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ABSTRACT
◥

In acute myeloid leukemia (AML), SWI/SNF chromatin remod-
eling complexes sustain leukemic identity by driving high levels of
MYC. Previous studies have implicated the hematopoietic tran-
scription factor PU.1 (SPI1) as an important target of SWI/SNF
inhibition, but PU.1 is widely regarded to have pioneer-like activity.
As a result, many questions have remained regarding the interplay
between PU.1 and SWI/SNF in AML as well as normal hemato-
poiesis. Here we found that PU.1 binds to most of its targets in a
SWI/SNF-independent manner and recruits SWI/SNF to promote
accessibility for other AML core regulatory factors, including
RUNX1, LMO2, and MEIS1. SWI/SNF inhibition in AML cells
reduced DNA accessibility and binding of these factors at PU.1 sites
and redistributed PU.1 to promoters. Analysis of nontumor
hematopoietic cells revealed that similar effects also impair
PU.1-dependent B-cell and monocyte populations. Nevertheless,
SWI/SNF inhibition induced profound therapeutic response in an
immunocompetent AMLmousemodel as well as in primary human
AML samples. In vivo, SWI/SNF inhibition promoted leukemic
differentiation and reduced the leukemic stem cell burden in bone
marrow but also induced leukopenia. These results reveal a variable
therapeutic window for SWI/SNF blockade in AML and highlight

important off-tumor effects of such therapies in immunocompetent
settings.

Significance: Disruption of PU.1-directed enhancer programs
upon SWI/SNF inhibition causes differentiation of AML cells and
induces leukopenia of PU.1-dependent B cells and monocytes,
revealing the on- and off-tumor effects of SWI/SNF blockade.

Introduction
Acute myeloid leukemia (AML) is an aggressive malignancy asso-

ciated with poor outcomes (1–3). An important hallmark of AML cell
identity is a deregulated hematopoietic transcriptional program that
promotes malignant self-renewal and impairs differentiation (4).
Altered gene expression in AML is supported by a core regulatory
circuitry (CRC; ref. 5) composed of transcription factors (TF) and
other regulators, including RUNX1 (6), MEIS1 (7), LMO2, and several
others (8, 9), which form an autoregulatory circuit that maintains
leukemic cell identity (10). Targeting the chromatin and transcrip-
tional dependencies of the AMLCRC therefore represents a promising
approach to target the cell-intrinsic mechanisms sustaining this
malignancy.

Excitingly, the recent development of selective small-molecule
inhibitors of SWI/SNF chromatin remodeling complexes (11) has
provided new opportunities to target AML based on its dependency
on SWI/SNF activity (12). In AML cell lines, genetic knockdown of
SWI/SNF ATPases (13) or treatment with BRM014 (14), a selective
dual inhibitor of SWI/SNF ATPase subunits SMARCA4 (BRG1) and
SMARCA2 (BRM), reduces MYC expression and induces leukemic
differentiation. Loss of MYC is caused by disruption of the hemato-
poietic-specific blood enhancer cluster (BENC; ref. 15), which is
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regulated by SWI/SNF and occupied by the hematopoietic TF PU.1
and other members of the AML CRC.

However, SWI/SNF and PU.1 are both essential for many aspects
of normal hematopoiesis. SWI/SNF complexes play several roles in
hematopoietic stem cell (HSC) maintenance (16, 17), erythropoi-
esis (18, 19), myeloid (20, 21), and lymphoid (22–24) development,
and interact with many hematopoietic lineage TFs, including
PU.1 (25). PU.1 is a pioneer-like transcription factor (25–27), which
is essential for myeloid and B-cell differentiation (28–31), and
interacts with a large number of other TFs that regulate hemato-
poiesis (32, 33). Given these critical functions in normal hemato-
poiesis, important questions regarding the use of SWI/SNF inhi-
bitors against AML have remained.

Here we evaluated the mechanisms and outcomes associated with
SWI/SNF inhibition in clinically relevant models of AML and normal
hematopoiesis. We establish that SWI/SNF blockade in AML cells
disrupts PU.1-directed enhancer programs utilized by CRCmembers,
and drives a genome-wide shift of PU.1 from enhancers to the
promoters of many genes, including those involved in leukemic
differentiation. We find that SWI/SNF inhibition is well tolerated by
mice but has specific off-tumor effects on PU.1-dependent hemato-
poietic lineages. We also demonstrate potent sensitivity to SWI/SNF
inhibition in an immunocompetent mouse model and in primary
human AML samples. Our results identify altered PU.1-directed
activity at enhancers as a critical on- and off-tumor effect of SWI/SNF
inhibition, and establish SWI/SNF blockade as a promising
antileukemic therapy.

Materials and Methods
Human cell lines

THP-1 (RRID: CVCL_0006), MV-4–11 (RRID: CVCL_0064),
MOLM-13 (RRID: CVCL_2119), OCI-AML3 (RRID: CVCL_1844),
and HL-60 cells (RRID: CVCL_0002) were acquired from ATCC or
Leibniz Institute DSMZ and maintained in RPMI supplemented with
10% heat-inactivated FBS, 10 mmol/L HEPES, GlutaMAX, nonessen-
tial amino acids, 1 mmol/L sodium pyruvate, 2-mercaptoethanol, and
pen/strep. Cells were cultured in a humidified incubator maintained at
37�C and 5% CO2. Common laboratory procedures for these cells are
described in Supplementary Materials and Methods. After thawing,
cells were passaged a minimum of three times before use in experi-
ments and were regularly tested forMycoplasma contamination using
the MycoAlert Mycoplasma Detection Kit (Lonza).

