
Covariate-specific evaluation of continuous biomarker

Ziyi Li1, Yijian Huang*,2, Dattatraya Patil3, Mark Rubin4, Martin G. Sanda3

1Department of Biostatistics, The University of Texas at MD Anderson Cancer Center, TX, U.S.

2Department of Biostatistics and Bioinformatics, Emory University, GA, U.S.

3Department of Urology, Emory University, GA, U.S.

4Department for BioMedical Research, Bern Center for Precision Medicine, University of Bern, 
Bern, Switzerland

Summary

Diagnostic tests usually need to operate at a high sensitivity or specificity level in practice. 

Accordingly, specificity at the controlled sensitivity, or vice versa, is a clinically sensible 

performance metric for evaluating continuous biomarkers. Meanwhile, the performance of a 

biomarker may vary across sub-populations as defined by covariates, and covariate-specific 

evaluation can be informative. In this article, we develop a novel modeling and estimation method 

for covariate-specific specificity at a controlled sensitivity level. Unlike existing methods which 

typically adopt elaborate models of covariate effects over the entire biomarker distribution, our 

approach models covariate effects locally at a specific sensitivity level of interest. We also extend 

our proposed model to handle the whole continuum of sensitivities via dynamic regression and 

derive covariate-specific ROC curves. We provide the variance estimation through bootstrapping. 

The asymptotic properties are established. We conduct extensive simulation studies to evaluate the 

performance of our proposed methods in comparison with existing methods, and further illustrate 

the applications in two clinical studies for aggressive prostate cancer.
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1 ∣ INTRODUCTION

Evaluation of biomarkers for their diagnostic ability is a common task in biomedical 

research. It is relatively straightforward to evaluate binary biomarkers using metrics such 

as sensitivity and specificity. The evaluation of continuous biomarkers, however, is more 

complicated as a threshold is needed to define the normal and abnormal ranges of the 

measurement for disease diagnosis. The threshold for a diagnostic test usually needs to 

attain a high sensitivity or specificity level to keep false negatives or positives, respectively, 

to minimal e.g., Sanda (2017).1 As a result, specificity at a controlled sensitivity (or vice 

versa) has been used as a clinically sensible metric.2,3

Meanwhile, covariates, such as age, race, and sample collection conditions, may influence 

biomarkers. Given a desired sensitivity or specificity level, the diagnostic threshold of 

a biomarker may change in sub-populations as defined by these covariates. Moreover, 

the diagnostic ability of a biomarker at a fixed threshold may also associate with or 

be influenced by covariates. Consequently, covariates can confound the assessment of 

continuous biomarkers, biasing the results if ignored. For example, if the covariates affect 

the distribution of the biomarker but not the covariate-specific ROC curves, Pepe (2003)4 

showed that ignoring covariate effects may lead to underestimated diagnostic ability of 

a biomarker comparing to its actual performance. Therefore, as already recognized and 

discussed by many existing studies5,6,7,4, it is important to adjust for covariate effects in the 

evaluation of continuous biomarkers.

Many existing methods imposed models on both the case and the control biomarker 

distributions to subsequently induce the covariate effects on the ROC curves.8,9,10,11,12 

For example, Faraggi (2003) adopted the normal linear regression models for both the 

case and control biomarker distributions.11 The approach of Pepe (1998) was more general 

by adopting semiparametric models.9 Additionally, Inácio de Carvalho et al. (2013)12 and 

Inácio and Rodriguez-Álvarez (2021)13 developed Bayesian methods based on dependent 

dirichlet process mixtures to target the whole conditional distribution. Nevertheless, all these 

methods modeled the covariate effects on the ROC curves in an indirect fashion. Thus 

their coefficients cannot be directly interpreted with respect to the ROC curve. To address 

that, several parametric distribution-free (PDF) methods that directly model the ROC curve 

have been proposed.5,14,15,16 These PDF methods can accommodate multiple test types and 

continuous covariates, and they may also target restricted portions of the ROC curve that 

are of interest. In particular, Alonzo and Pepe (2002) and Cai and Pepe (2002) developed 

generalized linear models for covariate effects on the ROC curve.15,16 Even with these PDF 

methods, the models are still restrictive because they presume covariate effects, as measured 

in regression coefficients, to be constant over the ROC curve of interest.

As a related problem, covariate adjustment has been developed for test thresholds so as 

to keep a controlled sensitivity or specificity level uniform across patient sub-populations. 

Janes and Pepe (2009) developed a non-parametric estimator in the circumstance of discrete 

covariates.6 Our previous work generalized the method by imposing a parsimonious quantile 

regression model for the thresholds.17 These methods may provide a biomarker evaluation 

Li et al. Page 2

Stat Med. Author manuscript; available in PMC 2023 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



at covariate-adjusted thresholds for the overall population, but do not permit subpopulation-

specific evaluation, as focused on in this article.

