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Abstract

The term “nanotechnology” was coined by Norio Taniguchi in the 1970s to describe the 

manipulation of materials at the nano (10−9) scale, and the term “nanomedicine” was put forward 

by Eric Drexler and Robert Freitas Jr. in the 1990s to signify the application of nanotechnology 

in medicine. Nanomedicine encompasses a variety of systems including nanoparticles, nanofibers, 

surface nano-patterning, nanoporous matrices, and nanoscale coatings. Of these, nanoparticle-

based applications in drug formulations and delivery have emerged as the most utilized 

nanomedicine system. This review aims to present a comprehensive assessment of nanomedicine 

approaches in vascular diseases, emphasizing particle designs, therapeutic effects, and current 

state-of-the-art. The expected advantages of utilizing nanoparticles for drug delivery stem from 

the particle’s ability to (1) protect the drug from plasma-induced deactivation; (2) optimize drug 

pharmacokinetics and biodistribution; (3) enhance drug delivery to the disease site via passive and 

active mechanisms; (4) modulate drug release mechanisms via diffusion, degradation, and other 

unique stimuli-triggered processes; and (5) biodegrade or get eliminated safely from the body. 

Several nanoparticle systems encapsulating a variety of payloads have shown these advantages in 

vascular drug delivery applications in preclinical evaluation. At the same time, new challenges 

have emerged regarding discrepancy between expected and actual fate of nanoparticles in vivo, 

manufacturing barriers of complex nanoparticle designs, and issues of toxicity and immune 

response, which have limited successful clinical translation of vascular nanomedicine systems. In 

this context, this review will discuss challenges and opportunities to advance the field of vascular 

nanomedicine.
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Vascular pathologies, such as atherosclerosis, myocardial infarction, stroke, deep vein 

thrombosis (DVT), and pulmonary embolism (PE), are leading causes of morbidities and 

mortalities in the world.1–3 Therefore, significant preclinical and clinical research efforts 

are focused toward these diseases as well as their diagnosis, prevention, and treatment. 
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Disease pathogenesis for these involves a variety of cellular and biomolecular entities within 

the vascular compartment, which often present reciprocal mechanisms of inflammation 

and thrombosis, precipitating in vessel occlusion and tissue injury. Therefore, current 

therapeutic approaches are directed toward one or more cellular or molecular component 

of these mechanisms. Most clinical approaches utilize systemic oral or intravenous (bolus 

or transcatheter infusion) delivery of therapeutics (e.g., anticoagulants, antiplatelet agents, 

fibrinolytics, and anti-inflammatory molecules) in a highly regulated regimen. Such direct 

systemic drug administration can lead to several unwanted effects4–8:

1. Suboptimal circulation time and bioavailability of drugs due to plasma-induced 

deactivation by circulating inhibitor molecules.

2. Drug clearance into nonspecific tissues leading to suboptimal concentration at 

target disease site in the vasculature.

3. Systemic and off-target drug actions that cause harmful side effects including 

coagulopathy, neurotoxicity, nephrotoxicity, and hemorrhage.

Such problems can be possibly resolved by spatiotemporally restricting drug delivery and 

action at therapeutically effective doses at the target vascular pathology site. An excellent 

example for such “targeted” drug action is represented by the design and applications of 

drug eluting stents (DESs), where polymer coatings applied on the stent metal frame act 

as a matrix for locally sustained release of anti-inflammatory drugs such as paclitaxel 

and sirolimus to prevent restenosis of stented blood vessel.9–11 However, interventional 

procedures like angioplasty and stenting are expensive, necessitate specialized expertise 

in terms of personnel and facilities, and may not be applicable or accessible to many 

patients in various vascular disease scenarios or within required treatment windows.12–15 

Therefore, pharmacotherapeutic approaches that can be administered relatively easily, 

and can localize and enhance drug availability and activity at the vascular disease site, 

can provide significant advantages in treating many disease scenarios. This is where 

“nanomedicine”-based approaches present significant promise.16 Although the concept 

of manipulating matter at very small scale was put forward by Richard Feynman in 

the 1950s,17 the term “nanotechnology” was actually coined by NorioTaniguchi in the 

1970s18 to describe the manipulation of materialsat the nano(10−9) scale, and buildingonthat 

theterm “nanomedicine” was put forward by Eric Drexler and Robert Freitas Jr. in the 

1990s to signify the application of nanotechnology in medicine.19,20 Within this field, the 

technologies and applications in treating vascular pathologies predominantly involve either 

direct bioconjugation or chemical modification of drug molecules to enhance their disease 

site-specific availability and activity,21–25 or the utilization of particulate delivery platforms 

(i.e., nanoparticles and microparticles) to encapsulate the drugs for disease site-directed 

delivery via passive and active mechanisms.26 To elucidate and review these approaches, it 

is first necessary to provide a summary description of the cellular and molecular components 

of vascular disease pathology. To this end, the next section will describe the major cellular 

and molecular players in the thromboinflammatory niche of major vascular diseases. 

Building on that, subsequent sections will describe various designs and experimental 

findings regarding nanomedicine systems directed at treating these pathological conditions, 

together with a discussion of opportunities and challenges. For convenience of the readers, 
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Table 1 provides acronyms, abbreviations, and corresponding full names of molecules, 

motifs, cells, materials, and terminologies used throughout the descriptions.

Major Cellular and Molecular Components in Vascular Disease

Blood is a fluid connective tissue composed of cellular components, namely, red blood 

cells (RBCs), white blood cells (WBCs), and platelets suspended in an aqueous plasma 

phase rich in various proteins (predominantly albumin, immunoglobulins, and fibrinogen), 

coagulation factors, salts, and ions. In the circulatory system, blood flows through blood 

vessels, namely, arteries, veins, and capillaries, whose luminal wall is lined by endothelial 

cells (ECs) sitting on a subendothelial matrix composed predominantly of collagen (types 

I, III, and IV).27,28 Healthy ECs present a dense covering of carbohydrate-rich brush-like 

polymers on their luminal (i.e., blood exposed) surface, termed the “glycocalyx,” which 

renders important thromboresistant properties by virtue of sterically hindering protein 

adsorption and platelet adhesion.29,30 Furthermore, the glycocalyx allows binding of several 

anticoagulant molecules such as antithrombin, heparin cofactor II, thrombomodulin (TM), 

and tissue factor pathway inhibitor (TFPI), all of which play unique roles in downregulating 

various outputs of the coagulation process. These important protective functions of the 

endothelial lining (with its glycocalyx), cumulatively, prevent clotting of blood at the 

vessel wall (i.e., thrombus formation) and thus prevent vessel occlusion. However, various 

vascular disease scenarios can injure and denude this endothelial lining, and this can lead to 

prothrombotic mechanisms.

One prime example is atherosclerosis, which is an inflammatory vascular disease of 

arteries where increased concentration of low-density lipoprotein (LDL) cholesterol in 

plasma and dysregulated cholesterol metabolism can injure and inflame the luminal 

endothelium and induces expression of several leukocyte adhesion molecules like P-

selectin, E-selectin, intercellular cell adhesion molecule 1 (ICAM-1), vascular cell adhesion 

molecule 1 (VCAM-1), and integrin αLβ2.31–33 Leukocytes, predominantly monocytes 

and neutrophils, do not bind to healthy endothelium but can bind to diseased ECs 

via these adhesion proteins, which then primes ECs for further active inflammatory 

mechanisms like transcytosis into subendothelial intima, transformation of monocytes to 

macrophages, macrophage, neutrophil, and endothelial secretion of various inflammatory 

chemokines and cytokines. Leukocyte adhesion, rolling, and transmigration into intima 

are also mediated by mechanisms involving CC-chemokine receptor 1 (CCR1), CCR2, 

CCR5, and CXC-chemokine receptor 2 (CXCR2). Transcytosed lesional macrophages can 

ingest modified LDLs via scavenger receptors and transform over time into lipid-rich foam 

cells. Platelets, which are traditionally considered to be significant players in the advanced 

thrombotic events associated with later stages of atherosclerosis (e.g., hemorrhagic, eroded, 

or ruptured plaques), are now also implicated in several biomolecular events during the 

initial stages of atherosclerotic lesion development and progression.34–38 For example, 

diseased and injured endothelium can secrete von Willebrand factor (VWF) from their 

