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Low-dose ungated CT attenuation correction (CTAC) scans are com-
monly obtained with SPECT/CT myocardial perfusion imaging. Despite
the characteristically low image quality of CTAC, deep learning (DL) can
potentially quantify coronary artery calcium (CAC) from these scans in
an automatic manner. We evaluated CAC quantification derived with a
DL model, including correlation with expert annotations and associa-
tions with major adverse cardiovascular events (MACE). Methods: We
trained a convolutional long short-term memory DL model to automati-
cally quantify CAC on CTAC scans using 6,608 studies (2 centers) and
evaluated the model in an external cohort of patients without known
coronary artery disease (n 5 2,271) obtained in a separate center. We
assessed agreement between DL and expert annotated CAC scores.
We also assessed associations between MACE (death, revasculariza-
tion, myocardial infarction, or unstable angina) and CAC categories
(0, 1–100, 101–400, or .400) for scores manually derived by experi-
enced readers and scores obtained fully automatically by DL usingmul-
tivariable Cox models (adjusted for age, sex, past medical history,
perfusion, and ejection fraction) and net reclassification index. Results:
In the external testing population, DL CAC was 0 in 908 patients
(40.0%), 1–100 in 596 (26.2%), 100–400 in 354 (15.6%), and .400 in
413 (18.2%). Agreement in CAC category by DL CAC and expert anno-
tation was excellent (linear weighted k, 0.80), but DL CACwas obtained
automatically in less than 2 s compared with about 2.5 min for expert
CAC. DL CAC category was an independent risk factor for MACE with
hazard ratios in comparison to a CAC of zero: CAC of 1–100 (2.20;
95% CI, 1.54–3.14; P , 0.001), CAC of 101–400 (4.58; 95% CI,
3.23–6.48; P , 0.001), and CAC of more than 400 (5.92; 95% CI,
4.27–8.22; P, 0.001). Overall, the net reclassification index was 0.494
for DL CAC, which was similar to expert annotated CAC (0.503).
Conclusion: DL CAC from SPECT/CT attenuation maps agrees well
with expert CAC annotations and provides a similar risk stratification
but can be obtained automatically. DL CAC scores improved classifica-
tion of a significant proportion of patients as compared with SPECT
myocardial perfusion alone.
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SPECT myocardial perfusion imaging (MPI) is a well-established
and widely used noninvasive imaging modality for the diagnosis and
prognostication of coronary artery disease (1,2). SPECT MPI is fre-
quently obtained with ungated, unenhanced CT attenuation correction
(CTAC) scans. SPECT/CT scanners use a common bed to move the
patient sequentially through both scanners (3), with some models
incorporating solid-state detector arrays. CTAC allows correction for
soft-tissue attenuation artifacts, leading to improved diagnostic accu-
racy of SPECT MPI (4).
However, CTAC scans can also potentially be used to provide

an anatomic assessment that includes evaluation of coronary artery
calcium (CAC) (5). CAC scores are a well-established marker of
the extent of coronary atherosclerosis (6–8). Integrating CAC
scores from dedicated, gated CT scans with assessments of myocar-
dial perfusion can improve the diagnostic accuracy of SPECT (7)
and PET MPI (9). Additionally, CAC from dedicated electrocardi-
ography-gated scans can provide incremental risk stratification
when combined with SPECT MPI perfusion (10,11). However,
CTAC scans are typically acquired with lower radiation doses and
without cardiac gating, leading to worse image quality and often
thicker slices than for dedicated CAC scans, which may influence
CAC scores (12). Although it is possible to quantify CAC manually
from CTAC scans, this can be time-consuming and is not common.
It is also possible to visually estimate CAC (13,14), but visual esti-
mation is inherently subjective and requires experience to be per-
formed accurately. Deep learning (DL) has been applied to image
segmentation, including models for automated measures of CAC
primarily from dedicated CAC scans. We developed a novel convo-
lutional long short-term model (convLSTM) that integrates adjacent
image slices, mimicking the clinical approach of scrolling between
slices, to quantify CAC more efficiently. We evaluated the correla-
tion between DL and expert annotated CAC scores in patients
undergoing SPECT/CT MPI. We then evaluated the prognostic sig-
nificance of DL and expert annotated CAC scores for major
adverse cardiovascular events (MACE), including incremental risk
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stratification over traditional SPECT MPI parameters, in an exter-
nal population imaged with solid-state SPECT/CT MPI.