In this work, we develop a novel modeling and estimation method for covariate-specific 

specificity at a controlled sensitivity level. It generalizes the PDF methods by targeting the 

particular controlled sensitivity level of interest only or accommodating potential varying 

covariate effects at different sensitivity levels. At the same time, The proposed approach 

extends our previous work17 to provide covariate-specific biomarker assessment. We first 

model the covariate effects among the diseased population by quantile regression, locally at 

a sensitivity of interest. Subsequently, the covariate-specific specificity is modeled among 

the non-diseased population by logistic regression. This formulation uses covariate-adjusted 

thresholds to equally control the sensitivity among sub-populations, meanwhile providing 

flexibility to estimate specificity for given covariate values. The proposed method starts with 

a local model for specificity at a controlled sensitivity level, and it extends naturally to 

covariate-specific ROC curves by addressing the continuous spectrum of sensitivity levels. 

It is worthwhile to point out that the same method directly applies to covariate-specific 

sensitivity at controlled specificity by switching the roles of cases and controls.

The subsequent sections are organized as follows. Section 2 considers the covariate-specific 

specificity locally at a controlled sensitivity level. Inference and asymptotic properties are 

established. Section 3 extends the proposal to covariate-specific ROC curve with related 

inference and asymptotic properties. We evaluate the performance of our proposed estimator 

and inference in the simulation studies presented in Section 4. Section 5 illustrates our 

proposals with applications to aggressive prostate cancer. Discussions and remarks are 

presented in Section 6. Technical proofs are relegated to the Appendix. The software of our 

proposed methods is available through R/CRAN package caROC.

2 ∣ COVARIATE-ADJUSTED SPECIFICITY AT A CONTROLLED 

SENSITIVITY LEVEL

Denote the continuous biomarker of interest by M1 and M0 for cases and controls, 

respectively. Let their associated covariates be Z1 and Z0, respectively. The covariates 

could be discrete or continuous. Write the conditional biomarker distribution for 

cases as F1(t; z) ≡ Pr(M1 ≤ t ∣ Z1 = z) and for controls as F0(t; z) ≡ Pr(M0 ≤ t ∣ Z0 = z). The 

corresponding conditional quantile function for the cases is F1
−1( ⋅ ; z). To control the 

sensitivity level at ρ0, we adopt a quantile regression model on the cases as follows:

F1
−1(1 − ρ0; z1) = (1, z1

T)β, (1)

where β is the regression coefficient. One is added to the covariate vector to incorporate an 

intercept. Denote the true value of β by β0.

Since the covariate-specific performance of the biomarker is of interest, we further model 

specificity over covariates in the control population. A logistic regression model is adopted, 

with the threshold (1, Z0
T)β0 imposed on the biomarker to control sensitivity at ρ0 uniformly 

among the subpopulations:
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Pr{M0 ≤ (1, Z0
T)β0 ∣ Z0 = z0, γ} = exp{(1, z0

T)γ}
1 + exp{(1, z0

T)γ} , (2)

where γ is the regression coefficient of interest. A logit link function is used here but it can 

be replaced by other link functions, e.g., probit link. Write the true value of γ as γ0. The 

measure ϕ0(z ∣ β0, γ0) ≡ Pr{M0 ≤ (1, Z0
T)β0 ∣ Z0 = z, γ0} gauges the covariate-adjusted specificity 

at the controlled sensitivity level for the subpopulation with covariate value z.

Observe that our model is more general than existing methods in many aspects. Pepe (1998) 

estimated the biomarker distribution F0( ⋅ ; z) and F1( ⋅ ; z) using semiparametric location-

scale regression models9, whereas Faraggi (2003) adopted normal linear regression models 

for both distributions.11 It is easy to see that both models on F1 are more restrictive than our 

quantile regression model (1). The normal linear regression model on F0 of Faraggi (2003) 

implies the probit counterpart of our model (2).11 Thus, our model (2) is also more general 

than the model of Faraggi (2003) on F0.11 In comparison with the PDF methods of Alonzo 

et al. (2002)15 and Cai and Pepe (2002)16, our model (2) is much less restrictive in that the 

covariate effects are modeled for the controlled sensitivity level only, rather than assumed 

the same across various sensitivity levels.

2.1 ∣ Estimation

Consider a case cohort study. Suppose the data contain n1 i.i.d. case samples, (M1i, Z1i), 
i = 1, ⋯, n1 and n0 i.i.d. control samples, (M0j, Z0j), j = 1, ⋯, n0. The point estimator for β0

could be obtained using the standard quantile regression method by Koenker and Bassett 

(1978).18 After β0 is estimated by β, a binary diagnostic result based on the estimated 

threshold is computed for every control sample, I{M0j ≤ (1, Z0j
T )β}, j = 1, ⋯, n0. The logistic 

regression is then performed with the binary result over the covariates in the control sample 

to obtain the point estimation for γ0. The estimator (β, γ) is the solution to the following set 

of estimating equations:

Gn{β, γ} =

n1
−1 ∑

i = 1

n1
Z1i[I{M1i > Z1i

T β} − ρ0]

n0
−1 ∑

j = 1

n0
Z0j [I{M0j ≤ Z0j

T β} − exp{Z0j
T γ} ∕ 1 + exp{Z0j

T γ}

,

where Z1i = (1, Z1i
T )T and Z0j = (1, Z0j

T )T. To estimate the variance for the proposed estimators, 

the standard non-parametric bootstrap can be applied to cases and controls separately. That 

is, within cases or controls, the pairs of biomarker and covariates are resampled.

