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Abstract

Phosphatase and tensin homolog (PTEN) tumor suppressor protein is a PIP3 lipid phosphatase 

that is subject to multifaceted posttranslational modifications. One such modification is the 

mono-ubiquitination of Lys13 which may alter its cellular localization but is also positioned in 

a manner that could influence several of its cellular functions. To explore the regulatory influence 

of ubiquitin on PTEN’s biochemical properties and its interaction with ubiquitin ligases and a 

deubiquitinase, generation of a site-specifically and stoichiometrically ubiquitinated protein could 

be beneficial. Here we describe a semisynthetic method that relies upon sequential expressed 

protein ligation steps to install ubiquitin at a Lys13 mimic in near full-length PTEN. This approach 

permits concurrent installation of C-terminal modifications in PTEN facilitating an analysis of 

the interplay between N-terminal ubiquitination and C-terminal phosphorylation. We find that 

N-terminal ubiquitination of PTEN inhibits its enzymatic function, reduces its binding to lipid 

vesicles, modulates its processing by NEDD4–1 E3 ligase, and is efficiently cleaved by the 

deubiquitinase, USP7. Our ligation approach should motivate related efforts for uncovering the 

effects of ubiquitination of complex proteins.
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PTEN is a lipid phosphatase that cleaves the 3-phospho group from phosphatidyl-

inositol-3,4,5-trisphosphate (PIP3), converting it to phosphatidyl-inositol-4,5-diphosphate 

(PIP2), opposing the growth stimulatory action of PI3-kinase in cell signaling.1,2 Loss of 

function mutations are commonly observed in a variety of cancers, and PTEN is regarded 

as a major tumor suppressor gene.3–5 As PTEN’s physiological substrate PIP3 is embedded 

in the cell plasma membrane, PTEN’s localization is critical to its function. PIP2 has been 

shown to be important in recruiting PTEN to the plasma membrane.6–8

PTEN is a 403 aa protein with architecture that includes an N-terminal segment that is 

suggested to be important in PIP2 binding, a catalytic phosphatase domain, a C2 membrane 

association domain, and a C-terminal regulatory tail.2,9–11 PTEN is subject to a variety 

of post-translational modifications (PTMs), most notably C-terminal phosphorylation on 

a cluster of Ser/Thr residues (Ser380/Thr382/ Thr383/Ser385) and an N-terminal mono-

ubiquitination (Ub) on Lys13 (Figure 1A).12–14 It was shown previously that the C-terminal 

phospho-cluster can induce a closed conformation in PTEN, inhibiting its catalytic activity, 

reducing its membrane association, and diminishing its ubiquitination by WWP2 E3 

ligase.15–18 Ubiquitination of PTEN can have degradative and regulatory roles.19–21 In 

this study, we focus on Lys13 mono-ubiquitination as it has been suggested to enhance its 

nuclear entry and Lys13 mutations have been noted to promote cancer.14,22,23 However, 

inferences about the impact of PTEN ubiquitination have been based on cellular experiments 

using a ubiquitin resistant mutation, K13R, as Lys13Ub-PTEN has not been obtained 

previously as a purified entity.14,22,24,25

As for most proteins, enzymatic Lys ubiquitination of PTEN in vitro has been shown to be 

non-site selective and thus a chemical or semisynthetic approach to generate ubiquitinated 

proteins is desirable.18,26–37 Here we have developed a new strategy to incorporate a Lys-Ub 

mimic on PTEN, and benchmarked its recognition by a deubiquitinase in comparison to 

several alternative synthetic mimics. The ubiquitination site at aa13 was modified using 

sequential sidechain and backbone expressed protein ligations (Figures 1B, 1C).38 A PTEN 