MATERIALS AND METHODS

Study Population
Patients who underwent SPECT/CT MPI with CTAC at 1 of 2 cen-

ters (Yale and Cardiovascular Imaging Technologies) were used to train
the convLSTM. Patients who underwent SPECT/CT MPI from a third
center (University of Calgary) were used as an external testing cohort.
Patients without CTAC were excluded. For external testing, patients
with a history of coronary artery disease (n 5 673), defined as previous
myocardial infarction or revascularization with either percutaneous coro-
nary intervention or coronary artery bypass grafting (15), were excluded.
Details of the clinical data acquisition are provided in the supplemental
materials (available at http://jnm.snmjournals.org). The study protocol
complied with the Declaration of Helsinki. The study was approved by
the institutional review board at all sites. To the extent allowed by data
sharing agreements and institutional review board protocols, data and
codes used in this article will be shared on written request.

Image Acquisition and Interpretation
Details of MPI and CTAC image acquisition and interpretation are

available in the supplemental materials (16). Additional details on the
training population are in Supplemental Table 1.

Two separate cohorts (each comprising 10% of the total number of
available scans, n 5 661) of the initial training cohort were sampled,
with an equal number of cases in each CAC score category. One of
those cohorts was held out as a validation set during training, and the
model parameters were tuned to this set, whereas the second was held
out for internal testing.

All the training, internal validation, internal testing, and external
testing cases were annotated on-site by 2 expert readers with at least
5 years of experience in CAC scoring using dedicated quantitative soft-
ware (Cardiac Suite; Cedars Sinai Medical Center). DL annotations were
processed using a custom-developed pipeline, and both expert and DL
annotated CAC scores were calculated according to the standard clinical
algorithm (6), with additional details in the supplemental materials.

The DL and expert annotated cases were categorized on the basis of the
CAC score (category 1, CAC score5 0; category 2, CAC score5 1–100;
category 3, CAC score5 101–400; category 4, CAC score. 400).

Model Architecture
The model architecture is outlined in Figure 1. The model was built

using PyTorch, version 3.7.4. We automatically segmented CAC from
CTAC using a cascaded convLSTM system (17). This system consists
of 2 networks, the first of which was trained for segmentation of the

heart silhouette and the second of which was trained to segment the
CAC. The heart convLSTM was trained on a subset of training data
with expert reader annotations from QFAT software (18). A supervised
learning regime was used for both segmentation networks. The heart
mask was applied to the final CAC prediction to reduce any spurious
bone overcalling or calcification in noncardiac regions. To imitate the
physician approach of aggregating information from adjacent slices, 3
slices were provided to both networks as input (19). This network
architecture was shown previously to have significantly reduced mem-
ory consumption and to have inference times almost 2 times faster,
with similar accuracy to U-Net on a typical central processing unit
(17). Case examples with expert and DL annotations are shown in Fig-
ure 2.

Statistical Analysis
Details of the statistical analysis are provided in the supplemental

materials (20,21). The Proposed Requirements for Cardiovascular
Imaging–Related Machine Learning Evaluation (22) checklist is
shown in Supplemental Table 2. Improvements in likelihood ratio x2

and area under the receiver-operating-characteristic curve were also
assessed.

RESULTS

Population Characteristics
In total, 6,608 patients were included in the training population.

The external testing population included 2,271 patients, with pop-
ulation characteristics by DL CAC category shown in Table 1. On
the basis of the DL model results, CAC was 0 in 908 (40.0%)
patients, 1–100 in 596 (26.2%) patients, 100–400 in 354 (15.6%)
patients, and more than 400 in 413 (18.2%) patients.