2.2 ∣ Asymptotic study

We study the asymptotic properties of the estimators β and γ. The regularity conditions are 

given as follows:

Condition 1. The control and case size ratio n0 ∕ n1 approaches a constant c > 0 as n0 + n1 ∞.
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Condition 2. Covariates Z1 and Z0 are bounded.

Condition 3. Both E(Z1
⊗ 2) and E(Z0

⊗ 2) are nonsingular, where v ⊗ 2 = vvT for vector v.

Condition 4a. Both F1(t; z) and F0(t; z) are differentiable at the threshold t = zTβ0 with 

derivative bounded away from 0 and ∞ uniformly in z over the supports of Z1 and Z0, 

respectively.

All these conditions are standard and mild. Previous works using quantile regression have 

adopted similar assumptions.19,17

Theorem 1. Suppose that the quantile regression model for the cases given in (1) and 

the logistic regression model for the controls given in (2) hold locally at the controlled 

sensitivity level ρ0, along with Conditions 1, 2, 3, and 4a. Then, (βT, γT)T is consistent almost 

surely for (β0
T, γ0

T)T. In addition, n0{(β − β0)T, (γ − γ0)T}T converges to a bivariate normal 

distribution with mean 0 and variance

V =
V β Cβ, γ

Cβ, γ V γ
,

where V β = c ρ0(1 − ρ0)D1
−1D0D1

−1, Cβ, γ = c ρ0(1 − ρ0)D3
−1D2D1

−1D0D1
−1,

V γ = D3
−1 + c ρ0(1 − ρ0)D3

−1D2D1
−1D0D1

−1D2
T(D3

−1)T ,

and D0 = EZ1
⊗ 2

, D1 = E{F1
′(Z1

Tβ0)Z1
⊗ 2}, D2 = E{F0

′(Z0
Tβ0)Z0

⊗ 2}, and 

D3 = E[Z0
⊗ 2 exp(Z0

Tγ0) ∕ {1 + exp(Z0
Tγ0)}2].

Note that V γ has two components. The second component, c ρ0(1 − ρ0)D3
−1D2D1

−1D0D1
−1D2

T(D3
−1)T, 

is the additional variabilities in γ, due to the estimation of β0. For given covariate z, since 

ϕ(z ∣ β, γ) is a continuous function of γ, the asymptotic properties for ϕ(z ∣ β, γ) can be 

established by applying the continuous mapping theorem and delta method.

3 ∣ COVARIATE-SPECIFIC ROC CURVE

The local model in (1) and (2) pertains to a given sensitivity level ρ0. This can be naturally 

extended to the whole spectrum of sensitivity values ρ ∈ (0, 1) to obtain a global model. For 

cases, the quantile regression model for any sensitivity ρ ∈ (0, 1) becomes

F1
−1(1 − ρ; z) = z 1

Tβ(ρ), ∀ ρ ∈ (0, 1), (3)

and for controls, the coefficients of logistic regression also vary with ρ

Pr{M0j ≤ Z0j
T β(ρ) ∣ Z0j = z 0j} = exp{z 0j

T γ(ρ)}
1 + exp{z 0j

T γ(ρ)} , ∀ ρ ∈ (0, 1) . (4)
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Again, the logit link here can be replaced by other link functions. Since F1( ⋅ , z) and F0( ⋅ , z)
are distribution functions for all z, there are natural constraints on the coefficient processes, 

β(ρ) and γ(ρ) in the preceding models. Obviously, β(ρ)Tz needs to be non-increasing in ρ for 

all z in Equation (3). With β(ρ) being differentiable, that is equivalent to β′(ρ)Tz ≤ 0 for all z. 

For the controls with any z,

∂ Pr(M0 ≤ t ∣ z)
∂t ≥ 0 .

Plugging the right-hand side of (4), we have [γ′(ρ)Tz] ∕ [β′(ρ)Tz] ≥ 0, ∀z. Given (3) holds, the 

constraint simplifies to γ′(ρ)Tz ≤ 0 for all z.

Of course, the above general model is more restrictive than the earlier local model. 

Nevertheless, the covariate effects are allowed to vary over various sensitivity levels. Thus, 

it remains to be more general than the existing methods9,11,15,16, just like the local model as 

discussed before.

We could apply the estimation procedure developed for local model to estimate the 

parameters of (3) and (4) in a pointwise way based on the estimating equations:

Gn{β(ρ), γ(ρ)} =

n1
−1 ∑

i = 1

n1
Z1i[I{M1i > Z1i

T β(ρ)} − ρ]

n0
−1 ∑

j = 1

n0
Z0j [I{M0j ≤ Z0j

T β(ρ)} − exp{Z0j
T γ(ρ)} ∕ 1 + exp{Z0j

T γ(ρ)}

.

The computational burden may seem heavy as the solutions may be needed for each and 

every ρ ∈ (0, 1). However, the estimator β(ρ) is actually a step function and can be efficiently 

solved by the parametric programming algorithm described in Koenker (2005).19 Portnoy 

(1991)20 showed that the number of breakpoints is Op(n log n), where p is the number of 

covariates and n is the sample size. For logistic regression, one only needs to solve the 

estimator γ(ρ) when I{M0j ≤ Z0j
T β(ρ)} changes, which is a subset of the breakpoints in 

quantile regression. Our R/CRAN package, caROC, provides efficient implementations for 

both local and global models.