Flow cytometry
Measurements were made on a Sony SH800 (RRID: SCR_018066),

BD FACSCanto (RRID: SCR_018055), BD LSR II (RRID:
SCR_002159), or BD FACSAria II (RRID: SCR_018934). Single-
stained cells or compensation beads (Invitrogen, 01–3333–41) were
used as compensation controls. Antibodies and filter sets for each
instrument are listed in Supplementary Materials and Methods. All
data were analyzed using FlowJo v10.4.1 (RRID: SCR_008520).

Colony forming assays
Cells were counted and resuspended in IMDM 10% heat-

inactivated FBS 1% pen/strep (human) or DMEM 2% heat-
inactivated FBS 1% pen/strep at a 1:50 dilution (murine). Cells were
plated in triplicate at 10,000 (human AML), 500 (human CD34þ), or
1,000 (murine MLL-AF9) viable cells/plate using human or mouse
MethoCult methylcellulose media (StemCell Technologies, 04435 or
03434) with indicated concentrations of BRM014 or DMSO. After 10

to 14 days, plates were scored for colony counts and cells analyzed by
flow cytometry where indicated.

Genome-wide analyses
ATAC library preparation and sequencing

Cells treated with 1 mmol/L BRM014, 3 mmol/L DB2313, or DMSO
for indicated durations were prepared using the Omni-ATAC proto-
col (34) described in Supplementary Materials and Methods. Paired-
end sequencing was performed on an Illumina NextSeq 500 (RRID:
SCR_014983) high-output flow cell.

Chromatin immunoprecipitation sequencing library preparation
and sequencing

Cells were treated with 1 mmol/L BRM014, 3 mmol/L DB2313, or
DMSO for 72 hours. Chromatin immunoprecipitation (ChIP) libraries
were prepared from a single-cell suspension fixed for 10minutes in 1%
formaldehyde (TF) or dual-fixed for 30 minutes in 2 mmol/L dis-
uccinimidyl glutarate followed by 10 minutes in 1% formaldehyde
(SMARCA4/BRG1). Excess formaldehyde was quenched by the addi-
tion of glycine to 125 mmol/L. Fixed cells were washed, pelleted, and
snap-frozen using liquid nitrogen. ChIP was performed as described
previously (35). The following antibodies were used for ChIP: PU.1
(Cell Signaling Technology, 2266s, RRID: AB_10692379), RUNX1
(Abcam, ab23980, RRID: AB_2184205), MEIS1 (Abcam, ab19867,
RRID: AB_776272), LMO2 (R&D Systems, AF2726, RRID:
AB_2249968), and SMARCA4/BRG1 (Proteintech, 21634–1-AP,RRID:
AB_10858784).

Assay for transposase-accessible chromatin using sequencing and
ChIP-seq analysis

As described previously (35, 36), reads were mapped to the hg38
human reference genome using Bowtie 2.4.1 (RRID: SCR_005476;
ref. 37). Duplicate fragments and reads withmapping quality <10 were
discarded. Peak calling was performed by MACS 2.1.1 (RRID:
SCR_013291; ref. 38). DESeq2 (RRID: SCR_000154) was used for
differential peak calling, with size factors determined using the top
quartile of accessible sites. Differential peak calls were made by
requiring fold changes of >1.5-fold in either direction and FDR-
adjusted P values <0.10. TF motif enrichment was measured using
HOMER (v4.11, RRID: SCR_010881; ref. 31) and ChromVAR (39).
Overlap of peaks was assessed using bedtools (2.28.0; RRID:
SCR_006646). Calculation of mean densities and preparation of
genome-wide heat maps was performed using bwtool (RRID:
SCR_003035; ref. 40).

Single-cell library preparation and sequencing
Bone marrow (BM) and peripheral blood were pooled by condition

(N¼ 3 per condition). Peripheral red blood cells were lysed via osmotic
shock and vortexing, and live nongranulocyte PBMCs and BM
cells were isolated via FACS based on FSC/SSC profile and propidium
iodide viability staining for multiome. Samples were processed on
the 10� chromium platforms for single-cell 50 RNA-seq (scRNA-seq;
v2) or single-nuclei multiome (ATACþGene expression) kits accord-
ing to the manufacturer’s instructions. The resulting libraries
were sequenced on an Illumina NovaSeq 6000 flow cell (RRID:
SCR_016387).

50 scRNA-seq and single-nuclei multiome analysis
scRNA-seq transcripts within each cell were counted using the 10�

Cell Ranger 5.0.1 pipeline (RRID: SCR_017344). Multiome features
within each cell were counted and linked using the Cell Ranger ARC
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2.0.1 pipeline. All mapping was to the mm10 mouse genome build.
Multiplets were removed using DoubletFinder 2.0.3 (RRID:
SCR_018771; ref. 41) and AMULET 1.1 (42). To identify immune
cell populations, gene expression data were visualized using UMAP
embedding in Loupe Browser 6.1.0 (RRID: SCR_018555). For multi-
ome, cell types incompatible with sn-multiome, including granulo-
cytes and clusters with uniformly lowATAC readswere not considered
for analysis. Cell type-specific transcripts and heat maps were gener-
ated using Seurat 3.2.3 (RRID: SCR_007322; ref. 43).