N-terminal 16mer peptide was synthesized with an aminoAla-Cys isostere of Lys at aa13, 

and was then ligated to Ub thioester. The C-terminal aminoanilide of the Ub-peptide 

was then reacted with nitrite and MESNA to furnish a C-terminal thioester used for 
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chemoselective ligation to N-Cys containing PTEN (aa17–378; aa17–395) produced from 

insect cell expression.39 The PTEN N-terminus is highly conserved, so the less conserved 

aa17 was chosen as the ligation junction.6 The ligated PTEN fragments were themselves 

products of expressed protein ligation with either Cys to generate truncated PTEN (t-PTEN) 

or a N-Cys phosphorylated synthetic peptide (aa379–395; pS380/pT382/pT383/pS385).15,16 

t-PTEN was used as a previously validated surrogate for non-phosphorylated PTEN.16,40 

The final Ub-PTEN semisynthetic protein forms were purified in a monomeric state by 

size exclusion chromatography, appeared >90% pure by SDS-PAGE, and have the expected 

molecular weights by mass spectrometry (Figures 1D, S2–S3). By employing a soluble 

PIP3 substrate (C6-PIP3), we demonstrated that recombinant t-PTENQ17C and semisynthetic 

t-PTENQ17C control showed similar PIP3 hydrolytic activity to each other and were ~3-fold 

lower than recombinant t-PTENWT (Figure 2A). These results show that semisynthesis on 

the N-terminus of PTEN and introduction of a Cys at aa17 are tolerable. The semisynthetic 

ubiquitinated PTEN forms, Ub-t-PTEN and Ub-4p-PTEN, lacked detectable PIP3 hydrolytic 

activity (at least 10-fold lower than the non-ubiquitinated forms) consistent with the 

sensitivity of PTEN’s lipid phosphatase activity to Lys13 mutations.6,11,41 As the decrease 

in catalytic activity of Ub-t-PTEN could be related to the unnatural Lys13 residue in this 

semisynthetic protein, we also prepared K13ac-t-PTEN with an acetyl modification on the 

natural Lys13 sidechain (Figure S2). The ~5-fold reduced activity of K13ac-t-PTEN (Figure 

2A) indicates that Lys13 acylation itself diminishes PTEN’s activity, regardless of the 

potential impact of the unnatural Lys sidechain.

The conformation of Ub-4p-PTEN was assessed by determining its susceptibility to 

C-terminal dephosphorylation by lambda phosphatase. Previous work showed that non-

ubiquitinated 4p-PTEN adopts a conformation where the phosphates engage with the core 

of the protein to generate a “closed-state”.15,42 The propensity of PTEN to adopt the 

closed conformation can be assessed by a phosphatase sensitivity assay. In the closed-state, 

phosphates are shielded and resistant to dephosphorylation.15 We observed that the rate 

of phosphate removal by lambda phosphatase from Ub-4p-PTEN (v/[E] 4.4±0.7 min−1) 

closely matched that of 4p-PTEN (v/[E] 4.6±0.6 min−1) (Figures 2B, S4). This similarity 

suggests that Lys13 ubiquitination of 4p-PTEN does not open the conformation and retains 

the engagement of the phosphorylated C-terminal tail with the core of PTEN. Moreover, the 

similar phosphatase sensitivities of Ub-4p-PTEN and 4p-PTEN provides evidence that the 

semisynthetic procedures do not disrupt PTEN’s normal protein fold.

As PTEN’s cellular substrate PIP3 is embedded in the plasma membrane, the primarily 

cytoplasmic PTEN needs to associate with the cell membrane to convert PIP3 into 

PIP2. PTMs that loosen PTEN’s interactions with phospholipid membranes, such as 

C-terminal phosphorylation, prevent its catalytic action in vivo.12,15–18,43–45 To see if 

Lys13 ubiquitination of PTEN could influence its membrane engagement, we employed 

a previously developed assay in which PIP2-containing vesicles are sedimented by 

ultracentrifugation and the level of PTEN protein in the pellet is assessed by anti-PTEN 