3.1 ∣ An asymptotic analysis

To derive the asymptotic properties of the global model, we strengthen Condition 4a.

Condition 4b. Both F1(t; z) and F0(t; z) have density functions f1(t; z) and f0(t; z), respectively, 

which are continuous in t for given z and bounded uniformly in t and z over the supports of 

Z1 and Z0, respectively. Meanwhile, β0( ⋅ ) is continuously differentiable on [ρ1, ρ2] for any ρ1

and ρ2 such that 0 < ρ1 < ρ2 < 1.

This condition is also standard and has been used before. For example, Janes and Pepe 

(2009) used similar conditions for the existence of density function when the ROC curve 
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was of interest.6 Similarly, the differentiability of the quantile regression estimand has been 

adopted in Koenker (2005).19

Theorem 2. Suppose that the quantile regression model for the cases given in (3) and 

the logistic regression model for controls given in (4) holds globally over sensitivity 

levels ρ1 through ρ2 with 0 < ρ1 < ρ2 < 1, along with Conditions 1, 2, 3, and 4b. 

Then, {β(ρ)T, γ(ρ)T}T converges almost surely to {β0(ρ)T, γ0(ρ)T}T uniformly over ρ ∈ [ρ1, ρ2]. 
Furthermore, n0[{β(ρ) − β0(ρ)}T, {γ(ρ) − γ0(ρ)}T]T converges weakly to a Gaussian process 

over ρ ∈ [ρ1, ρ2].

3.2 ∣ Monotonization and inference

There is inherent monotonicity in covariate-specific ROC curves for all z, and accordingly 

β0( ⋅ ) and γ0( ⋅ ) are necessarily monotonicity-respecting. However, as both quantile 

regression and logistic regression are solved in a point-wise fashion, lack of respect for 

such monotonicity may arise in β, γ, and subsequently the estimated covariate-specific 

ROC curves and so do illogical results. The monotonicity-respecting restoration method 

of Huang (2017)21 may be used, targeting either β( ⋅ ) and γ( ⋅ ) or the estimated covariate-

specific ROC curves. In our related work17, the regression-based and the ROC-based 

monotonization method demonstrate comparable accuracy in the estimations, but ROC-

based method has better computational performance. In this work, we shall adopt ROC-

based monotonization. Consider an estimated covariate-specific ROC curve 1 − ϕ( ⋅ ), which 

is a step function; note that we view an ROC curve as 1-specificity versus sensitivity in 

this article. Denote the set of break points along with boundary points, i.e., 0 and 1, by 

Π. From a starting point ρ0, we find the left nearest monotonicity-respecting neighbor in 

Π as max{ρ ∈ Π :ρ < ρ0, ϕ(ρ) − ϕ(ρ0) > 0}. Each identified point then has its own left nearest 

monotonicity-respecting neighbor, and we repeat this procedure until no such neighbor 

exists. In the opposite direction, we can similarly identify the right nearest monotonicity-

respecting neighbor of ρ0, min{ρ ∈ Π :ρ > ρ0, ϕ(ρ) − ϕ(ρ0) < 0}, and recursively identify all 

the right monotonicity-respecting points. We denote the set containing all these points 

including the starting one ρ0 by ℳ. A monotonized covariate-specific ROC curve is obtained 

by linear interpolating 1 − ϕ(ρ) over the points in ℳ. As discussed in Huang (2017)21, 

the monotonicity-restored estimator is robust to the potential tail instability of the original 

estimators as long as ρ0 is selected away from the tails. Additionally, Huang (2017)21 

established the asymptotic equivalence between the monotonized and original esitmators. 

Therefore, our asymptotic theory applies for estimators with monotonicity restoration as 

well.

For inference, the procedures described for the local model could be adopted if a point 

on the ROC curve is of interest. When inference of the whole ROC curve is needed, 

one may construct a confidence band using a non-parametric bootstrap. Conditional 

on the data, the distribution of n0
1 ∕ 2{ϕ∗( ⋅ ∣ z) − ϕ( ⋅ ∣ z)} is asymptotically the same as 

n0
1 ∕ 2{ϕ( ⋅ ∣ z) − ϕ0( ⋅ ∣ z)}. Thus, given a set of interested covariates z, the α-level equal-

precision confidence band of ϕ(ρ ∣ z) can be constructed by

Li et al. Page 7

Stat Med. Author manuscript; available in PMC 2023 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ϕ(ρ ∣ z) ± ηαSE{ϕ(ρ ∣ z)},

where ρ ∈ [ρ1, ρ2] with 0 < ρ1 < ρ2 < 1 and SE{ϕ(ρ ∣ z)} is the standard error of ϕ(ρ ∣ z). ηα is 

the estimated α-percentile of supρ ∈ [ρ1, ρ2][ ∣ ϕ∗(ρ ∣ z) − ϕ(ρ ∣ z) ∣ ∕ SE{ϕ(ρ ∣ z)}]. SE{ϕ(ρ ∣ z)} is 

the standard error obtained from bootstrap resamples. For a monotonized ROC curve, the 

confidence band can be similarly obtained by replacing the ϕ(ρ ∣ z) and SE{ϕ(ρ ∣ z)} with 

their monotonized versions.