Human primary leukemias and CD34þ HSPCs
Culturing primary AML samples

Viably frozen de-identified primary AML samples obtained via
leukapheresis were procured from the Texas Children’s Cancer
Center tissue repository under Institutional Review Board–
approved protocols. Written informed consent and assent where
appropriate were obtained from each participant and/or his or her
guardian in accordance with the declaration of Helsinki prior to any
study procedures. Cells were thawed at 37�C and transferred to
fresh RPMI with 10% heat-inactivated FBS and 1% pen/strep at 1:50
dilution. After a 2-hour rest, cells were counted by trypan blue and
resuspended in IMDM with 10% heat-inactivated FBS and 1% pen/
strep. For liquid cultures, cells were seeded at 2e5 cells/mL and
maintained in IMDM with 10% heat-inactivated FBS and 1 mmol/L
BRM014 or DMSO for 48 hours.

Isolation of CD34þ cord blood stem/progenitor cells
Freshly isolated umbilical cord blood units from three anonymous

healthy donors were obtained from MD Anderson Cancer Center on
their Institutional Review Board–approved protocol and diluted 1:3
with PBS. Mononuclear cells were isolated using density centrifuga-
tion. CD34þ cells were isolated by MACS cell separation using the
human CD34 MicroBead Kit UltraPure (Miltenyi Biotec, 130–100–
453) and resuspended in fresh DMEM with 10% heat-inactivated FBS
and 1% pen/strep.

Mice
Female 6-to-8-week-old C57BL/6J mice were purchased from the

Baylor College of Medicine (BCM) Animal Core Facility. All animal
experiments performed in this study were approved by the BCM
Institutional Animal Care and Use Committee and BCM Veterinary
Office.

Hematopoiesis mouse model
Dosing and sample collection

The treatment group (N ¼ 5) received once daily oral gavage of
20 mg/kg of BRM014 in 10% DMSO and 1% methylcellulose (Sigma,
M0430–100G), and the control group (N ¼ 6) received vehicle alone
for 14 days. Nearly 18 hours after the last treatment, peripheral blood
was collected. A random subset of mice (N ¼ 3 per condition) were
euthanized, and BM was collected via crushing of bilateral femurs,
tibias, and fibulas and homogenized using 40-mmol/L sterile cell
strainers (Thermo Fisher Scientific, 22–363–547).

Competitive HSC transplant
Donor BM was harvested from the femurs, tibias and fibulas of

CD45.2 C57BL/6 mice after treatment with daily BRM014 or vehicle
control for 14 days and pooled from N ¼ 3 mice per condition.
Competitor BM cells were harvested from age-matched, untreated
CD45.1 C57BL/6 mice. Recipient C57BL/6 CD45.1 mice were condi-
tionedwith a split dose of 10.5 Gy of irradiation then transplanted with

donor and competitor whole BM by retro-orbital injection. Each
recipient mouse was transplanted with 250 CD45.2þ donor HSCs
(defined as Lin–, cKitþ, Sca-1þ, CD48–, CD150þ) and 250 CD45.1
competitor HSCs, with N ¼ 4 (vehicle) and N ¼ 6 (BRM014). Fifteen
weeks after transplantation, recipientmice were humanely euthanized,
and lineage distributions of CD45.1 and CD45.2 peripheral blood cells
were compared by flow cytometry.

Syngeneic KMT2A-MLLT3 mouse model
Tumor engraftment and dosing

Mice were sublethally irradiated and transplanted with 20,000
GFPþ murine KMT2A-MLLT3 (MLL-AF9) cells. Leukemia develop-
ment wasmonitored by detection of GFPþ leukemic cells in peripheral
blood. Two weeks after engraftment, mice were assigned to treatment
or control groups (N ¼ 11 vehicle, N ¼ 10 BRM014) with essentially
equivalent distributions of leukemic burden. For downstream analy-
ses, all sample sizes in treatment and control conditions were chosen in
advance but vary in some cases due to humane endpoints in control
animals. The treatment group received once daily oral gavage of
20 mg/kg of BRM014 in 10% DMSO and 1% methylcellulose (Sigma,
M0430–100G), and the control group received vehicle alone for
14 days. During treatment, mice were randomly assigned to two
equivalent groups (N ¼ 5 per condition), which were monitored at
staggered intervals to minimize the frequency of bleeds.

Cell processing
For peripheral blood, RBCs were lysed via osmotic shock and

vortexing. Nearly 18 hours after the last treatment, a random subset
(N ¼ 3 per condition) of mice was euthanized, and peripheral blood,
BM, livers, and spleens were collected. Cell suspensions were obtained
by manual trituration and homogenized using 40-mmol/L sterile cell
strainers (Thermo Fisher Scientific, 22–363–547), and leukemic bur-
den was assessed by flow cytometry.

Complete blood count analysis
For AML studies, peripheral blood was collected 3 days after

the last treatment from MLL-AF9 mice and age-/sex-matched
nonleukemic C57BL/6 controls. For all complete blood count
(CBC) analyses, 15 mL of blood was analyzed using the Heska HT5
Hemocounter. One specimen for hematopoiesis studies was iden-
tified as a significant outlier by the Grubb test based on anomalously
high total WBC count and was excluded from analysis.