DL Versus Expert Annotated CAC
DL CAC was obtained fully automatically in less than 2 s per

scan (time required to load the study, select slices, and annotate
lesions for the entire CTAC volume). This compares with approxi-
mately 2.5 min for expert annotations, including the time required to
load the study, review all slices, and annotate lesions on selected
slices. Figure 3 outlines concordance between DL CAC and expert
annotation CAC categories. The categorywise agreement (Fig. 3)
between DL CAC and expert CAC was excellent (linear weighted k,
0.80). There was also good pairwise correlation between DL CAC
and expert annotated CAC as continuous measures (r2 5 0.693, P,

0.001; Supplemental Fig. 1). Summary of categorization by visual
CAC estimation compared with DL and expert annotated CAC is
shown in Supplemental Table 3. Review of discrepant cases is

shown in the Supplemental Results and Sup-
plemental Figure 2.

Associations with MACE
During a median follow-up of 2.8 years

(interquartile range, 1.7–4.1 years), 320
patients experienced at least 1 MACE. Sup-
plemental Table 4 outlines the characteristics
of patients who experienced MACE com-
pared with those who did not. Patients who
experienced MACE had a higher median
CAC (178 vs. 11, P , 0.001) and were
more likely to have a CAC of more than 400
(35.9% vs. 15.3%, P , 0.001). Patients
who experienced MACE were also older
(median, 70.7 vs. 66.1; P , 0.001) and
more likely to have a history of diabetes

FIGURE 1. Outline of model architecture. ConvLSTM includes network trained to segment CAC,
as well as second network for segmentation of heart, which limits CAC scoring. Softmax argmax
function normalizes output of network to expected probabilities. Model identifies coronary calcium
(red) and noncoronary calcium (green) within heart mask.
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(31.6% vs. 22.1%, P , 0.001) in addition to higher rates of other
cardiovascular risk factors.
Increasing DL CAC and expert CAC category were associated

with an increased risk of MACE (Fig. 4). Compared with patients
with a DL CAC of 0, patients with scores of 1–100 (unadjusted haz-
ard ratio [HR], 2.20; 95% CI, 1.54–3.14), 101–400 (unadjusted HR,
4.58; 95% CI, 3.23–6.48), and more than 400 (unadjusted HR, 5.92;

95% CI, 4.27–8.22) were at significantly
increased risk of MACE. The risk was
similar across categories of expert anno-
tated CAC categories. Kaplan–Meier sur-
vival curves stratified by visually estimated
CAC are shown in Supplemental Figure 3.
Associations with MACE in the multi-

variable model are outlined in Table 2. DL
CAC category continued to be associated
with an increased risk of MACE in adjusted
analyses for patients with a CAC of 1–100
(adjusted HR, 1.90; 95% CI, 1.32–2.73;
P , 0.001), 101–400 (adjusted HR, 3.32;
95% CI, 2.29–4.81; P , 0.001), and more
than 400 (adjusted HR, 3.58; 95% CI,
2.47–5.19; P , 0.001) compared with a
CAC of 0. This risk stratification was
similar to the risk associated with mild
stress perfusion abnormalities (stress total
perfusion deficit, 5%–10%; adjusted HR,
1.70; 95% CI, 1.19–2.44; P 5 0.004) and
moderate to severe stress perfusion abnor-
malities (stress total perfusion deficit,.10%;
adjusted HR, 4.73; 95% CI, 3.02–7.46;
P , 0.001). The risk associated with expert
annotated CAC categories was similar to DL
categories (CAC of 1–100: adjusted HR,
2.20; 95% CI, 1.52–3.19; P , 0.001; CAC
of 101–400: adjusted HR, 3.57; 95% CI,
2.45–5.20; P , 0.001; CAC. 400: adjusted
HR, 4.05; 95% CI, 2.78–5.90; P, 0.001).
Associations with primary outcome were

similar if patients who underwent early revascularization were
excluded (DL CAC of 1–100: adjusted HR, 2.00; 95% CI, 1.34–2.94;
P 5 0.001; DL CAC of 101–400: adjusted HR, 2.98; 95% CI,
1.97–4.49; P , 0.001; DL CAC . 400: adjusted HR, 3.07; 95% CI,
2.03–4.66; P , 0.001). Results were also similar for associations
with death or myocardial infarction as well as associations with
death (Supplemental Table 5).