4 ∣ SIMULATIONS

We evaluate the finite sample properties of the proposed method through two simulation 

studies. In each study, we compare the proposed method with three existing covariate-

specific ROC estimation methods: Pepe (1998)9, Faraggi (2003)11, and Inácio de Carvalho 

et al. (2013)12, which have been implemented in R/CRAN package ROCnReg.22 These 

existing methods are adapted for covariate-specific specificity at controlled sensitivity levels 

by switching the roles of cases and controls. Unfortunately, many other methods do not have 

their software readily available and thus are not included for comparison.

Suppose that the biomarker in cases and controls rely on two continuous covariates Z1

and Z2, both of which follow uniform distribution in region [0, 1]. In the first simulation 

setting, the biomarker in cases M1 is associated with the two covariates under the quantile 

regression model (1) with coefficients β(ρ0) = [log{ − log(ρ0)}, 1 − ρ0, (1 − ρ0)2]T, ∀ρ0 ∈ [0, 1]. 
The biomarker in controls M0 is associated with the two covariates under the logistic 

regression model (2) with coefficients γ(ρ0) = logit[Φ{1 − Φ−1(ρ0)}] , 5(1 − ρ0), 5(1 − ρ0)2 T, 

∀ρ0 ∈ [0, 1], where logit(x) = log{x ∕ (1 − x)} and Φ( ⋅ ) is the cumulative density function for 

standard normal distribution. The true specificities at controlled sensitivity levels for given 

observation z could be obtained from ϕ0(z) = exp{zTγ(ρ0)} ∕ [1 + exp{zTγ(ρ0)}].

The first simulation setting uses the modeling assumptions that our proposed model holds 

but not the three existing ones. To provide a fair comparison with the three existing 

methods, we design the second simulation setting that all three models hold. In the second 

setting, the case biomarkers is associated with the two covariates through normal distribution 

Y 1j ∼ N(0.3 + Z1j + 2 ⋅ Z2j, 12) and control biomarkers Y 0i ∼ N(0.2 + 0.5 ⋅ Z1i + Z2i, 0.52). Denote 

the distribution functions for Y 1 and Y 0 by F1( ⋅ ; z) and F0( ⋅ ; z). For a given sensitivity ρ and 

covariates z, the covariate-specific specificity is F0 F1
−1(1 − ρ; z); z .

The estimation accuracy of the proposed method and the performance of the bootstrap 

inference are evaluated at three different covariate values and four sensitivity levels. Table 

1 reports the performance using the proposed method with bootstrap-based inference as 

well as using the semiparametric method proposed by Pepe (1998)9 and Faraggi (2003)11, 

respectively, under covariate value z = (1, 0.5, 0.5)T. The four blocks of rows correspond to 

the results under different specified sensitivity levels. All presented results are summarized 

over 5000 Monte Carlo datasets. First, our proposed method overall achieves good accuracy 

for all covariate values. The estimation accuracy is higher when the controlled sensitivity 
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is away from the 1 (ρ0 = 0.80, 0.85) compared to near the border (ρ0 = 0.95). Our confidence 

intervals have good coverage rates in most sample sizes and covariate settings. A logit-

transformation based 95% confidence interval is adopted here, as the logit-transformation 

based confidence interval is more stable than the regular confidence interval when sensitivity 

ρ0 is near 0 or 1. Second, the bootstrap inference has a stable and good variance estimation as 

well as coverage rate even when sample size is relatively small. The standard errors are very 

close to the empirical standard deviations. Lastly, compared with the proposed method, Pepe 

(1998)9 and Faraggi (2003)11 overall have larger bias, worse standard error estimations and 

lower coverage probabilities. The semiparametric method by Pepe (1998)9 has much better 

performance than the results by Faraggi (2003)11.

Table S1-S3 presents the performance of all three methods with three different covariate 

selections. The results are also summarized over the same 5000 simulation datasets as 

in Table 1. As discussed in the introduction, Pepe (1998)9 and Faraggi (2003)11 adjusted 

covariate effects using a general model over the entire ROC curve, which may not be able to 

handle the changing covariate effects well. We find the proposed method has good accuracy 

and superior coverage probabilities compared to the two existing methods in all covariate 

selections. This comparison may not be completely fair since the data is generated based on 

our model. However, it shows that the methods by Pepe (1998)9 and Faraggi (2003)11 may 

not provide accurate ROC estimation and inference when the covariate effect changes with 

specificity levels, as is the situation in our simulation setting.

Table 2 presents the performance of the three methods at covariate value z = (1, 0.5, 0.5)T in 

the second simulation setting. Table S4-S6 present the simulation results using our proposed 

method and the two existing methods in this setting at the other two covariate values. The 

model assumption holds for all methods in this setting. All the results are summarized over 

5000 Monte Carlo datasets. As expected, we observe that the two existing methods show 

improved biases results compared to the ones from the previous setting. Meanwhile, our 

proposed method demonstrates comparable and sometimes even better results in comparison 

to the two existing methods, suggesting the favorable performance and robustness of the 

proposed method. The existing methods of Pepe (1998)9 and Faraggi (2003)11 have slightly 

higher efficiency compared to the proposed method. This is not surprising as our proposal 

uses a non-parametric approach to model the covariate effect on the case population.