Statistical analysis
Statistical tests were performed in R (3.6.1) as two-sided tests

(RRID: SCR_001905). For multiple-comparison tests, P values were
adjusted using the Benjamini–Hochberg FDR correction procedure.
P values below the 64-bit double precision machine epsilon
(2�52 ¼ 2.22e�16) are reported as P < 2.2e�16. Independent
biological replicates were chosen in advance and are indicated in
figure legends. All N values indicate independent biological repli-
cates, genome-wide studies used N ¼ 2 per condition in agreement
with recommendations of the ENCODE Consortium, flow cyto-
metry data are presented as representative analyses from N ≥ 3
replicates, and single-cell experiments used N ¼ 3 pooled animals
per condition.

Data availability
High-throughput sequencing data generated for this project have

been deposited in the Gene Expression Omnibus (GEO, RRID:
SCR_005012) database with SuperSeries accession numbers
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GSE205572 and GSE190723. Public H3K4me3 ChIP-seq data were
analyzed from GEO accession No. GSM3681460.

Results
PU.1-directed recruitment of SWI/SNF enables binding of the
core tumor circuitry

Consistent with previous reports, treatment of a panel of AML cell
lineswithBRM014 resulted in leukemic differentiation (P< 2.2e�16 in
all cases, Supplementary Figs. S1A–S1I, full data in Supplementary
Dataset S1–S2). To dissect the underlying chromatin mechanisms, we
performed assay for transposase-accessible chromatin using sequenc-
ing (ATAC-seq) on AML cells treated with BRM014 or DMSO, which
revealed loss of accessibility at SWI/SNF sites (represented by
SMARCA4 ChIP-seq peaks) across the genome (Supplementary
Fig. S2A). Motif profiling identified the most outstanding losses to
be at sites bearing the binding motif of PU.1 (Fig. 1A; Supplementary
Fig. S2B, full data in Supplementary Dataset S3), a hematopoietic
lineage-specific TF and ETS family member.

ChIP-seq revealed 136,513 PU.1 sites across the genome (Fig. 1B).
Despite substantial overlap, the majority of PU.1 sites did not overlap
with SWI/SNF peaks (55%) and many lacked DNA accessibility peaks
(44%, Fig. 1C; Supplementary Fig. S2C), consistent with its pioneer-
like activity (44–46). Following SWI/SNF inhibition with BRM014,
PU.1 binding was largely preserved at 74,460 sites not bound by
SMARCA4 (here referred to as “untargeted sites,” Fig. 1D), as well
as at 41,150 sites that were bound by SMARCA4 but did not show
reduced accessibility upon BRM014 treatment (“independent sites”).
PU.1was furthermore retained at�60%of the 20,803 sites that showed
reduced DNA accessibility following BRM014 treatment (“dependent
sites”), reflecting a high capacity to bind its target sites in a SWI/SNF-
independent manner. In contrast to PU.1, TFs and other factors that
frequently co-bind with PU.1, including the AML CRC members
RUNX1, LMO2, and MEIS1, were highly dependent on SWI/SNF
activity and were uniformly reduced to near-background levels at
dependent sites upon treatment with BRM014 (Fig. 1E). These losses
occurred despite their continued expression (Supplementary Dataset
S1) and the preservation of binding at sites not targeted by SWI/SNF
(Supplementary Fig. S2D).

These findings led us to hypothesize that PU.1 recruits SWI/SNF to
promote accessibility needed for other CRC TFs at PU.1 sites. To test
this, we treated THP-1 cells with DB2313, an established small-
molecule inhibitor that selectively blocks PU.1 binding to its target
sites and reduces the expression of PU.1 target genes (Supplementary
Figs. S2E–S2F; refs. 47–49). ChIP-seq of SMARCA4 following treat-
ment with DB2313 but not DMSO selectively disrupted SMARCA4
recruitment to individual PU.1 sites (Fig. 1F), which reduced
SMARCA4 binding (Fig. 1G) and DNA accessibility (Fig. 1H) at
these sites genome-wide. PU.1motifs were the highest enrichedmotifs
at sites with decreased SMARCA4 binding or accessibility upon
DB2313 treatment, demonstrating a high degree of selectivity (Sup-
plementary Figs. S2G–S2H), and confirming PU.1-dependent recruit-
ment of SWI/SNF.

Examination of altered PU.1 targeting following SWI/SNF inhibi-
tion revealed that the�11% of genome-wide sites with decreased PU.1
occupancy were enriched at SWI/SNF-dependent sites, whereas the
�3% of sites with increased PU.1 occupancy were enriched at SWI/
SNF-independent sites (all P < 2.2e�16, Fig. 1I). Although SWI/SNF-
dependent sites were differentially enriched at intergenic regions, SWI/
SNF-independent sites were enriched at promoters (Fig. 1J). In
agreement, PU.1 increases were particularly associated with sites

containing high levels of the promoter mark H3K4me3 (Fig. 1K).
Enhanced PU.1 occupancy, including at myeloid differentiation-
related genes, such CD14 and CD68 (Fig. 1L), corresponded with
increased expression genome-wide (Supplementary Figs. S2I–S2K).
Our data show that PU.1 recruits SWI/SNF to generate accessibility
needed for CRC factor binding at distal sites (Fig. 1M). SWI/SNF
inhibition reduces DNA accessibility required for CRC factors at these
sites, and results in relocalization of PU.1 from a minority of its sites
to promoters.