Weibel-Palade bodies and platelets can bind to this locally secreted and deposited VWF 

via the glycoprotein Ibα (GPIbα) component of the platelet surface receptor complex GPIb–

IX–V.37,38 Thus, endothelial VWF as well as P-selectin can promote platelet tethering 

and rolling via interaction with platelet GPIbα and P-selectin glycoprotein ligand-1 
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(PSGL-1).36–40 Platelets can also mediate the binding of leukocytes to diseased endothelium 

and thus the activated platelet–endothelium–leukocyte triad forms the major inflammatory 

phenotype in this disease. Activated integrin αIIbβ3, present on the platelet surface at high 

density (50,000–80,000 per cell), assumes the ligand-binding form upon platelet activation 

and binds its natural ligand fibrinogen (Fg), as mediated by molecular interactions with 

arginine–glycine–aspartic acid (RGD) and AGD-based peptide sequences.41–45 Integrin 

αVβ3 is principally a fibronectin/vitronectin receptor that helps extracellular matrix (ECM) 

anchorage and focal adhesion of ECs. However, in activated proinflammatory environment, 

αVβ3 and αIIbβ3 can interact with each other via RGD-mediated bridging by Fg to 

secure the attachment-activated platelets on inflamed endothelium at the atherosclerotic 

lesion site.46–48 These platelet–endothelium–leukocyte interactions as well as macrophagic 

ingestion of lipids result in a cascade of chronic inflammatory events. These involve 

recruitment, activation, and infiltration of more inflammatory cells, secretion of matrix 

degrading enzymes (e.g., matrix metalloproteinases or MMPs, and neutrophil elastase), 

degradation of collagenous matrix, and migration of smooth muscle cells (SMCs) and 

fibroblasts. Proinflammatory biomolecules like interleukin-1β (IL-1β), regulated upon 

activation normal T cell expressed and secreted (RANTES), monocyte chemoattractant 

protein-1 (MCP-1) and macrophage colony-stimulating factor (M-CSF) secreted by 

activated platelets, endothelium, and leukocytes facilitate inflammatory cell recruitment, 

lesion-associated cellular transformations, and plaque progression. Activated platelets also 

secrete PDGF (platelet-derived growth factor) and TGF-β (transforming growth factor-β) 

that stimulate endothelial and SMC migration, proliferation, new blood vessel formation, 

and matrix synthesis within the atherosclerotic lesion site. Matrix protein (e.g., collagen) 

secretion by SMCs and fibroblasts counterbalance matrix degradation, and subsequent 

development of a lipidic necrotic core in the subendothelial region covered by a fibrous 

collagenous cap. In vulnerable atherosclerotic lesions, matrix degradation is upregulated 

due to high MMP and elastase activity, while matrix production is downregulated (e.g., by 

signaling mechanisms of interferon gamma [IFN-γ] produced by T-cells). In the presence 

of stress and hemodynamic alterations, ruptures and fissures develop in such “high-risk” 

plaques causing intraplaque hemorrhage or exposure of the subendothelial collagen and 

necrotic lipidic core to flowing blood. This results in more platelet adhesion, activation, 

and aggregation via Fg-to-αIIbβ3 and P-selectin-to-PSGL-1 interactions, and the status 

transforms into a complex thrombotic (i.e., atherothrombosis) phase. The phosphatidyl 

serine (PS)-rich activated platelet surface allows colocalization and activation of coagulation 

factors (e.g., FIXa + FVIIIa in tenase complex, and FXa + FVa in prothrombinase complex) 

and cofactors (e.g., Ca2+ ion) from blood, promoting coagulation cascade stimulation and 

amplification, thereby leading to high levels of thrombin generation. The thrombin converts 

local Fg into fibrin which assembles and cross-links in presence of activated FXIIIa to 

form an occlusive clot that restricts blood flow.37,38,49,50 Such thrombo-occlusive events 

occurring in the coronary artery leads to myocardial infarction (i.e., heart attack) and in the 

carotid artery leads to stroke, which remain the two highest mortality factors in the global 

population.

While atherosclerosis and atherothrombosis occur in the relatively high shear regions of 

the arteries, another distinct mechanism with some overlapping cellular and molecular 
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components occurs in the low shear regions of the veins. Especially near the valves 

in the vein, the low flow and eddies in circulation can lead to endothelial dysfunction, 

activation, and subsequent adhesion of platelets and leukocytes (predominantly neutrophils 

and monocytes). Here, the intercellular interactions can prime neutrophils to become 

activated and these active neutrophils (and also reportedly some macrophages) can 

decondense and secrete their DNA triggered by unique histone citrullination mechanisms 

involving intracellular myeloperoxidase, peptidyl arginine deaminase 4 (PAD-4), and 

elastase activities.51–55 These extracellularly secreted decondensed DNA (e.g., neutrophil 

extracellular traps or NETs) can arrest and activate more platelets, and trigger 

coagulation mechanisms to enhance thrombin generation and fibrin deposition.56–58 These 

thromboinflammatory mechanisms are characteristic in DVT and have also been recently 

implicated in the microvascular thrombosis in acute lung injury (ALI) as well as cancer-

associated thrombosis. Venous thrombi can also dislodge, travel via circulation, and 

occlude distal vascular beds, for example, PE that occurs post-DVT or trauma and in 

cancer patients. Fig. 1 shows schematics of characteristic components of thrombotic and 

thromboinflammatory mechanisms typically seen in various vascular disease pathologies.

Based on the earlier-described cellular and molecular components of vascular diseases, it 

becomes intuitively evident that therapeutic approaches that can downregulate or inhibit 

the proinflammatory and prothrombotic molecules on ECs, leukocytes, and platelets disrupt 

the various intercellular interactions, mitigate inflammatory signals, inhibit coagula-tory 

pathways, and rapidly degrade occlusive blood clots, and can have significant benefit 

in treating the various conditions. Thus, the drug molecules for such treatment span 

the categories of receptor inhibiting molecules and antibodies, gene therapy for receptor 

downregulation and signaling pathway inhibition, anticoagulant molecules, and fibrinolytic 

agents. In addition, with the purpose of detection and diagnosis of the pathologic conditions, 

different contrast agents and imaging probes can be directed toward the cellular and 

molecular entities. Therefore, nanomedicine strategies for these disease scenarios have 

focused on direct chemical modification as well as particle-based formulation of these 

drugs and imaging agents in various ways to enhance pharmacokinetic profile, favorable 

biodistribution, disease site-selective delivery, and site-localized function. The following 

sections will provide salient examples of such approaches and technologies.