The comparison between our proposed method and Inácio de Carvalho et al. (2013)12 is 

presented in Table S5-10 and Figure S1-8. The implementation of Inácio de Carvalho et al. 

(2013) is slower than our proposed and two other existing methods for the construction of 

confidence interval. Thus we only perform 100 Monte Carlo iterations and summarize the 

results in supplementary materials, not 5000 Monte Carlo iterations as shown in Table 1 and 

2. In the first simulation setting (Table S5-7), we observe that the proposed method generally 

has smaller bias and better coverage probability for the setting (0.5,0.5)T, (0.25,0.75)T, 

and (0.75,0.75)T. In settings of (0.25,0.25)T and (0.75,0.25)T, Inácio de Carvalho et al. 

(2013) are better in some sample sizes. In the second simulation setting with Gaussian data 

(Table S8-10), the two methods are mostly comparable in bias and covarage probability. 

However, Inácio de Carvalho et al. (2013) has a smaller estimation variance compared to 

our proposed method, as our method has less assumptions. The advantage of the proposed 
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method in computational performance is substantial. For the sample size of 5000, the Inácio 

de Carvalho et al. (2013) method takes about 3.8 minutes to construct confidence interval 

at a given sensitivity level (TimeCI) while the proposed method with bootstrap confidence 

interval construction only takes about 3 seconds. However, the construction of confidence 

band using bootstrap by our method (TimeCB) is slower than Inácio de Carvalho et al. (2013) 

when the sample size is very large (e.g., 1000 or 5000).

We also evaluate the performance our method with monotonicity restoration under the 

two simulations. Table S11 shows the bias, standard deviation, standard error, and the 

coverage probability. As shown in Huang (2017)21, the monotonized and the original 

estimators are asymptotically equivalent. Comparing Table S11 versus Table 1 and 2 in 

the main manuscript, we find that the results using the proposed method with monotonicity 

restoration have similar performance as the method without monotonicity restoration, which 

is consistent with the previous findings21. Overall, the results using our method with 

monotonicity restoration show good variance estimation and coverage probability.

5 ∣ ILLUSTRATION WITH TWO CLINICAL DATASETS

Many previous studies have reported improved outcomes from treating aggressive prostate 

cancer patients at an early stage.23,24 However, such survival benefits can be undermined 

by harms from treating over-diagnosed indolent prostate cancer patients. To improve the 

diagnostic accuracy, biomarkers for aggressive prostate cancer usually need to achieve high 

specificity while maintaining sensitivity at a desirable level to provide clinical utility. Below, 

we illustrate the usage of the proposed method through a multi-center clinical study for 

aggressive prostate cancer.

The whole NCI-EDRN dataset was collected by researchers from Harvard University, 

Cornell University and Michigan University over the past two decades.1,25 It enrolled a 

total of 2261 men and collected their pre-diagnosis biomarkers, characteristics and the 

biopsy-confirmed diagnosis. Among them, 615 were aggressive prostate cancer patients with 

Gleason scores ≥ 7 and the rest had indolent prostate cancer or were normal controls. We 

provide evaluations of two biomarkers, prostate-specific antigen (PSA) and prostate health 

index (phi). In the first part of the analysis, we will use all patients and apply the proposed 

method to evaluate PSA. Since phi is a much newer biomarker than the PSA, only a subset 

of 502 men in the data has phi measurement and will be included in the second part of the 

analysis.

5.1 ∣ Covariate-specific evaluation of PSA

The data from the total 2261 men are used for the evaluation of PSA. The left panel of 

Figure 1 shows that the subjects with Gleason score equal to or greater than 7 tend to have 

higher PSA values. The impacts of patient characteristics on PSA have been reported before 

in many publications. For example, it is known that elder men and African American men 

tend to have elevated PSA values.26,27 The right panel of Figure 1 demonstrates a clear trend 

of higher PSA for elder men. Although we have a very unbalanced distribution of being 

African American (AA) - only 219 out of 2261 men are African American men, we still 

observe consistent covariate effects of AA on PSA as shown in the middle panel of Figure 1. 
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As a nonlinear trend of age on PSA can be observed in Figure 1, we also consider including 

squared age into the modeling. However, the term is not significant in both the quantile 

regression and logistic regression, and thus we exclude the squared term from the final 

analysis. Motivated by all the observations, we include age and being African American 

(AA) as covariates in the following evaluation of PSA.

Figure 2 presents the results obtained from applying the proposed methods. Panel A 

demonstrates that PSA has better specificity at high controlled sensitivity levels for younger 

patients (age = 50) than older patients (age = 80) in both African American and other races. 

Our results indicate that older and African American men need higher PSA thresholds 

to achieve the same controlled sensitivity level (Figure 2 Panel B). This figure could 

help clinicians to make diagnostic decisions for patients in different age and race groups 

controlling sensitivity at the same high level. We then obtain the 95% bootstrap-based 

confidence bands of the monotonized ROC curves for age 45 and 75 years old in both 

African American and other subpopulations (Figure 2 Panel C).