PU.1 and SWI/SNF activity converge on the BENC module
In hematopoietic cells, MYC expression is regulated by the BENC

module (13, 15). In AML cells, BRM014 treatment induced loss of
DNA accessibility and CRC factor binding at BENC compared with
DMSO (Fig. 2A; Supplementary Figs. S3A–S3B). Although PU.1 was
retained at someBENC sites, binding partners such as RUNX1 showed
strong reductions at SWI/SNF-bound sites across the region (Fig. 2A).
Inhibition of PU.1 resulted in reduced SMARCA4 recruitment to PU.1
sites within BENC (Supplementary Fig. S3C), consistent with the
PU.1-directed SWI/SNF recruitment described above.

Treatment with either BRM014 or DB2313 caused loss of MYC
RNA expression in AML cell lines (Fig. 2B). MYC protein levels were
similarly reduced in MV-4–11 and MOLM-13 cells within 24 hours,
but required 72 hours for complete reduction in THP-1 cells treated
with DB2313 (Fig. 2C; Supplementary Fig. S3D). Despite modest
reduction of PU.1 levels in some cell lines consistent with its auto-
regulatory function (50), PU.1 remained expressed andwas retained at
its chromatin binding sites. However, loss of accessibility at PU.1
motifs (Fig. 1A) arose even in cells lacking strong PU.1 expression
changes (Fig. 2C).

Transcriptional changes induced by BRM014 and DB2313 treat-
ment were strongly correlated genome wide (Spearman R ¼ 0.38
P < 2.2e-16; Fig. 2D), and included downregulation of MYC targets,
genes repressed during myeloid development, and HSC-related genes
(Fig. 2E). Both inhibitors induced leukemic differentiation, as con-
firmed by increased expression of the cell surface markers CD14 and
CD87 (Fig. 2F). Interestingly, SWI/SNF and PU.1 inhibition also
induced loss of the stemness marker (51) CD44, which is not a feature
of phorbol 12-myristate 13-acetate (PMA)-induced differentiation of
AML cells (Fig. 2G and H and Supplementary Fig. S3E), reflecting a
unique signature of differentiation via PU.1 deregulation. BRM014
and DB2313 also exhibited largely additive effects (Supplementary
Fig. S3F), consistent with convergence on the same pathway. Together,
our findings reveal that PU.1 and SWI/SNF collaboratively regulate
MYC expression in AML and that inhibition of either factor converges
on myeloid differentiation.

SWI/SNF inhibition has off-tumor effects on PU.1-dependent
hematopoietic cell types

Because SWI/SNF and PU.1 are both critical regulators of hema-
topoiesis, we sought to examine the effects of SWI/SNF inhibition on
nontumor hematopoietic cells in vivo. We treated healthy C57BL/6
mice with daily oral gavage of 20mg/kg BRM014 or vehicle control for
14 days (Fig. 3A), which was well tolerated and did not cause
significant weight loss (P ¼ 0.49, Supplementary Fig. S4A). After the
14-day treatment period, we observed decreased white blood cell
(WBC) counts in the peripheral blood of BRM014-treated mice but
no change in hemoglobin levels (Fig. 3B).

Single-nuclei multiome (sn-multiome; integrated snATAC and
snRNA-seq) analysis of peripheral blood collected from BRM014-
and vehicle-treated mice (N ¼ 3 per condition) revealed cells in
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distinct clusters, which we identified as B cells, T cells, NK cells, and
monocytes using established markers (Fig. 3C; Supplementary
Fig. S4B). SWI/SNF inhibition caused a notable reduction in the
proportion of peripheral B cells and monocytes (Fig. 3D), but gene
expression changes were observed in all cell types (Supplementary
Fig. S4C). PU.1 motifs were among the most significantly down-
regulated TF motifs in B cells and monocytes, but not in NK or T
cells (Fig. 3E). Moreover, reduced cell numbers corresponded to PU.1
motif utilization, with B cells andmonocytes exhibiting the highest PU.1
motif accessibility, which was furthermore reduced by SWI/SNF inhi-
bition (Fig. 3F andG). Remarkably, more detailed analysis of sites with

PU.1 motifs revealed DNA accessibility losses at distal sites but gains at
promoters (Fig. 3H), similar to the effects observed in AML cells.

Flow cytometry (Fig. 3I and J) confirmed that compared with
vehicle treatment, BRM014 induced no significant effect on neutro-
phils (P¼ 0.18) but reduced total monocytes 1.8-fold (P¼ 0.05), with
specific loss of the Ly6Chigh population, a marker for monocytes
recently derived from BM (P ¼ 3.7e�3, Fig. 3I; Supplementary
Fig. S4D; refs. 52, 53). Within the lymphoid compartment, BRM014
treatment had no significant effect on peripheral T cells (P¼ 0.38) but
caused a 5-fold depletion of B cells (P ¼ 0.01, Fig. 3J; Supplementary
Fig. S4E). Our findings reveal important off-tumor effects of SWI/SNF
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Figure 3.