Direct Modification of Therapeutic Agents

A potential issue for many drug molecules directly administered in the vascular 

compartment (e.g., via intravenous administration) is their nonspecific interaction with 

plasma proteins as well as specific interactions with inhibitors in circulating plasma, 

and rapid clearance through liver and kidney, all of which reduce drug circulation 

lifetime and bioavailability. One of the earliest strategies to reduce these effects was 

put forward by Helmut Ringsdorf during the 1970s, which involved conjugation of the 

drug molecule to high-molecular-weight water-soluble macromolecules that may form a 

protective shield around the drug molecule while keeping it in circulation.59–61 Furthermore, 

drug conjugation to the polymer can be mediated by chemical bonds (e.g., amide, orthoester, 

ester, anhydride, carbonate, and urethane) that can be cleaved by mechanisms such as 

enzymatic and/or pH-sensitive reactions to release active drugs for subsequent action. 
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The “Ringsdorf model” for polymer-conjugated prodrug system has been attempted on 

several drug molecules in treatment of vascular diseases, especially fibrinolytic drugs 

and anticoagulant molecules. For example, PEG (polyethylene glycol)-based modification 

(PEGylation) of fibrinolytic agents such as tissue plasminogen activator (tPA), streptokinase 

(SK), urokinase (UK), and staphylokinase (SAK) has been reported.62–66 In some studies, 

it was found that the “protective” property of PEG-SK conjugates could be improved by 

increasing the molecular weight of PEG.63 PEGylated systems of truncated SK variants with 

promising in vitro fibrinolytic activity and enhanced in vivo circulation residence time have 

also been reported recently, although the in vivo fibrinolytic capacity of these systems were 

not reported.67 In preclinical ex vivo studies using beagles, PEG-conjugated urokinase was 

able to maintain fibrinolytic capacity for long periods of time (i.e., prolonged bioactivity in 

plasma), while free urokinase rapidly lost its activity in plasma due to inhibitor effects.64 

Recombinant tPA has also been conjugated to PEG and the PEG-tPA product was reported 

to show partial enhancement of circulation lifetime and bioactivity compared with free 

tPA in canine models.62 The PEGylation strategy has also been reported for anticoagulant 

molecules. For example, PEG has been conjugated to the thrombin inhibitor hirudin and 

these PEG-hirudin systems have been evaluated in vitro, in vivo, and even in clinical 

studies in human patients. The studies showed that PEG-hirudin maintains its anticoagulant 

activity while providing a substantially longer circulation lifetime compared to unconjugated 

hirudin.68,69 In another interesting design, the anticoagulant anionic macromolecule heparin 

was conjugated to a polyarginine-modified cationic form of the fibrinolytic tPA, such that 

the tPA can be released in the presence of the cationic heparin antagonist protamine.70 

The purpose of this design was to impart charge-induced drug release and the system was 

tested in vitro with promising result, but has not been reported in any in vivo evaluation. 

The antiproliferative drug paclitaxel (clinically used in DESs for mitigating restenosis and 

intimal hyperplasia) has been conjugated also to polymers such as polyglutamic acid (PGA) 

to result in products like Xyotax that have been studied for cancer treatment, but such 

designs also may find use in vascular antiproliferative therapies. Other direct chemical or 

structural modification of therapeutic molecules involve strategies to enhance targeting and 

selectivity of drug delivery (and action) at the disease site by recombinant modifications or 

conjugation of specific antibodies, antibody fragments, and peptide ligands. For example, 

the direct modification of tPA with anti-ICAM antibody to enable specific delivery of the 

drug to inflamed endothelium has been reported and this system demonstrated targeted 

fibrinolytic efficacy in vivo in lung embolism in mouse models.71 In a parallel design, 

tPA has been conjugated to RBCs to render long circulation time as well as incorporation 

into nascent clots for clot-specific fibrinolytic activity.72–74 Compared with free tPA, the 

RBC-tPA system has shown the ability to allow “prophylactic fibrinolysis” in vivo in mouse 

models of pulmonary thrombosis when administered before vascular injury, although it 

did not show efficient lytic ability when administered 10 minutes after vascular injury. In 

an approach to direct fibrinolytic drugs to platelet-rich thrombi, urokinase was modified 

with a monoclonal antibody 7E3 (abciximab) that binds to integrin αIIbβ3 on the surface 

of platelets.75 The urokinase-7E3 system showed significantly enhanced binding to αIIbβ3-

coated substrates in vitro and enhanced plasmin generation on such substrates, and in 

ex vivo studies this system showed enhanced targeted fibrinolytic and antiplatelet ability 

at lower concentrations compared with free urokinase. A similar design rationale and 
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experimental findings were reported where a SAK mutant was engineered to bear the 

tripeptide sequence of RGD that is known to have binding capability to many cell surface 

integrins, including platelet αIIbβ3.76 The SK-RGD system showed enhanced platelet 

targeting and fibrinolytic ability in vitro and also demonstrated the ability to render efficient 

clot lysis as well as reduced reocclusion incidents in vivo in porcine coronary artery balloon 

injury model.

In another approach, a recombinant system was constructed by fusing urokinase-type 

plasminogen activator (uPA) with single-chain variable fragment (scFv), an antibody to 

platelet–endothelial cell adhesion molecule (PECAM).77 Compared with unconjugated uPA, 

the anti-PECAM scFv-uPA showed enhanced ability to target cerebral arterial vasculature 

and lyse clots effectively in vivo in a mouse model, demonstrating its potential in treating 

cerebrovascular occlusions (e.g., in ischemic stroke). In a related study, the anti-PECAM 

scFv-uPA construct was further modified via recombinant techniques to include a thrombin-

activatable domain, such that the anti-PECAM scFv could render targeted delivery to clot 

site endothelium while clot-localized high thrombin levels could cleave the uPA for clot 

site-specific action.78 This modified system demonstrated minimal effect on circulating 

fibrinogen and an enhanced targeted fibrinolytic affect in pulmonary reperfusion injury 

in mice. A similar recombinant fusion construct was recently developed with an scFv 

directed at platelet αIIb instead of PECAM, so as to target clot-associated platelets instead 

of endothelium.79 This novel construct, termed “PLT/uPA-T,” showed binding ability to 

both quiescent and active platelets as well as fibrinolytic ability in microfluidic assays in 

vitro. The PLT/uPA-T construct also showed the ability to lyse nascent clots in a thrombin-

responsive manner but not preexisting clots in transgenic (for human GP αIIb) mouse 

models of ferric chloride (FeCl3)-induced carotid artery thrombosis in vivo, thus showing 

promise for thromboprophylaxis. In another scFv-based approach, a direct FXa inhibitor 

namely tick anticoagulant peptide (TAP) was conjugated to an scFv directed at fibrin 

(scFv59D8), and this construct showed targeted anticoagulant activity in human blood-based 

assays in vitro.80 In yet another approach, single-chain urokinase plasminogen activator 

(scuPA) was conjugated to an scFv directed toward platelet glycoprotein αIIbβ3, such that 

the scFv-scuPA system was able to prophylactically prevent carotid thrombosis in vivo in 

mice, in a targeted fashion without affecting the systemic hemostasis status (measured by 

tail-bleeding assays).81 In further refinement, platelet αIIbβ3-directed scFv was conjugated 

to a recombinant microplasminogen engineered to be activated by thrombin, such that 

thrombin-triggered release of platelet-targeted microplasminogen could enable local plasmin 

generation and clot lysis in mouse models of mesenteric thrombosis and PE.82

An alternate “clot-targeted triggerable release” design for fibrinolytic agent tPA was 

also recently reported, where tPA was camouflaged by albumin by two different 

strategies, one by conjugating anionically modified tPA (modified by low-molecular-weight 

heparin [LMWH]) with cationically modified albumin (modified by protamine) and the 

other by conjugating albumin to tPA via a thrombin-cleavable peptide linker sequence 

GFPRGFPAGGC.83 An additional component of this design was potential decoration of the 

albumin-based camouflage shell with clot-homing ligands (e.g., the platelet αIIbβ3 targeting 

peptide CQQHHLGGAKQAGDV derived from fibrinogen) such that upon homing to the 

clot, the shedding of the albumin camouflage shell could be rendered by heparin dosing 
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(to reverse heparin–protamine association) or thrombin-triggered cleavage of the linker, 

leading to clot-localized release of tPA. In vitro, these systems have shown ability to 

bind to platelets and in vivo these systems have shown the ability to render fibrinolytic 

activity at levels equivalent to free tPA but with reduced systemic side-effects. In another 

recent approach, a prodrug nanoparticle comprising the antiplatelet and antithrombotic drug 

diosgenin conjugated directly to PEG was reported, where the prodrug nanoparticle was 

shown to be safe toward cell viability in vitro and to be capable of reducing thrombus 

burden in vivo in a cerebral artery thrombosis model in mice.84 Fig. 2 shows schematic 

representations of the various design approaches involving direct modification of vascular 

therapeutic molecules, discussed earlier. While these systems allow for longer circulation 

lifetimes and potential targeting of clot-relevant cellular and molecular components, such 

direct modification can also potentially pose issues of affecting the bioactivity and stability 

of the actual drug molecules. Also, transforming drug molecules into larger high-molecular-

weight systems by modification with other proteins and polymers may sterically limit their 

diffusion and permeation capabilities in larger compact clots. An alternative strategy to 

protect the drugs in circulation, increase residence time and potentially achieve targeted 

delivery (and release) at the clot site, is to package these in micro- and nanoparticulate 

vehicles, as reviewed in the subsequent sections.