We also perform a model check with this relatively large dataset. Without model 

specification, calculating covariate-specific ROC curve requires sub-setting the data at each 

of the covariate values. When datasets have limited sample sizes, sub-setting data to each 

age level generally results in too few data points to construct an ROC curve. The large 

sample size of this NCI-EDRN dataset provides an opportunity for us to scrutinize our 

model fitting by comparing the model-based ROC curves with empirical ROC curves. Figure 

3 shows that the predicted ROC curves using our proposed method are very close to the 

empirical ROC curves, especially when a good number of data points for the specific 

covariate are available. For example, there are a total of 275 patients being both White and 

around 60 years old (59 ≤ age ≤ 61). The constructed empirical ROC curve aligns well with 

our predicted ROC curve for this subpopulation (yellow curve). These results confirm that 

the proposed method provides a good fit for the data.

5.2 ∣ Covariate specific evaluation of phi

The Beckman Coulter® Prostate Health Index or phi is an FDA-approved multi-analyte 

blood test for more accurate prostate cancer detection. Proposed in 2010, phi combines 

three measurements, total prostate-specific antigen (PSA), free PSA and p2PSA, into a 

mathematical formula (p2PSA ∕ freePSA) × totalPSA.28 It has been reported that the men 

with a higher total PSA and p2PSA as well as a lower free PSA are more likely to have 

clinically significant prostate cancer.29,30,31 As a result, a larger phi value indicates more 

risk for aggressive prostate cancer. The prostate health index may be more accurate in 

detecting prostate cancer than PSA.32,33,34 Among the 502 patients, a total of 352 patients 

are biopsy-confirmed aggressive prostate cancer patients. Figure 4(a) shows the distributions 

of phi in cases and controls, respectively. It can clearly be seen that aggressive prostate 

cancer patients tend to have higher phi values than the controls.

The covariates under consideration here are again age and being AA. The subjects analyzed 

in this part also have very unbalanced distributions in both covaraites. The majority of 

the patients are between age 50 and 70. Only 49 of the subjects are African Americans. 

Nonetheless, the observations in Figure 4(b) and (c) confirm the covariate effect of age 
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and AA on phi. We observe that African-American men have higher phi values than White 

men in both cases and controls. In addition, elder men are more likely to have higher phi, 
especially in the case subjects (p=0.0498 for the interaction of age and disease status in 

linear regression model).

Figure 5 presents the results of applying the proposed method to this clinical data. 

Controlling equal sensitivity levels among different covariate groups, we evaluate the 

diagnostic accuracy of phi for specific sub-populations. Figure 5(a) shows the covariate-

specific ROC curves and (b) is the smoothed covariate-specific ROC curves after applying 

ROC-based monotonization. The presented ROC curves are truncated to sensitivity levels 

greater than 0.6, as high sensitivity levels are usually desired for clinical utility. We observe 

phi has better diagnostic performance in younger patients, for example, around age 45 

years old, than older patients around age 75. The raw ROC curves of AA men are bumpier 

than the curves in White men, because this study has fewer AA men than White men, as 

discussed above. The trend is similar for both raw and monotonized ROC curves. Figure 

5(c) is the estimated phi threshold at controlled sensitivity levels for different age groups in 

White and AA men, respectively.

We also obtain the 95% bootstrap-based confidence band for the covariate-specific ROC 

curves (Figure 6). The presented ROC curves and the related confidence intervals have 

been monotonized by ROC-based monotonization methods. Compared to the first part, the 

confidence bands are wider in the current application due to the limited sample size.

6 ∣ DISCUSSION

In this work, we develop an approach to evaluate the performance of continuous 

biomarkers at specific covariate levels. It extends our previous work on pooled evaluation 

with covariate-adjusted threshold17. Although the modeling for the diseased population 

under quantile regression framework is similar to Li et al. 202117, the covariate-specific 

evaluation requires further modeling on the controls, which substantially increases the model 

complexity.

Compared with existing methods, our contribution is twofold. First, by adopting a combined 

framework of quantile regression and logistic regression, our method allows flexible local 

covariate adjustment and covariate-specific evaluation for continuous biomarkers. The 

proposed method is more general than previous methods in many aspects and demonstrates 

favorable performance. Second, the establishment of asymptotic properties and inference 

procedures lays a solid foundation to the applications of the proposed method. Our R 

implementations, wrapped in the R/CRAN package caROC, contain efficient estimation 

procedures and graphical functions. These allow researchers to easily apply the proposed 

method for clinical biomarker evaluation. The package provides options for users to control 

sensitivity or specificity, as well as to specify covariate values of interest. In this era 

of precision medicine, our method offers a useful tool to improve subpopulation-specific 

diagnosis.
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APPENDIX

A PROOF FOR THEOREM 1

The asymptotic properties of the quantile regression estimator have been established before, 

e.g. Koenker (2005, Section 4.1.1 and Theorem 4.1),

β a.s. β and n1
1 ∕ 2(β − β0)

d N(0, ρ0(1 − ρ0)D1
−1D0D1

−1), (A1)

where D0 and D1 are defined in Theorem 1.