FIGURE 2. Examples of expert scores compared with DL CAC scores. Model identifies coronary
calcium (red) and noncoronary calcium (green). In case 1, expert and DL annotations identified simi-
lar left circumflex CAC as well as ascending aorta calcium. No CAC was identified by either expert
or DL scoring in case 2. In case 3, expert and DL annotations identified similar right coronary artery
CAC as well as mitral annular calcification. BMI5 body mass index.

TABLE 1
External Testing: Patient Characteristics According to CAC Category Determined by Deep-Learning Model

Characteristic CAC , 1 CAC 1–100 CAC 100–400 CAC . 400 P

n 908 (40.0%) 596 (26.2%) 354 (15.6%) 413 (18.2%)

Age (y) 61.9 (55.1–69.3) 66.4 (57.3–74.2) 70.8 (65.3–77.3) 72.3 (66.3–77.9) ,0.001

Male 368 (40.5%) 293 (49.2%) 200 (56.5%) 286 (69.2%) ,0.001

BMI 29.3 (25.1–32.6) 30 (25.8–34.4) 29.3 (25.4–32.9) 29.4 (25.2–32.4) 0.048

Past medical history

Hypertension 423 (46.6%) 355 (59.6%) 240 (67.8%) 268 (64.9%) ,0.001

Diabetes 136 (15.0%) 146 (24.5%) 111 (31.4%) 140 (33.9%) ,0.001

Dyslipidemia 334 (36.8%) 246 (41.3%) 187 (52.8%) 236 (57.1%) ,0.001

Family history 453 (49.9%) 305 (51.2%) 155 (43.8%) 205 (49.6%) 0.20

Smoking 67 (7.4%) 35 (5.9%) 21 (5.9%) 27 (6.5%) 0.67

BMI 5 body mass index.
Qualitative data are number and percentage; continuous data are median and interquartile range.
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Net Reclassification
We assessed patient reclassification with the addition of CAC

categories to all other components of the multivariable model
outlined in Table 2. The results of the net reclassification index
(NRI) analysis are shown in Figure 5. Both DL CAC and expert
annotated CAC significantly improved model fit and AUC (all
P , 0.01) (Supplemental Table 6). DL CAC categories improved
the risk classification of patients with events (event NRI, 0.230;
95% CI, 0.142–0.314), patients without events (nonevent NRI,
0.264; 95% CI, 0.204–0.309), and overall patient classification
(overall NRI, 0.494; 95% CI, 0.363–0.607). Event, nonevent, and
overall NRI were similar for both measures, as shown in Supple-
mental Table 6. Additionally, overall NRI was lower for visually
estimated CAC (overall NRI, 0.409; 95% CI, 0.278–0.537).

DISCUSSION

We demonstrated that DL-derived CAC scores from CTAC
imaging could be used to stratify the risk of MACE, with scores
derived rapidly (�2 s) in a completely automated manner. There
was good agreement between CAC score categorization by DL
and expert annotations, as evaluated in a large external population
with different characteristics. Lastly, we demonstrated that DL
CAC categories provided prognostic information additional to
clinical information and quantitative assessment of perfusion and
ventricular function, with improved classification of a quarter of
patients who experienced MACE and a quarter of patients who
did not experience MACE. DL CAC scores from CTAC could
be used clinically to significantly improve risk stratification in
patients undergoing SPECT/CT MPI, without the need for physi-
cian or technician time for manual annotation.
We demonstrated that the convLSTM network was able to quan-

tify CAC from CTAC imaging, with excellent agreement with and
risk stratification similar to expert annotated CAC. Importantly, the
model was trained with data from 2 sites that have CTAC imaging
protocols different from that of the external testing site. This train-
ing has not been commonly done in other studies reported in the
existing literature, providing evidence that the convLSTM and
associated DL CAC scores should be generalizable to a variety of
acquisition protocols. We also previously demonstrated that this
approach has faster inference times than a U-net model and there-
fore should not negatively impact clinical workflow. Another major
strength of the current study is the large number of expert annota-
tions performed on CTAC scans, which are not typically performed
clinically. This strength allowed us to evaluate agreement with
expert CAC scores more precisely and to robustly compare the risk
stratification provided by the 2 measures, including their improve-
ments for risk prediction of traditional SPECT/CT variables.
Several other approaches to CAC scoring with artificial intelli-