Incorporation of Therapeutic Agents in Nanoparticles without Clot-

Targeting Mechanisms

Due to the issues associated with direct systemic delivery of vascular therapeutic agents as 

well as potential challenges associated with direct drug modifications, significant research 

has been directed in the past two decades toward incorporation of the agents within 

microscale and nanoscale drug carrier systems. To this end, studies have extensively 

focused on using particulate drug carriers such as liposomes, polymeric particles, lipoprotein 

particles, micelles, quantum dots (QDs), gold particles, dendrimers, ultrasound-sensitive 

bubbles iron oxide particles, and nanogels (Fig. 3).

Liposomes are amphiphilic phospholipid-based vesicular structures originally reported by 

Sir Alec Bangham, where the phospholipids self-assemble to form particles with a lipidic 

(hydrophobic) shell and an aqueous core.85,86 These systems can technically encapsulate 

both lipophilic and hydrophilic drugs in their lipid membrane and aqueous core volume 

fractions, respectively. For amphiphilic phospholipid molecules, liposome formation is 

thermodynamically for a molecular packing fraction (v/al) of approximately 1, where 

“v” is the hydrophobic volume, “a” is the hydrophilic surface area, and “l” is the 

hydrophobic length. In an aqueous environment, the amphiphilic molecules tend to form 

planar lamellar bilayer assemblies that ultimately fold into spherical vesicles containing 

a lipidic shell and aqueous core.87 Such vesicle morphologies can have single lamellar 

shell (unilamellar) or multiple concentric shells (multilamellar). Liposome size ranges 

may vary from approximately 50 nm to a few microns in diameter. Large microscale 

multilamellar vesicles may be morphologically transformed into nanoscale (diameter of 

50–200 nm) unilamellar vesicles by nano-extrusion or sonication. Moreover, modifications 

to the liposome outer surface using hydrophilic polymers such as PEG can impart steric 
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hindrance to coronal adsorption of blood proteins (i.e., opsonization) and macrophagic 

uptake, thus rendering “stealth” properties that avoid rapid macrophagic clearance from 

circulation.88 This results in enhancing the circulatory lifetime of liposomes and their 

payload.89 This liposome approach has been clinically utilized in the formulation of cancer 

drugs such as Doxil, Daunosome, and Myocet, thereby making liposomes popular choices 

in examining drug delivery to other diseases including vascular.90 Accordingly, various 

vascular drugs, especially fibrinolytic agents, have been encapsulated in liposomes for in 

vivo delivery. The earliest studies with such formulations demonstrated enhanced circulation 

residence time and in vivo efficacy of the drugs, for example, of the fibrinolytic drugs SK 

and tPA, when encapsulated within liposomes compared with direct administration.91–93 

Subsequent studies showed the ability of liposome-encapsulated SK formulations to improve 

therapeutic efficacy in vivo in rabbit and canine models of vascular occlusion.94–96 In 

related studies, Erdoğan et al demonstrated using radiolabeled SK in a rabbit jugular 

vein thrombosis model that lipid-based vesicular systems (liposomes, niosomes, and 

sphingosomes) are capable of encapsulating SK and making it bioavailable in thrombus 

at levels similar to free SK administration intravenously.97 During the late 1980s and 

1990s, recombinant tPA was approved as the fibrinolytic drug of choice replacing SK 

in the United States and United Kingdom, due to relatively higher affinity of tPA for 

“fibrin” (i.e., clot) compared with “fibrinogen.” However, a significant challenge with 

tPA is its rapid inhibition by plasminogen activator inhibitor type 1 (PAI-1) present in 

plasma, leading to its circulation half-life being approximately 5 minutes.98 Consequently, 

liposomal encapsulation of tPA has been studied to enhance his circulation residence time.99 

Studies with liposome-encapsulated tPA has shown that the drug can be encapsulated in 

PEGylated liposomes at an entrapment efficiency of approximately 20 to 40%, its circulation 

lifetime can be increased by four- to fivefold compared with free tPA (tested in vivo), 

and tPA released from such liposomes can render effective fibrinolysis in vitro and in 

vivo. Liposomes have also been assessed for encapsulation and delivery for other vascular 

therapeutics (e.g., anticoagulants), DNA/RNA, and molecular imaging agents. For example, 

LMWH has been incorporated in cationically charged liposomes for delivery via oral, 

subcutaneous, and inhalation route to explore enhancement of bioavailability of the drug.100 

In another interesting approach, LMWH-loaded liposomes were immobilized on stents to 

reduce the risk of in-stent thrombosis.101 Liposomes have also been used to deliver DNA 

and siRNA in preclinical treatment evaluation in vascular diseases,102–107 although most of 

these approaches use liposome surface decorated with targeting fusigenic or cell penetrating 

peptides, as described in the next section. Besides fibrinolytic drugs, anticoagulants and 

gene therapy agents, liposomes have also utilized for imaging of vascular diseases by 

encapsulating imaging contrast agents such as the MRI probe gadolinium (Gd), by either 

direct loading of Gd salts or by lipid conjugation of Gd chelates.108–110 Analogous to 

amphiphilic lipid-based liposomal systems, amphiphilic block copolymer-based vesicular 

systems (polymersomes)111–113 can also be used to encapsulate and deliver vascular 

therapeutics, although the limited investigations in this field have utilized “active targeting” 

of polymersomes, as described later in this article.

While amphiphilic lipids and block copolymer molecules with packing parameter closer 

to 1 (i.e., cylindrical shape) form vesicles (i.e., liposomes and polymersomes), those 
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with packing parameter less than 0.5 tend to form compact micelles with a hydrophobic 

core and a hydrophilic shell. Micellar structures have been researched for encapsulation 

and delivery of hydrophobic cancer drugs, but their study in vascular drug delivery 

has been limited. For example, PEG-polycation micelles have been studied for gene 

delivery applications to atherosclerotic lesions using rabbit models.114 Strategies based 

on micelles, directed at diseased or dysregulated endothelial components of sites of 

atherosclerosis and thrombosis, have recently been described.115,116 Majority of such 

strategies require micelle surface modification involving ligand-based active targeting, 

which is discussed in the subsequent section. Among other encapsulating particle systems, 

polymer-based solid micro- and nanoparticles have remained important components in 

vascular drug delivery applications.12,13,117,118 Using various phase segregation techniques, 

polymer-based solid nanoparticle carriers have been manufactured from biocompatible 

and biodegradable polymers such as poly-lactic-co-glycolic acid (PLGA), PEG, and 

polyvinyl alcohol (PVA) and these particle systems have been studied for encapsulation 

and delivery of fibrinolytic agents like SK and tPA, anticoagulant molecules like heparin, 

and antiproliferative agents like probucol, rapamycin, and paclitaxel that areknown to 

reduce restenosis, with promising outcomes in preclinical models and limited clinical 

studies.94,95,119–129 Ultrasound-sensitive bubbles (e.g., those made of perfluorocarbon 

encapsulated within a lipidic or polymeric shell) are approved in the clinic for cardiac 

imaging.130,131 Similar microbubbles have been studied for combined vascular therapeutic 

and diagnostic (i.e., theranostic) applications, where the drug-loaded bubble can be tracked 

by ultrasound image guidance and then destabilized by focused ultrasound for site-selective 

drug release. For example, PVA-based bubbles have been loaded with the gas nitric 

oxide (NO) that has vasodilatory and thrombo-resistant functions, for image-guided NO 

delivery to diseased vasculature.131 Similar bubbles have also been described for delivery 

of DNA, double-stranded RNA and oligonucleotides, recombinant proteins, growth factors, 

and fibrinolytic agents.132–136 Specifically, for fibrinolytic strategies, ultrasound-induced 

mechanical disruption of clots combined with ultrasound-triggered fibrinolytic delivery has 

led to strategies of “sonothrombolysis.” Another important class of nanostructures that have 

been extensively studied for drug delivery, including delivery of vascular therapeutics, is 