SWI/SNF inhibition induces reversible leukopenia in PU.1-dependent nontumor peripheral blood lineages. A, Dosing scheme for in vivo treatment of healthy mice.
B,WBC and hemoglobin (HGB) levels in peripheral blood at day 14. N¼ 6, vehicle; N¼ 4, BRM014. C, Cell type–specific transcriptional markers were unchanged by
treatment, enabling consistent classification. D, Composition of nongranulocyte immune cell types in the peripheral blood of BRM014- and DMSO-treated mice.
E, Ranking of significantly reduced differential TF motif accessibility by immune population from mice treated with BRM014 versus vehicle control. F, UMAP
embedding of individual cells by snATAC profile, with overlayed PU.1 motif accessibility.G,Quantification of accessible PU.1 motifs across specific cell types.H, Shifts
of accessible DNA sites containing PU.1 motifs in B cells and monocytes upon BRM014 treatment. I, Total number of peripheral neutrophils and monocytes at day 14
and Ly6c expression in circulatingmonocytes.N¼ 3 per condition. J, Total number of T andB cells at day 14, withB-cell gating strategy.N¼6, vehicle;N¼4, BRM014.
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inhibition that arise through the same mechanisms responsible for
therapeutic effects against AML.

To evaluate the reversibility of SWI/SNF inhibition’s effects on
hematopoiesis, we assessed CBCs from mice on the last day of
treatment and 3 weeks after cessation of treatment. This comparison
revealed that BRM014-induced effects on peripheral blood cells
recover within 3 weeks of drug withdrawal (Fig. 3K), demonstrating
that hematological and immune-related effects of transient SWI/SNF
inhibition are reversible.

Effects of SWI/SNF inhibition on hematopoiesis arise within BM
To determine at which stage of hematopoietic development

SWI/SNF sensitivity arises, we evaluated the effect of BRM014
on BM harvested from BRM014- and vehicle-treated mice at day
14 (N ¼ 3 per condition). BM from BRM014-treated mice contained
fewer total cells than vehicle control (P¼ 0.017, Fig. 4A). To assess the
chromatin effects of BRM014 treatment, we performed sn-multiome
on BM harvested at day 14, which revealed distinct clusters that we
classified as B cells, erythroid cells, monocytes, T cells, plasmacytoid
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Figure 4.

Transient SWI/SNF inhibition depletes committed hematopoietic cells in BM but preserves HSC function. A, Total number of cells isolated from BM of BRM014- and
vehicle-treated mice at day 14. N ¼ 3 per condition. B, Quantification of accessible PU.1 motifs across specific BM cell types. M, monocytes; B, B cells; Kitþ, Kitþ

progenitors; T, T cells; NK, NK cells. C, Cell type–specific transcriptional markers were unchanged by treatment, enabling consistent classification. UMAP embedding
of individual cells pooled from all conditions. Resulting clusters are classified by immune cell type based on cell-specific expression profiles.D, Inferred total number
of HSPC Kitþ and lineage-committed Kit– cells determined by scRNA-seq. E, Flow cytometry quantification and histogram of lineage-committed (CD3, CD8, B220,
GR1, TER119) and uncommitted CD45þBMcells. F, Inferred total number of B cell andmonocyte populations in BMdetermined by scRNA-seq.G, Total number of LSK
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and recapitulation of major hematopoietic lineages. N ¼ 4, vehicle; N ¼ 6, BRM014. Error bars, mean � SEM. n.s., nonsignificant.
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dendritic cells (pDC), and Kitþ hematopoietic stem and progenitor
cells (HSPC) using standard cell-type-specific markers (Supplemen-
tary Fig. S5A). This study revealed the same loss of PU.1 motifs in B
cells (P¼ 5.9e�17) andmonocytes (P¼ 7.4e�3) in BM as observed in
the peripheral blood, with no other cell types showing significant
reductions (Fig. 4B; Supplementary Figs. S5A–S5C).

To provide increased resolution of expression changes within BM
populations, we performed single-cell RNA-seq (scRNA-seq), which
revealed similar clustering of cell identities butwith increased granularity
(Fig. 4C). Interestingly, scRNA-seq revealed reduced BM cell counts to
be caused primarily by a loss of lineage-committed (Kit–) cells (Fig. 4D).
This finding was orthogonally confirmed by flow cytometry, which
showed that SWI/SNF inhibition differentially affects BM cells that have
become committed and lineage-restricted (P ¼ 7.0e�3, Fig. 4E; Sup-
plementary Figs. S5D–S5E). Further, reductions of B cells and mono-
cytes varied between early proliferative cells and late nonproliferative
cells across cell types (Fig. 4F), demonstrating that SWI/SNF inhibition
has lineage-specific effects and is required at distinct developmental
stages for each lineage (Supplementary Figs. S5F–S5G).

Importantly, BRM014 did not alter the number of LSK
(Lin–Sca-1þKitþ) HSPCs in BM (P ¼ 0.57, Fig. 4G; Supplementary
Fig. S5H). To assess the effects of SWI/SNF inhibition on HSC fitness
and function, we performed a competitive HSC transplant of BM
harvested from BRM014- and vehicle-treated mice (Fig. 4H). Excit-
ingly, HSCs isolated from BRM014-treated mice retained the ability to
engraft and to reconstitute all major hematopoietic lineages (Fig. 4I).
We conclude that transient SWI/SNF inhibition does not permanently
suppress HSC function.