gence have been applied previously (23–27). The agreement between
CAC categories in our study (Cohen k, 0.80) is similar to agreement
demonstrated using dedicated electrocardiography-gated scans with
other DL approaches (25). Isgum et al. developed a convolutional
neural network that quantified CAC from low-dose CT scans
obtained for lung cancer screening (26). When the same model was
applied to patients undergoing PET MPI, the agreement between

manual and automated scoring in CTAC
was lower than in the present study (linear
weighted k, 0.70–0.74), and the testing was
on a much smaller patient population (n 5
133) (28). Sartoretti et al. also demonstrated
good agreement between expert annotated
and DL CAC scores in a cohort of 56
patients undergoing SPECT/CT MPI (29).
Importantly, these methods demonstrate rates
of agreement similar to what would be
expected between 2 expert readers scoring
CAC from low-dose CT scans (30). High
noise levels and partial-volume effects impact
the appearance of CAC lesions (12), leading
to frequent false-negative physician inter-
pretations, as evidenced by our finding that
physician interpretation of the presence or
absence of calcium was discrepant in about
10% of patients. Additionally, we identified
cases in which DL annotations differed

FIGURE 3. Concordance matrix between DL and expert CAC categories
in external testing population.

FIGURE 4. Kaplan–Meier survival curves for MACE. Increasing CAC category was associated with
increasing risk of MACE for DL and expert annotated CAC scores on SPECT/CT attenuation maps.
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from expert annotations for calcium in coronary ostia versus adjacent
aorta and for valvular calcification versus adjacent coronary arteries.
Although agreement between DL and expert CAC categories is

important in itself, we demonstrated that significant improvements
in risk stratification are possible with DL annotated CAC scores.
We demonstrated that increasing DL CAC category was associ-
ated with an increased risk of MACE, similar to recent findings

from Zeleznik et al. in both symptomatic and asymptomatic popu-
lations (27). However, in the present study we demonstrated that
the risk associated with each category was similar to the corre-
sponding category of expert annotated CAC. Additionally, both
DL and expert reader CAC categories were significantly associ-
ated with MACE after correcting for relevant confounders, includ-
ing age, sex, medical history, and SPECT MPI results. Lastly, we

demonstrated that improvement in patient
risk classification with DL CAC was simi-
lar to that achieved by expert annotated
categories of CAC, with both being higher
than is possible with subjective expert visual
estimates. Importantly, visually estimated
CAC was performed at the time of clinical
reporting and was informed by clinical his-
tory and perfusion findings. Improved classi-
fication compared with expert visual estimate
is particularly relevant since nuclear cardiol-
ogy laboratories more frequently rely on this
method for CAC classification given the time
required for expert annotation. Although
Dekker et al. found that DL CAC scores
had an NRI of 0.13 in patients undergo-
ing PET MPI (31), in our study about 1
in 4 patients who experienced MACE would
have their risk correctly reclassified, with a