“dendrimers” which are highly branched polymeric nanostructures that may be synthesized 

by “convergent” or “divergent” chemical techniques.137,138 A payload of genes, drugs, 

and imaging agents can be loaded in the dendrimer core, the branching zone as well as 

in the branch extremities.139 In an early study, the fibrinolytic SK was bioconjugated to 

polyglycerol dendrimer (PGLD), and these PGLD-SK systems could be immobilized in 

the wells of ELISA plates via amide conjugation.140 These immobilized PGLD-SK assays 

showed fibrinolytic activity in vitro with blood samples but were not reported in any in vivo 

evaluation. Recently, a poly(L-lysine)-based dendrimer system has been reported that can 

be loaded with the fibrinolytic drug nattokinase (NK) and these NK/PLL nanocomposite 

particles were shown to have safety toward hemolysis and cell viability, with conserved 

enzymatic activity in vitro.141 In related studies, the same researchers have also reported 

on incorporating NK in dendrimers made from PEGylated polyglutamic acid, and this 

dendrimer system has shown low toxicity and excellent thrombolytic ability in vitro and in 

vivo.142 Besides these, dendrimers also have been used for ligand-mediated active targeting 

in vascular drug delivery, as examined in the subsequent section.
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Besides lipid- and polymer-based nanoparticle systems, inorganic nanoparticles, especially 

gold (Au) and iron oxide systems, have been studied in drug delivery and imaging in 

vascular diseases extensively.143–148 Colloidal solid gold nanoparticles can be synthesized 

by reduction of chloroauric acid in the presence of a stabilizing agent, but also hollow gold 

nanostructures fabricated by galvanic replacement techniques have been extensively studied 

as carrier vehicles for drug delivery and imaging, and for near infrared (NIR) wavelength-

triggered plasmonic properties that allow photothermally induced drug delivery.149–153 

Gold nanoparticles have been reported for cell-specific imaging, and for image-guided 

targeted drug delivery in cardiovascular diseases.154,155 For example, particles having Au 

core coated with Apolipoprotein A-1 and phospholipids were shown to be internalized 

by atherosclerosis-relevant macrophages in ApoE −/− mice, thereby enabling enhanced 

molecular imaging of lesion-associated macrophage burden, extent of calcification, and 

stenosis.156 Au nanoparticles were surface-modified by a peptide sequence that can be 

specifically degraded by MMPs and with an NIR fluorescence dye Cy5.5 in another study, 

to be used as a molecular imaging probe at sites of high MMP activity in atherosclerotic 

lesions.157 Au nanoparticles can also enable photothermal ablation properties, and this has 

been utilized in recanalization of atherosclerotic plaques in coronary arteries in human 

postmortem ex vivo specimens.158 Superparamagnetic iron oxide (SPIO) nanoparticles 

are categorized based on their hydrodynamic diameter, for example, oral-SPIO (300 nm–

3.5 μm), standard-SPIO (SSPIO, 60–150 nm), ultrasmall-SPIO (USPIO, 5–40 nm), and 

monocrystalline iron oxide NPs (MION).159 Moreover, MIONs containing a chemically 

cross-linked polysaccharide (e.g., dextran) shell are designated cross-linked iron oxide 

(CLIO) particles.160,161 Various SPIO systems have been researched as contrast agents in 

MRI-based cellular and molecular imaging of vascular diseases.162–171 Drug loading of 

SPIO systems can lead to efficient theranostic constructs, as demonstrated for the delivery 

of various antithrombotic and anticoagulant agents.172,173 Iron oxide nanoparticles have 

also been incorporated along with paclitaxel within PLGA particles to form drug-loaded 

magnetic constructs, which could be guided by an induced magnetic field for carotid artery 

site-directed triggered release of the antiproliferative drug.174 Other molecular imaging 

probes have also been combined with iron oxide nanoparticles to enable multimodal 

vascular imaging with enhanced resolution and sensitivity.175–178 QDs are another class 

of inorganic nanoparticles that have undergone substantial research in vascular imaging. 

QDs are semiconductor nanocrystals (e.g., particles with a cadmium selenide core with 

a zinc sulfide shell) whose fluorescent properties vary with size and composition, and 

they are sufficiently electron dense to also allow electron microscopy.179 The in vivo 

pharmacokinetics, biodistribution, and safety of QDs continueto be debated180–183; however, 

they have been studied in vascular drug delivery and imaging applications. As an example, 

QDs have been incorporated in high-density lipoprotein (HDL)-based plaque-targeting 

nanoparticles for imaging of atherosclerotic plaques.184 Similar HDL particles have also 

incorporated MRI contrast agents, and these were assessed for targeted MR imaging of 

atherosclerotic plaques.185–187 Ligand modification of QDs has also been assessed for active 

targeting to vascular disease sites, as discussed in the next section.
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Incorporation of Therapeutic Agents in Nanoparticles with Active Clot-

Targeting Mechanisms

Several nanoparticle systems described previously in the context of packaging of vascular 

therapeutics have also been studied to engineer “actively targeted” drug delivery systems 

where the nanoparticles can utilize specific molecular interactions to anchor at vascular 

disease sites. The molecular interactions can be mediated by antibodies and their fragments, 

proteins, peptides, etc., such that these can act as ligands to specific receptors that are 

exposed or expressed or upregulated at the site of vascular pathologies. Decoration of 

the nanoparticle surface with such ligands can be achieved by noncovalent or covalent 

bioconjugation techniques. The motivation for such molecular targeting is to enhance 

the specificity and selectivity of payload (drug) localization, and also in some cases 

utilize receptor-mediated internalization of drug-loaded nanoparticles within disease-specific 

cells.188,189 Regarding noncovalent strategies to modify nanoparticle surface, ligands are 

adsorbed mostly via physical interactions (e.g., hydrophobic, affinity-based, and charge-

based) with the particle surface. For example, in one study, polystyrene particles were coated 

with antibodies directed at P-selectin and E-selectin using adsorbed bacterial protein A 

molecules as spacers.190 P- and E-selectins are upregulated on stimulated platelets, ECs, 

and monocytes in vascular inflammation and thrombosis, and therefore surface decoration 

of nanoparticles with antibodies directed at them can enable active targeting to such 

vascular disease sites. In another study, chitosan particles were coated with antiamyloid 

monoclonal antibodies to target amyloid β-protein deposits in cerebral vasculature of 

mice.191 Other nanoparticles, such as liposomes, latex beads, and albumin particles, have 

been surface-decorated noncovalently with recombinant GPIbα (rGPIbα) and rGPα2β1 

to bind VWF and collagen, respectively, to allow potential targeting to vascular injury 

sites.192–194 Affinity-based interaction between avidin and biotin is another strategy that has 

been extensively studied for decorating nanoparticle surface in vascular targeting. Avidin 

(and Streptavidin), a glycosylated positively charged protein with high affinity toward biotin 

(dissociation constant Kd of 10−15 M),195,196 has been utilized to engineer ligand-decorated 

nanoparticles for drug delivery by incubating avidin-modified particles with biotinylated 

ligands, or vice versa. Using this approach, RBCs have been decorated with fibrinolytic 

molecules (e.g., tPA), and various nanoparticle systems have been decorated with antibodies 

targeted to various cell adhesion molecules (CAMs) in vascular disease.197 Contrary to such 

noncovalent techniques, covalent techniques for bioconjugation involve specific chemical 

reactions between ligands to appropriate reactive groups on the nanoparticles. Common 

bioconjugation reactions in this aspect are amide linkages (reaction between amine and 

carboxyl motifs), hydrazine linkages (reaction between hydrazide and aldehyde motifs), 

sulfhydryl-mediated linkages (reaction between sulfhydryl group and maleimide, sulfone, 

acetamide, or pyridyl groups), and alkyne-azide–based cycloaddition (“click”) reactions.198 