SWI/SNF inhibition induces regression of AML in an
immunocompetent in vivo model

To assess the efficacy of SWI/SNF inhibition against AML in vivo,
we employed a syngeneic KMT2A-MLLT3 (“MLL-AF9”) leukemic
model in C57BL/6 mice, which is an aggressive and immunocompe-
tent AML model (54) with predictable latency. In vitro, leukemic cells
displayed a dose-dependent inhibition of colony-forming capacity
upon treatment with BRM014 (Supplementary Fig. S6A). We treated
mice engrafted with GFPþ MLL-AF9 cells with BRM014 or vehicle
control for 14 days (Fig. 5A). Compared with vehicle control, BRM014
strongly prevented leukemic expansion (P < 2.2e�16, two-way
ANOVA, Fig. 5B and C). Notably, we observed significant regression
of disease burden (P ¼ 8.3e�3), including one mouse in which the
peripheral leukemic burden was reduced from 32% to 7% after 6 days
of treatment (Supplementary Fig. S6B).

Treatment with BRM014 prevented leukemia-induced splenomeg-
aly (P ¼ 2.4e�4) and hepatomegaly (P ¼ 5.5e�3, Fig. 5D; Supple-
mentary Figs. S6C–S6D), with leukemic burden reduced 14.8-fold
(P ¼ 4.8e�6) in the spleen and 18.8-fold (P ¼ 3.3e�5) in the liver
(Fig. 5E and F). Importantly, BRM014 also reduced leukemic burden
in BM 7-fold compared with vehicle control (P ¼ 1.2e�4, Fig. 5G).
To understand the leukemic subpopulations affected by SWI/SNF
inhibition, we assessed the effects on committed lineage-marker
positive (Linþ) and immature (Lin–) leukemic blasts (Fig. 5H
and I). BRM014 effectively reduced all leukemic subpopulations,
resulting in a 5.3-fold reduction of Linþ (P ¼ 3.9e�4) and a 12-fold
reduction of Lin– leukemic BM cells (P ¼ 1.9e�5). Notably,
Lin–Sca-1–Kitþ leukemic cells, a population enriched for leukemic
stem cells (55, 56), were reduced 20-fold (P ¼ 1.8e�3, Fig. 5J).

To detect leukemic differentiation in vivo, we assessed the expres-
sion of CD44 and myeloid differentiation markers CD11B and CD14.
Leukemic BM cells from mice treated with BRM014 for 14 days

displayed decreased CD44 (P ¼ 2e�3) and increased expression of
CD11B (P¼ 0.05) and CD14 (P¼ 4.7e�5, Fig. 5K–M). Similar results
were observed in the peripheral blood as early as day 9 (Supplementary
Figs. S6E–S6G). Hence, our results confirm that leukemic differenti-
ation occurs in both peripheral blood and BM in an immunocompe-
tent context.

BRM014 was well tolerated and caused no significant weight loss
(P > 0.05, two-way ANOVA; Supplementary Fig. S6H). CBCs 3 days
after completion of therapy revealed vehicle-treated mice had high
WBC counts, anemia, and thrombocytopenia, reflecting their leuke-
mic state (Supplementary Figs. S6I–S6K). BRM014-treated mice had
reduced WBC (P ¼ 2.3e�4) and lymphocyte (P ¼ 1.1e�5) counts
compared with nonleukemic control mice (Fig. 5N, Supplementary
Figs. S6I–S6K; Supplementary Dataset S4). Platelets, neutrophils,
and monocytes were not significantly different (P > 0.05 in all cases).
While hemoglobin was mildly reduced in BRM014-treated mice
compared with normal controls (P ¼ 6.1e�6), BRM014-treated
mice were not anemic, with hemoglobin levels within a normal range.
The modest inflation of monocytes in BRM014-treated mice was
nonsignificant and caused by the identification of differentiated
leukemic blasts as monocytes by CBC. However, flow cytometry
of GFP-negative cells revealed significant reduction of nontumor
myeloid cells in BRM014-treated compared with nonleukemic refer-
ence mice, confirming similar off-tumor effects in a leukemic setting
(Supplementary Figs. S6L–S6M).

Treatment with BRM014 significantly prolonged survival
(P ¼ 1.9e�4, log-rank test), with a median survival of 44 days for
BRM014-treated mice compared with 16 days for vehicle-treated mice
(Fig. 5O). Overall, our results demonstrate that small-molecule inhi-
bition of SWI/SNF ATPase activity significantly reduces disease
burden and prolongs survival of AML.

Primary human samples mirror the on- and off-tumor effects of
SWI/SNF inhibition in mice

Upon treatment with BRM014, primary human CD34þ HSPCs
exhibited dose-dependent reduction of colony-forming capacity
(Fig. 6A), with an IC50 value of 58 � 33 nmol/L (mean � SEM).
Notably, we observed selective reduction in the development of
myeloid lineage cells, consistent with the PU.1-related effects observed
in mice (P ¼ 1.5e�3; Supplementary Fig. S7A–S7C). These results
reveal that similar off-tumor effects arise in both mice and in primary
human samples.