TABLE 2
Associations with MACE

Association

Unadjusted HR Adjusted HR

95% CI P 95% CI P

DL CAC categories

,1 Reference — Reference —

1–100 2.20 (1.54–3.14) ,0.001 1.90 (1.32–2.73) ,0.001

101–400 4.58 (3.23–6.48) ,0.001 3.32 (2.29–4.81) ,0.001

.400 5.92 (4.27–8.22) ,0.001 3.58 (2.47–5.19) ,0.001

Age (per 10 y) 1.37 (1.24–1.52) ,0.001 1.12 (1.00–1.26) 0.046

Male 1.75 (1.39–2.19) ,0.001 1.11 (0.86–1.43) 0.418

BMI (per kg/m2) 0.98 (0.96–1.00) 0.021 0.99 (0.97–1.01) 0.157

Hypertension 1.22 (0.98–1.53) 0.079 0.98 (0.77–1.25) 0.862

Diabetes 1.60 (1.26–2.02) ,0.001 1.28 (0.99–1.64) 0.060

Dyslipidemia 1.34 (1.08–1.67) 0.008 1.00 (0.78–1.27) 0.997

Family history 0.82 (0.65–1.02) 0.071 0.90 (0.72–1.13) 0.353

Smoking 1.18 (0.81–1.72) 0.389 1.18 (0.80–1.74) 0.415

Stress AC TPD category

, 1% Reference — Reference —

1–,5% 1.28 (0.96–1.71) 0.097 1.22 (0.90–1.65) 0.200

5–,10% 2.06 (1.46–2.90) ,0.001 1.70 (1.19–2.44) 0.004

$10% 7.52 (5.43–10.4) ,0.001 4.73 (3.02–7.46) ,0.001

Rest AC TPD 1.07 (1.05–1.08) ,0.001 1.00 (0.97–1.03) 0.836

Stress LVEF 0.97 (0.97–0.98) ,0.001 0.99 (0.98–1.00) 0.293

BMI 5 body mass index; AC 5 attenuation correction; TPD 5 total perfusion deficit; LVEF 5 left ventricular ejection fraction.

FIGURE 5. Results of net-reclassification analysis. We assessed addition of CAC categories to full
multivariable model outlined in Table 2.
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similar proportion of patients who did not experience MACE cor-
rectly reclassified. Therefore, this approach could be applied to auto-
matically improve risk classification in a substantial proportion of
patients.
Our work adds to a growing body of literature supporting inte-

gration of CAC scores when interpreting MPI. Chang et al. dem-
onstrated that quantitative CAC combined with SPECT MPI
findings provided independent and complementary prognostic
information among a cohort of 1,126 patients without prior coro-
nary artery disease (11). Engbers et al. evaluated a combination of
the Agatston CAC score and SPECT MPI in 4,897 symptomatic
patients without prior coronary artery disease (10), demonstrating
a stepwise increase in MACE with increasing CAC score among
patients with both normal and abnormal perfusion. Visually esti-
mated CAC (13) can also provide risk stratification in patients
undergoing SPECT/CT MPI (14). However, in the present work
we demonstrate that the improvement in risk classification is
higher with DL CAC, which is rapidly and automatically derived
from SPECT/CT attenuation maps.
Our study had a few important limitations. CT attenuation imag-

ing was used clinically to visually assess coronary calcification,
and knowledge of CAC can influence patient management (32).
However, results were similar for associations with hard out-
comes, and this bias would be expected to—if anything—decrease
the associations between CAC and hard outcomes. Additionally, it
is unknown whether associations with outcomes would differ sig-
nificantly between CAC from dedicated gated studies and CAC
from CT attenuation imaging; however, previous studies have
demonstrated close agreement between the measures (33). We
trained the convLSTM model using scans with acquisition para-
meters different from those for the external testing population.
More precise quantification of CAC may be possible if the model
is trained with similar data, but this also suggests that the model
should be broadly generalizable. The model was trained to differ-
entiate coronary from noncoronary calcifications using expert
annotations. However, some lesions are challenging for expert read-
ers to annotate (such as ostial calcium compared with adjacent aor-
tic calcifications), and the DL model would also be expected to
have difficulties with these areas. Although the DL method provides
fully automated results, they will still need to be verified by a physi-
cian. The training population included patients with previous revas-
cularization; however, we excluded patients with known coronary
artery disease from the external testing population, and dedicated
studies are needed to evaluate the model’s ability to differentiate
CAC from coronary stents. Lastly, we were not able to ascertain
cardiovascular mortality in this large, retrospective population.

CONCLUSION

DL CAC derived from SPECT/CT attenuation maps agrees well
with expert CAC annotations. DL and expert annotated CAC are
associated with MACE, but DL scores can be obtained automati-
cally in a few seconds. DL CAC scores can be quantified automat-
ically after SPECT/CT MPI, without impeding clinical workflow,
to improve classification of a significant proportion of patients.
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KEY POINTS

QUESTION: Do CAC scores quantified automatically with a DL
model provide risk stratification similar to that of expert annotated
scores?

PERTINENT FINDINGS: In this retrospective multicenter study
with dedicated training and external testing populations, DL CAC
scores agreed well with expert annotated scores. DL and expert
annotated CAC are associated with MACE, but DL scores can be
obtained automatically in a few seconds.

IMPLICATIONS FOR PATIENT CARE: DL CAC scores could be
used to improve risk prediction of a significant proportion of
patients, without impeding clinical workflow.
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