Other unique bioconjugation techniques involve enzyme-catalyzed reactions, for example, 

Sortase A-catalyzed reaction with motifs bearing the peptide sequence LPETG199 and 

transglutaminase-catalyzed cross-linking of peptide motifs bearing lysine and glutamine 

residues.200 The noncovalent or covalent strategies can be used to conjugate ligands on 

preformed particles, or by pre-reacting to constituent macromolecules first followed by 

assembly of such molecules into nano- and microparticles.
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Utilizing the various surface-modification techniques described earlier, several nanoparticle 

constructs have been described for vascular disease-specific delivery of therapeutics and 

imaging agents. For example, in one approach echogenic liposomes were surface-decorated 

with antibodies specific to fibrinogen, fibrin, and intercellular adhesion molecule-1 

(ICAM-1), to permit ultrasound-induced cavitation for thrombolytic agent delivery 

(sonothrombolysis).201–203 In a similar approach, lipid-shell based gas-filled microbubbles 

were surface-decorated with scFv directed at platelet αIIbβ3 to enable clot-specific 

targeting and ultrasound-based imaging, and image-guided assessment of thrombolysis after 

urokinase administration.204 Liposomes have also been surface-modified with antibodies 

directed to LDL receptors LOX-1 for atherosclerotic lesion-targeted delivery of contrast 

agents in molecular imaging.205 In another liposomal technology, named LipoCardium, 

targeted delivery of anti-inflammatory prostaglandins to atherosclerotic sites was achieved 

using liposomes surface decorated with antibodies specific for VCAM-1.206 Besides 

decoration with antibodies, scFv fragments have also been utilized for active targeting 

of other nanoparticles to vascular disease sites. For example, elastin-like protein (ELP)-

based micelles were surface decorated with platelet αIIbβ3-specific scFv and anticoagulant 

effector molecule TM using Sortase A-catalyzed bioconjugation, and the resultant scFv/

TM-ELP micelles were capable of targeting platelet-rich thrombi in vivo to reduce thrombus 

growth via TM-mediated activation of protein C pathway of anticoagulation (FVa and 

FVIIIa inhibition).207 The Sortase A-catalyzed conjugation of platelet αIIbβ3-specific scFv 

was also reported for surface-decoration of ultra-small iron oxide nanoparticles for contrast-

enhanced MRI of carotid artery thrombosis in mice.208 Similar scFv was also used to 

conjugate copper (64Cu) chelating cage amine systems for effective PET imaging of platelet-

rich thrombi in vivo.209

Besides antibodies and antibody fragments, peptide ligands have also been used for surface-

modification of drug delivery particles. For example, small peptides that can bind to 

VWF, collagen, integrin αIIbβ3, and P-selectin on stimulated platelets have been used 

to surface-modify liposomes, to allow targeting to sites of endothelial injury, endothelial 

denudation, platelet activation, and thrombosis in vascular pathologies.210–220 Therefore, 

these liposomal systems can be potentially utilized for spatio-temporally targeted drug 

delivery to sites of vascular disease and dysregulation. Besides liposomes, other lipidic and 

polymeric micelles have also been ligand-modified for vascularly targeted drug delivery. 

For example, micelles were surface-decorated with antibodies toward macrophage scavenger 

receptors (MSR) and loaded with Gd chelates or fluorescent probes to selectively target 

atherosclerotic lesions in ApoE −/− mice, for molecular imaging of the disease.221,222 In 

another approach, Gd-loaded PEG-lipid micelles were surface-decorated with antibodies 

directed at oxidized LDL lipoproteins in atherosclerotic plaques, for targeted molecular 

imaging of the plaque.223 Similar Gd-loaded micelles surface-decorated with anti-CD36 

antibodies were able to target lesion-associated macrophages in plaques.224 In another 

report, lipid-polymer hybrid particles were decorated with a peptide sequence KZWXLPX 

(Z: hydrophobic amino acid, X: any amino acid) and these constructs termed “nanoburrs” 

were able to actively bind exposed collagen IV at arterial injury sites for delivery of 

antiproliferative drugs to modulate SMC activity.225,226 In yet another approach, a 9-amino 

acid sequence CGNKRTRGC (Lyp-1) was used to modify the surface of micelles to bind 
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p32 receptors in atherosclerotic plaques, and CREKA peptide was similarly used to bind 

fibrin–fibronectin clots for enhanced targeting of atherosclerotic plaques in vivo.227,228

Antibody and peptide ligand decorations on solid polymeric particles as well on polymer 

capsules have also been studied for targeted therapeutic delivery to vascular pathologies. 

For example, anti-ICAM-1 antibodies were conjugated to PLGA nanoparticles for specific 

targeting of inflamed ECs in vascular disease.229,230 Anti-VCAM-1 antibodies were 

similarly used to modify the surface of microparticles and nanoparticles made of 

poly(sebacic acid)-co-PEG (PSAPEG) to enable atherosclerotic lesion-targeted delivery 

in ApoE −/− mice.231 Instead of antibodies, peptide ligands have also used for vascular 

targeting of nanoparticles. For example, surface decoration with a fibrinogen-derived 

peptide sequence NNQKIVNLKEKVAQLEA was utilized to target polystyrene particles 

to ICAM-1 in mouse models.232 Another ICAM-1-specific peptide sequence ITDGEATDSG 

(also known as LABL) has been reported for surface decoration of DNA complex 

nanoparticles and PLGA nanoparticles to demonstrate in vitro gene delivery to ICAM-1 

expressing cells.233,234 MRI contrast-enhancing nanoparticles, such as iron oxide particles, 

monocrystalline magnetic particles, and Gd-containing systems, have been described that 

are surface-decorated with VCAM-binding peptide sequences like cyclic VHSPNKK, 

VHPKQHR, and cyclic NNSKSHT for molecular imaging of atherosclerotic lesions.235–237 

In another approach, poly-L-lysine-co-poly-lactic acid copolymer (PLL-PLA) nanoparticles 

were surface-modified with RGD peptides to achieve co-localization with active platelets 

(via binding of platelet αIIbβ3) at the site of traumatic vascular injury and deliver anti-

inflammatory drugs.238,239 Surface decoration with RGD or AGD peptides for vascular 

targeting has been reported also using RBCs, latex beads, or albumin particles as the 

drug carrier vehicle.240–245 HDL nanoparticles that are already amenable to natural uptake 

into atherosclerotic lesions due to lipoprotein transports have been further decorated with 

RGD ligands for active targeting to inflamed vascular sites.246 In the area of polymer 

capsules, recent work has described calcium carbonate (CaCO3)-templated submicron 

diameter polymer capsule structures made of poly(2-diisopropylaminoethyl methacrylate) 

(PDPA) and PEG, and stabilized with poly L-histidine (HIS), and these PDPA-HIS 

capsules were further surface-decorated with collagen IV targeting peptide TLTYTWS 

using “click” chemistry to enable targeting to exposed atherosclerotic plaque.247 Vascular 

targeting ligands have also been used for decorating ultrasound-sensitive micro- and 

nanobubbles to direct them toward cell-surface receptor moieties like CAMs (e.g., ICAM 

and VCAM) and integrins (e.g., αVβ3), to achieve targeted therapy and molecular imaging 

of vascular inflammation and atherosclerosis.248–250 In related work, similar bubbles with 

shells bearing maleimido-4(p-phenylbutyrate)-phospholipid were surface-conjugated using 

therapeutic antibody Abciximab (ReoPro by Eli Lilly) to target platelet integrin αIIbβ3 for 

enhanced molecular imaging of platelet-rich thrombi.251 Other nanoparticles like dendrimers 

have also been investigated for active targeting to vascular disease, for example, by 

decorating them with cyclic RGD peptides for targeting endothelial integrin αVβ3 and 

also loading with radioactive Bromine (76Br) for positron emission tomography (PET)-based 

targeted molecular imaging of ischemic tissue in mice.252 Several other ligands relevant to 

disease-specific biomarkers and cellular phenotypes have been utilized for active targeting of 

dendrimers to vascular pathologies.253–255
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Among inorganic nanostructures for vascularly targeted delivery, cross-linked dextran-

coated iron oxide (CLIO) nanoparticles have been surface-modified with peptides and 

ligands that can target CAMs and clot-associated fibrin to enable targeting to inflammatory, 

angiogenic, and thrombotic regions in atherosclerosis for contrast-enhanced MR imaging.161 