Western blot (Figures 2C, S5).15 In these experiments, non-phosphorylated t-PTEN was 

more tightly associated with vesicles than 4p-PTEN.15 Interestingly, Ub-t-PTEN displayed 

diminished binding to vesicles relative to t-PTEN, and behaved similarly to 4p-PTEN. The 

weakening of PTEN’s interactions with the vesicles by Lys13 ubiquitination supports a role 
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for this modification in reducing plasma membrane association. This could allow PTEN to 

localize at other cellular compartments including the nucleus.14,22,46

We also investigated how Lys13 PTEN ubiquitination would impact its processing by PTEN 

E3 ubiquitin ligases, WWP2 and NEDD4–1.47–49 These E3 ligases contain an exosite for 

a non-substrate ubiquitin binding that can influence catalytic turnover, chain elongation, 

or substrate binding.50–54 The affinities of free ubiquitin to these exosites are relatively 

low (KD: 180–350 μM), so ubiquitinated substrates may occupy the exosite and influence 

catalysis.51,54 The extent of ubiquitination of t-PTEN, Ub-t-PTEN, 4p-PTEN, Ub-4p-PTEN, 

was monitored by anti-PTEN Western blot. Concurrent monitoring of E3 ligase auto-

ubiquitination was performed by a Coomassie stained SDS-PAGE (Figures 3A, S6–S9). 

Under the E3 ligase reaction conditions with purified full-length NEDD4–1 and WWP2, 

autoubiquitination was robust whereas PTEN ubiquitination only proceeded to a limited 

extent. Densitometry analysis of the ubiquitinated PTEN product bands showed increased 

(11 ± 3-fold) ubiquitination for Ub-t-PTEN by NEDD4–1 compared to t-PTEN. For WWP2, 

the levels of ubiquitination were similar, but with slight accumulation of the +1 Ub band 

(1.7 ± 0.5-fold) for Ub-tPTEN. Therefore, Lys13 ubiquitination may promote further 

ubiquitination of PTEN by NEDD4–1 but less so by WWP2. This behavior is interesting 

in light of how C-terminal phosphorylation reduces PTEN ubiquitination by WWP2 but 

has little effect with NEDD4–1.18 Furthermore, Ub-4p-PTEN as a substrate showed no 

observable activity for either E3 ligase (Figures S8–S9), suggesting that the ubiquitination at 

residue 13 does not overcome the inhibitory effect of the closed conformation.

We next explored if our Ub-t-PTEN can be a deubiquitinase substrate, by assessing 

how well the Ub-aminoAla-Cys functionality serves as a faithful mimic of Lys-Ub for a 

deubiquitinase, and how the 16mer Ub-Lys13 peptide serves as a deubiquitinase substrate 

compared with the near full-length Ub-t-PTEN protein. To determine processing efficiency, 

we compared its substrate properties to two other Ub-Lys mimics and a natural isopeptide 

linkage in the PTEN N-terminal 16mer peptides (Figure 3B). The synthesis of the natural 

isopeptide linked Ub-peptide is complex, so we wanted to investigate how aminoAla-Cys 

and two other analogs compared as substrates. Ub-aminoAla-Ala mimic was generated 

by desulfurization of Ub-aminoAla-Cys.55,56 A third Ub-Lys mimic investigated contained 

a hydrazide-linkage prepared using a Cys modification protocol.57 The natural Ub-Lys 

isopeptide linkage was synthesized using a 2-aminooxy-ethane thiol auxiliary protocol 

