensure that
the possible risks are minimized.
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9. Conclusion

Mesoporous silica particles have been extensively investigated
as a viable drug delivery platform for treating Alzheimer’s disease
and Parkinson’s disease, owing to their high surface area-to-
volume ratio, tunable pore size, and ability to traverse the blood–
brain barrier effectively. Furthermore, mesoporous silica nanopar-
ticles were observed to act as nanoscavengers and have been pro-
posed as a potential therapy for these neurodegenerative disorders
as they can bind and remove toxic molecules from the brain, such
as amyloid beta peptides in Alzheimer’s disease and a-synuclein in
Parkinson’s disease. However, it is important to note that while
these studies have yielded promising results, further research is
required to fully elucidate the potential safety risks of this type
of structured nanoparticles. As such, caution should be exercised
when considering the use of mesoporous silica particles in clinical
applications, and toxicity assessments should be conducted prior
to any upcoming clinical application.
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