Such particles have also been surface-decorated using ligands specific for VCAM-1, P-

selectin, and platelet integrin αIIbβ3, for contrast-enhanced targeted MRI of atherosclerosis 

and thrombosis.256 Using another approach, SPIOs were surface-modified by Annexin 

V to enable specific interaction with anionic lipids (e.g., phosphatidylserine) on outer 

membrane leaflets of apoptotic cells and thus achieve selective targeting of such particles 

to “foam cells” in atheromatous plaque in rabbits for T2-weighted MRI.257 QDs have 

also been decorated with anti-CAM antibodies directed to VCAM, ICAM, PECAM, etc. 

for in vivo optical imaging of atherosclerotic lesions.258,259 Additional approaches for 

surface engineering of QDs for targeted optical imaging of vascular disease-specific markers 

comprise targeting to oxidized LDL receptor CD36, phosphatidylserine-exposing cells, and 

plaque-relevant MMPs.260,261 As an alternative to direct targeting of QDs to the vascular 

disease site markers, they have also been used as “payloads” within other nanoparticle 

systems to achieve multimodal imaging of vascular disease sites. For example, QDs were 

loaded within paramagnetic micelles targeted to macrophagic scavenger receptors and also 

within HDL nanoparticles, for combined optical and MR imaging of atherosclerosis.184,262 

In another approach, gold nanoparticles were conjugated to QDs via a proteolytically 

degradable peptide sequence so that in the “conjugated” state the QD luminescence was 

quenched, whereas the luminescence was significantly enhanced once the conjugate was 

enzymatically cleaved.263 Such unique strategies can potentially allow probing of proteolytic 

enzyme activities that are typical of atherosclerotic lesions.

Current State-of-the-Art in Vascular Nanomedicine Systems and Future 

Opportunities

As evident from the technologies and applications described in the previous sections, the 

field of “nanotechnology and nanomedicine” has opened up unique ways to achieve disease 

site-directed delivery of various therapeutic and imaging agents as singular or combination 

payloads in vascular pathologies (Fig. 4). Such localized delivery may possibly overcome 

issues of bioavailability and narrow therapeutic window for many therapeutic molecules 

by enhancing disease-localized concentrations with lower dose overall, thereby maximizing 

treatment effects in target tissue while avoiding systemic off-target side-effects. Concepts 

around local delivery in the cardiovascular domain arose decades ago through successful 

utilization of perivascular delivery systems in animal models.264,265 For such applications, 

polymeric matrix systems loaded with heparin were placed around rat carotid arteries during 

balloon angioplasty, achieving sustained local release of drug for specific time periods and 

thereby reduce postprocedural arterial restenosis and occlusion. Similar polymeric matrices 

that incorporated ECs to provide a source of endogenous vasoregulatory molecules were 

reportedly capable of reducing neointimal hyperplasia in rat and pig models of vascular 

injury.266,267 During the last three decades, other “site-localized delivery” systems have 

been engineered for vascular therapies, including intraluminal, intramural, and stent-based 

devices, that have demonstrated high efficiency in rendering target site-localized therapeutic 
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effect while reducing nonspecific distribution and off-target side-effects associated with 

systemic delivery.268 Nanotechnology has enabled further refinement of such devices. As 

an example, silver nanoparticles have been incorporated in implantable and intravascular 

devices to prevent bacterial adhesion, growth, and biofilm development.269 Catheters as 

well as stents have been modified with carbon nanotubes for mechanical enhancement 

and drug delivery functions.270,271 Furthermore, stent designs have been refined with 

nanoscale fabrication and texturing techniques to allow enhanced drug loading, favorable 

biointeractions with tissues, and programmed drug release. Stents have also been modified 

with coatings containing drug-loaded nanoparticles for sustained drug delivery following 

endovascular procedures.272–274 Nanomaterials are also being explored in fabrication of 

artificial vascular grafts and conduits to impart thromboresistant and infection-resistant 

properties.275,276

In the context of nanoparticle and microparticle systems for vascular drug delivery, recent 

studies have emphasized the emerging role of “biophysical” parameters such as shape, 

size, and elasticity in refining the design and enhancing the intravascular performance of 

the particles. For example, several recent computational and experimental studies have 

established that particle geometry plays a significant role in their distribution in the vascular 

compartment under the hemodynamic flow environment. These evaluations have identified 

that size of particles play important roles in their margination capabilities through the 

RBC volume as well as in their interaction with the target surface at the vascular wall. 

Computational and experimental studies have indicated that micro-scale particles have a 

higher margination probability through the flowing RBC volume compared with nanoscale 

particles.277–281 Related studies have also indicated that particles of nonspherical geometry 

(e.g., ellipsoids, rods, and discs) have a higher probability of margination from flowing 

blood RBC volume toward the vascular wall and higher surface area of interaction at the 

wall that can benefit stable binding and retention for achieving enhanced wall-localized 

drug delivery under hemodynamic flow environment.282–291 Additionally, particle stiffness 

(i.e., elasticity) has been shown to affect their margination and adhesion behavior in 

flow.281,292–294 In fact, an optimal example of this is seen in naturewherebi-concavelargesize 

(~8 μm diameter) highly flexible RBCs tend to congregate toward the center of the 

flow volume while biconvex smaller (~2 μm diameter) stiffer platelets tend to marginate 

more toward the blood vessel wall.295–299 Building on these findings, in recent years, 

unique designs and manufacturing approaches have focused on development of nano- and 

microparticles with tailored geometries and stiffness to customize their transport, interaction, 

circulation residence time, and targeting properties within the vascular compartment.300–310 

Such biophysical parameters can potentially be combined with ligand-based active 

targeting strategies on particle platforms to construct drug delivery systems possessing 

enhanced capabilities of targeting, anchorage, and site-specific delivery. Furthermore, in 

the context of active targeting of drug delivery particles to vascular disease sites, several 

studies have demonstrated the benefits of “heteromultivalent ligand modification” of the 

particles where ligand motifs directed at multiple types of targets are codecorated on 

the particle surface to enhance selectivity and anchorage strength under hemodynamic 

flow environment.213,219,306,311 Such findings continue to present exciting opportunities to 

further explore the interplay between particle biophysical and biochemical factors, blood 
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flow environment, and vascular topology to fine tune drug delivery particle design toward 

specific vascular nanomedicine applications.312,313

While the majority of particulate delivery systems achieve release of encapsulated payload 

via diffusion and degradation/dissolution-mediated mechanisms,314,315 robust research has 

also been focused on incorporating unique “triggered release” mechanisms in various 

drug delivery systems. In such designs, drug release is achieved by chemical and/or 

physical triggers of particle destabilization in the disease-specific environment. Such 

triggering can be from internal stimuli such as pH, enzyme action, temperature, and 

shear forces or external stimuli such as focused ultrasound, NIR irradiation, and magnetic 

impulses.135,136,201,202,219,316–328 These unique “triggered release” approaches continue to 

add exciting refinements and attributes in the area of vascular nanomedicine, which can 

be leveraged to enhance delivery efficiency and release kinetics and therapeutic effects site 

selectively in various vascular pathologies.