To assess the effect of SWI/SNF inhibition on humanAML samples,
we obtained leukemic blasts from patients with AML and evaluated
their sensitivity to BRM014. BRM014 caused dose-dependent reduc-
tion of colony formation potential (Fig. 6B; Supplementary Fig. S7D)
and altered cell morphology (Fig. 6C). Although the majority of AML
specimens had a lower IC50 compared with nontumor CD34þHSPCs,
three of the seven had higher IC50 values. This variation in therapeutic
response indicates that the balance between on- and off-tumor effects
gives rise to a unique therapeutic window for each patient. Effective
concentrations of BRM014 varied between donors, but 1 mmol/L of
BRM014 was sufficient to ablate colony formation potential of all
leukemias. Remarkably, one patient sample (358) that was highly
responsive to BRM014 treatment bore the KMT2A-MLLT4
(MLL-AF6) fusion [t(6;11)], which is the most therapy-refractory
KMT2A fusion, associated with event-free survival odds of only
11% to 17% (57, 58). No systematic variation was observed between
KMT2Ar and non-KMT2Ar samples, indicating that SWI/SNF
inhibition targets mechanisms that contribute to AML maintenance
independently of KMT2A fusion status.
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Treatment with BRM014 did not result in significant loss of viability
of primary leukemia cells within 48 hours, even at concentrations up to
1 mmol/L (Supplementary Fig. S7E). Flow cytometry of human
samples confirmed accumulation of myeloid differentiation markers
(CD11B, CD68) and loss of the stemness marker CD44, a signature of
PU.1 deregulation in AML (Fig. 6D and E). Markers activated upon
SWI/SNF inhibition varied by donor, but indicated a general myeloid
differentiation phenotype.

Similar to our cell line observations, ATAC-seq revealed PU.1 to be
the most decreased motif following BRM014 treatment (Fig. 6F).
Moreover, BRM014 caused loss of accessibility at BENC in all speci-
mens (Fig. 6G), with concomitant loss of MYC expression (Fig. 6H).
Notably, we observed significant heterogeneity in the specific peaks
lost at BENC, and hence variation in chromatin state may underlie
crucial aspects of the heterogeneous patient-specific responses to
SWI/SNF inhibition. Excitingly, BRM014 caused accessibility losses
at intergenic regions with PU.1 motifs (P ¼ 2.5e�7) and gains at

promoter regions with PU.1 motifs (P ¼ 1.4e�6, Fig. 6I), consistent
with the mechanisms observed in our cell line studies. Overall, our
findings reveal that primary human AMLs are highly sensitive to
pharmacological targeting of SWI/SNF and indicate that the balance
between on- and off-tumor effects on hematopoietic cells will be an
important clinical consideration in humans.

Discussion
Subunits of SWI/SNF complexes act as oncogenic dependencies in

multiple cancer types (59–62). In these cancers, pharmacologic inhi-
bition of SWI/SNF represents a promising and novel strategy to target
tumor-specific chromatin dependencies. Targeting tumor cell-
intrinsic dependencies may be particularly valuable for cancers with
low mutational burdens, which often have few targetable muta-
tions (63, 64) and respond poorly to immunotherapies due to low
immunogenicity (65). Hematopoietic malignancies such as leukemia
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are ideal candidates for this strategy, due to their lowmutation burden
and demonstrated dependence on SWI/SNF activity.

Acute leukemias rely on SWI/SNF activity tomaintain the stemness
of leukemic cells and to prevent terminal differentiation. In this setting,
SWI/SNF complexes as well as PU.1 and CRC member RUNX1 have
been linked to regulation of MYC expression (13, 66–68). Our work
reveals that PU.1 requires SWI/SNF activity to recruit CRC factors to
distal enhancers, including the BENCmodule that drivesMYC. When
SWI/SNF is inhibited, PU.1 is retained at many sites, but is also
relocalized to H3K4me3-bound promoter sites associated with mye-
loid differentiation genes.

Variable outcomes regarding the requirement for SWI/SNF
subunits for hematopoiesis (59, 69, 70) have created uncertainty
about whether SWI/SNF inhibition would cause adverse hemato-
logic effects. Here, we demonstrate that transient SWI/SNF inhi-
bition dysregulates hematopoietic development within BM, with
lineage-specific effects similar to PU.1 inhibition, which also
impacts committed PU.1-dependent lineages but spares HSCs (47).
Nevertheless, long-term PU.1 impairment has been reported to
impair HSC function (71), therefore additional studies on the long-
term use of SWI/SNF inhibition are warranted. Although our work
identifies impaired development in B cells and monocytes, lineage
tracing studies can be expected to provide deeper insight into the
altered mechanisms within each lineage. Importantly, the immune-
related toxicities observed during short-term treatment compare
favorably to the dose-limiting and persistent immunosuppression
associated with standard-of-care chemotherapy (72, 73).

Recent studies showed that ex vivo inhibition of SWI/SNF
complexes in T cells enhances memory T-cell formation (74) and
limits T-cell exhaustion (75), which is not assessed in our studies
due to the absence of an immune challenge. Importantly, unlike
ex vivo treatment, in vivo SWI/SNF inhibition also impacts antigen-
presenting cells such as macrophages. Our work shows that full
consideration of the distinct effects on diverse cell types is required
to understand the impact of SWI/SNF inhibition on immune
response in vivo.

The strong leukemic regression achieved by SWI/SNF inhibitors
in vivo demonstrates their remarkable potential for use in AML. Still,
dosing regimens and treatment duration will require further optimi-
zation to achieve optimal outcomes in vivo, for example, by accounting
for external factors including drug metabolism and small-molecule
pharmacokinetics/pharmacodynamics that limit drug efficacy. Our
work highlights that normal hematopoiesis can be affected at doses
similar to those needed for therapeutic response in AML specimens,
which will be an important consideration for clinical use of SWI/SNF
inhibitors against AML and other tumors. Nevertheless, the robust
regression of leukemic burden seen over a short 2-week treatment

period suggests a considerable therapeutic window in immunocom-
petent settings for some patients, and provides a compelling justifi-
cation for continued study of SWI/SNF inhibitors in the treatment of
AML.
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