(Figure S10).58,59

These four Ub-PTEN peptide conjugates and Ub-t-PTEN protein were subjected to 

USP7 deubiquitinase, which was previously reported to deubiquitinate PTEN.60,61 

Deubiquitination was monitored by Coomassie stained SDS-PAGE for the Ub-peptides 

and anti-PTEN Western blot for Ub-t-PTEN protein (Figures 3B, S11–S12). For Ub-

aminoAla-Cys, we analyzed both the time and substrate concentration dependence. The 

deubiquitination time course was fit to an exponential curve as initial rate could not be 

assessed. The Ub-aminoAla-Cys peptide substrate displayed a KM(app) of ~23 μM, and we 

found that the v/[E][S] was 10.6 ± 0.4 μM−1min−1 with 5 μM substrate (Figure S13). The 

other three Ub-Lys mimics were also deubiquitinated with similar v/[E][S] (Ub-aminoAla-

Ala: 16±2 μM−1min−1, Ub-hydrazide: 9.9±0.5 μM−1min−1, Ubnatural isopeptide: 11 ± 1 
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μM−1min−1). This is consistent with a previous study that showed no significant reduction 

in deubiquitinase activity with alkylated thiolysine linkages.62 The insensitivity of USP7 

to linkage properties, such as the lowered pKa of the hydrazide linkage, or the potential 

for the Cys linkage to form a hydrogen bond to the departing nitrogen, indicates that these 

alternative linkages can be a reliable surrogate for understanding Ub-t-PTEN processing by 

USP7.

We found that the deubiquitination of Ub-t-PTEN by USP7 was 4-fold faster than the 

corresponding Ub-aminoAla-Cys peptide (v/[E][S] 40 ± 3 μM−1min−1). Thus, USP7 may 

recognize more than the local amino acids surrounding Lys13 for efficient processing, 

perhaps making distal interactions with the folded PTEN substrate.

In summary, we have described a semisynthetic method for installing a site-specific 

ubiquitin mimic in a challenging to produce signaling protein. We have shown that 

the Ub-aminoAla-Cys functionality can serve as a reliable mimic of the natural Ub-Lys 

isopeptide linkage with respect to USP7-mediated deubiquitination. Our results suggest that 

Lys13 ubiquitination of PTEN diminishes its catalytic activity and reduces its membrane 

association, liberating PTEN to localize to other subcellular compartments. In this regard, 

it has been proposed that nuclear PTEN can have non-enzymatic functions in gene 

regulation.63–65 Crosstalk between phosphorylation and ubiquitination have been described 

previously66 and can also be studied further for PTEN.
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ABBREVIATIONS

PTEN phosphatase and tensin homolog

Ub ubiquitin

PIP3 phosphatidylinositol 3,4,5-trisphosphate

PIP2 phosphatidylinositol 4,5-diphosphate

t- truncated

4p- tetraphosphorylated
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Figure 1. 
Semisynthesis of site-specifically modified PTEN (A) Domain structure of PTEN depicting 

relevant PTMs, with the PIP2 binding motif (aa 6–14) shaded in black. (B) Semisynthetic 

strategy to generate ubiquitinated and/or phosphorylated PTEN. (C) Illustration of 

Ub-t-PTEN linkage structure. (D) Coomassie stained SDS-PAGE of recombinant and 

semisynthetic PTEN proteins.
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Figure 2. 
Characterization of ubiquitinated PTEN. (A) PIP3 hydrolase assay of recombinant and 

semisynthetic PTEN with 160 μM soluble PIP3. (B) Phosphatase protection assay of PTEN 

with 25 nM λ-phosphatase. (C) Vesicle pulldown assay of PTEN with PIP2 containing 

vesicles.
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Figure 3. 
Processing of ubiquitinated PTEN by E3 ligases and deubiquitinases. (A) In vitro 

ubiquitination assay for t-PTEN and Ub-t-PTEN by WWP2 and NEDD4–1 E3 ligases. 

E3 ligase autoubiquitination was monitored by SDS-PAGE and PTEN ubiquitination was 

monitored by Western blots. (B) USP7 deubiquitinase assay for various Ub-peptides 

linkages and Ub-t-PTEN. Illustration of aminoAla-Cys, aminoAla-Ala, hydrazide, and 

natural isopeptide linked Ub-peptides depicting their linkage structures.
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