Conclusion

Nanotechnology provides an efficient way to achieve improved delivery of drug molecules 

and imaging agents at sites of vascular disease, via packaging within micro- and 

nanoparticle vehicles that can be administered in circulation and can traverse through 

various transport and interaction barriers in blood flow to passively accumulate or actively 

anchor at target vascular sites. The success of these approaches depends on optimization of 

a variety of factors, including effective encapsulation of the payload within the particles, 

minimization of pre-target release of the payload, maintenance of sufficient circulation 

time periods to allow interaction with target cells and tissues, efficient margination (if 

needed) through flowing blood volume toward vascular wall, passive accumulation or active 

binding at the target site under hemodynamic conditions, efficient payload release via 

diffusion or site-specific triggers, and safe elimination of the vehicle (or its components) via 

metabolism, biodegradation, and excretion. As evident from the comprehensive descriptions 

in previous sections, meeting all these criteria optimally is quite challenging. At the 

same time, the ability to refine biophysical and biochemical design parameters as well 

as appropriate animal models and new and improved analysis techniques have allowed 

significant advancement toward optimization of vascular nanomedicine systems. Such 

advancements may allow design of vascular nanomedicine to customize toward specific 

disease treatment requirements, instead of using universal design criteria. For efficient 

clinical translation, vascular nanomedicine research should also focus on robust analysis 

of cost–benefit ratios, quality control, and regulatory hurdles for these technologies.
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Fig. 1. 
Schematic diagrams for cellular and molecular components in (A) atherosclerosis and 

atherothrombosis and (B) thromboinflammation (e.g., deep vein thrombosis, sepsis, and 

lung injury) pathologies in vascular diseases. RBC, red blood cell; P-sel, P-selectin; 

PSGL-1, P-selectin glycoprotein ligand 1; E-sel, E-selectin; vWF, von Willebrand factor; 

ICAM, intercellular adhesion molecule; LDL, low-density lipoprotein; SMC, smooth muscle 

cell; PAMP, pathogen-associated molecular patterns; DAMP, damage-associated molecular 

patterns; HMGB-1, high mobility group box 1 protein; A-plt, activated platelet; TLR 4, 

toll-like receptor 4; PAD 4, peptidylarginine deiminase 4; NE, neutrophil elastase; MPO, 

myeloperoxidase; Neu, neutrophil; NET, neutrophil extracellular trap.
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Fig. 2. 
Schematic representations of various design approaches involving direct modification of 

therapeutic molecules in the development of vascular nanomedicine. PEG, polyethylene 

glycol; Alb, albumin.
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Fig. 3. 
Schematic representations of various design approaches involving particle-based loading 

of drug (or imaging probes) in the development of vascular nanomedicine along with 

representative designs of characteristic nanoparticle systems used as particulate vehicles.
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Fig. 4. 
Schematic representations of various design approaches in engineering of nanoparticles for 

enabling surface “stealth” properties, active targeting to vascular disease-relevant proteins 

and cells, loading of charged payload (e.g., DNA, RNA) and stimuli-triggered release 

mechanisms, along with list of cellular and noncellular targets that such engineered 

nanoparticles have been directed to. US, ultrasound; ADP, adenosine diphosphate; CAM, 

cell adhesion molecule; PDGF, platelet-derived growth factor; FGF, fibroblast growth factor.

Sun and Gupta Page 37

Semin Thromb Hemost. Author manuscript; available in PMC 2023 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sun and Gupta Page 38

Table 1

Alphabetical list of acronyms/abbreviations and corresponding full name of molecules, entities, and 

terminologies used throughout the article

Abbreviation/Acronym Corresponding full name

AGD Alanine-glycine-aspartic acid

ALI Acute lung injury

CAM Cell adhesion molecule

CCR CC-chemokine receptor

CGNKRTRGC Cysteine-cysteine-asparagine-lysine-arginine-threonine-arginine-glycine-cysteine (Lyp-1)

CLIO Cross-linked iron oxide

CQQHHLGGAKQAGDV Cysteine-glutamine-glutamine histidi ne-histidine-leucine-glycine-glycine-alanine-lysine-glutamine-alanine-
glycine-aspartic acid-valine

CREKA Cysteine-arginine-glutamic acid-lysine-alanine

DES Drug-eluting stent

DNA Deoxyribonucleic acid

DVT Deep vein thrombosis

EC Endothelial cell

ECM Extracellular matrix

ELISA Enzyme-linked immunosorbent assay

FeCl3 Ferric chloride

Fg Fibrinogen

Gd Gadolinium

GP Glycoprotein

GFPRGFPAGGC Glycine-phenylalanine-proline-argi-nine-glycine-phenylalanine-proline-alanine-glycine-glycine-cysteine

HDL High-density lipoprotein

HIS Poly L-histidine

ICAM Intracellular cell adhesion molecule

IFN Interferon

IL Interleukin

ITDGEATDSG Isoleucine-threonine-aspartic acid-glycine-glutamic acid-alanine-threonine-aspartic acid-serine-glycine

Kd Dissociation constant

KZWXLPX Lysine-hydrophobic amino-acid-tryptophan-any amino acid-leucine-proline-any amino acid

LDL Low-density lipoprotein

LMWH Low-molecular-weight heparin

MCP Monocyte chemoattractant protein

MION Monocrystalline iron oxide nanoparticles

MMP Matrix metalloproteinase

MRI Magnetic resonance imaging

MSR Macrophage scavenger receptor

NET Neutrophil extracellular traps
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Abbreviation/Acronym Corresponding full name

NIR Near infrared

NK Nattokinase

NNQKIVNLKEKVAQLEA Asparagine-asparagine-glutamine-lysine-isoleucine-valine-asparagine-leucine-lysine-glutamic acid-lysine-
valine-alanine-glutamine-leucine-glutamic acid-alanine

NNSKSHT Arginine-arginine-serine-lysine-serine-histidine-threonine

NO Nitric oxide

NP Nanoparticle

PAD Peptidyl arginine deaminase

PDGF Platelet-derived growth factor

PDPA Poly(2-diisopropylaminoethyl methacrylate

PE Pulmonary embolism

PECAM Platelet-endothelial cell adhesion molecule

PEG Polyethylene glycol

PET Positron emission tomography

PFC Perfluorocarbon

PGA Polyglutamic acid

PLGA Poly-lactic-co-glycolic acid

PLGD Polyglycerol dendrimer

PLL Poly(L-lysine)

PLL-PLA Poly-L-lysine-co-poly-lactic acid

PS Phosphatidyl serine

PSAPEG Poly(sebacic acid)-co-PEG

PSGL P-selectin glycoprotein ligand

PVA Polyvinyl alcohol

QD Quantum dot

RANTES Regulated upon activation normal T cell expressed and secreted

RBC Red blood cell

RGD Arginine-glycine-aspartic acid

RNA Ribonucleic acid

SAK Staphylokinase

scFv Single-chain variable fragment

scuPA Single-chain urokinase-type plasminogen activator

SK Streptokinase

SMC Smooth muscle cells

SPIO Superparamagnetic iron oxide

TGF Transforming growth factor

TLTYTWS Threonine-leucine-threonine-tyrosine-threonine-tryptophan-serine

TM Thrombomodulin

tPA Tissue plasminogen activator

TFPI Tissue factor pathway inhibitor
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Abbreviation/Acronym Corresponding full name

UK Urokinase

uPA Urokinase-type plasminogen activator

VCAM Vascular cell adhesion molecule

VHPKQHR Valine-histidine-proline-lysine-glutamine-histidine-arginine

VHSPNKK Valine-histidine-serine-proline-arginine-arginine-lysine-lysine

vWF von Willebrand factor

WBC White blood cell

Semin Thromb Hemost. Author manuscript; available in PMC 2023 April 04.


	Abstract
	Major Cellular and Molecular Components in Vascular Disease
	Direct Modification of Therapeutic Agents
	Incorporation of Therapeutic Agents in Nanoparticles without Clot-Targeting Mechanisms
	Incorporation of Therapeutic Agents in Nanoparticles with Active Clot-Targeting Mechanisms
	Current State-of-the-Art in Vascular Nanomedicine Systems and Future Opportunities
	Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Table 1