Write
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Gn(β, γ) = n0
−1 ∑

j = 1

n0
Z0j I(M0j ≤ Z0j

T β) − exp(Z0j
T γ)

1 + exp(Z0j
T γ)

.

Note that γ is the solution to

Gn(β, γ) = 0 .

By the Glivenko-Cantelli theorem, n0
−1∑j = 1

n0 Z0jI(M0j ≤ Z0j
T β) converges to E{Z0jI(M0j ≤ Z0j

T β)}
almost surely and uniformly in β. Then it follows that n0

−1∑j = 1
n0 Z0jI(M0j ≤ Z0j

T β) converges to 

E{Z0jI(M0j ≤ Z0j
T β0)} almost surely under Condition 4a.

On the other hand, n0
−1∑j = 1

n0 Z0j exp(Z0j
T γ) ∕ {1 + exp(Z0j

T γ)} converges to 

E[Z0 exp(Z0
Tγ) ∕ {1 + exp(Z0

Tγ)}] almost surely by Strong Law of Large Numbers for a fixed γ. 

This convergence holds uniformly in γ because of the monotonicity of the function.

Combining the two results, we have shown that Gn(β, γ) converges to E{Gn(β0, γ)} almost 

surely and uniformly in γ. Since E{Gn(β0, γ)} has a unique solution at γ0, γ converges to γ0

almost surely.

Meanwhile, define

An(β) = n0
−1 ∕ 2 ∑

j = 1

n0
Z0jI(M0j ≤ Z0j

T β) − n0
1 ∕ 2E{Z0I(M0 ≤ Z0

Tβ)} .

Since Z0jI(M0j ≤ Z0j
T β) is Donsker, An(β) converges weakly to a Gaussian process. Under 

Conditions 2 and 4a, An(β) is asymptotically uniformly equicontinuous in probability using 

an argument similar to Huang (2017, appendix). Together with the consistency result of β, it 

follows that

An(β) − An(β0) = op(1) . (A2)

By component-wise Taylor Expansion, one then obtains

n0
−1 ∑

j = 1

n0
Z0jI(M0j ≤ Z0j

T β) − n0
−1 ∑

j = 1

n0
Z0jI(M0j ≤ Z0j

T β0)

= {D2 + op(1)}(β − β0) + op(n0
−1 ∕ 2) .

Thus

Gn(β, γ) = Gn(β0, γ) + {D2 + op(1)}(β − β0) + op(n0
−1 ∕ 2) .
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Note that the left hand side is equal to 0. We apply the component-wise Taylor expansion on 

the part involving γ and obtain

n0
1 ∕ 2(γ − γ0) = n0

1 ∕ 2D3
−1 Gn(β0, γ0) + {D2 + op(1)}(β − β0) + op(1) .

By the Central Limit Theorem,

n0
1 ∕ 2Gn(β0, γ0)

d N 0, E Z0
⊗ 2 exp(Z0

Tγ0)
{1 + exp(Z0

Tγ0)}2
.

The asymptotic normality of β has been established in (A1). Meanwhile, Gn(β0, γ) is 

independent of β. Therefore,

n0
β − β0

γ − γ0

d N 0
0 ,

V β Cβ, γ

Cβ, γ V γ
.

B PROOF FOR THEOREM 2

Write

ηn(β, ρ) = n1
−1 ∑

i = 1

n
Z1i{I(M1i > Z1i

T β) − ρ},

η(β, ρ) = E Z1{I(M1 > Z1
Tβ) − ρ} ,

ψn(β) = n0
−1 ∑

j = 1

n0
Z0jI(M0j ≤ Z0j

T β),

ψ(β) = E{Z0I(M0 ≤ Z0
Tβ)},

ξn(γ) = n0
−1 ∑

j = 1

n0
Z0j

exp(Z0i
T γ)

1 + exp(Z0i
T γ)

,

ξ(γ) = E Z0
exp(Z0i

T γ)
1 + exp(Z0i

T γ)
.

With the cases, the consistency of β(ρ) has been shown previously, e.g., Li et al. (2021+). 

Turning to the controls, note that {Z0I(M0 ≤ Z0
Tβ) :β ∈ ℝp} is Donsker. By the Glivenko-

Cantelli theorem, almost surely,

sup
β

‖ψn(β) − ψ(β)‖ = o(1) . (B3)

With the consistency of β(ρ) and the continuity of ψ( ⋅ ), we have

sup
ρ ∈ [ρ1, ρ2]

‖ψ{β(ρ)} − ψ{β0(ρ)}‖ = o(1)

almost surely. As a result, almost surely,
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sup
ρ ∈ [ρ1, ρ2]

‖ψn{β(ρ)} − ψ{β0(ρ)}‖ ≤ sup
ρ ∈ [ρ1, ρ2]

‖ψn{β(ρ)} − ψ{β(ρ)}‖

+ sup
ρ ∈ [ρ1, ρ2]

‖ψ{β(ρ)} − ψ{β0(ρ)}‖
= o(1) .

(B4)

The uniform convergence of ξn(γ) to ξ(γ) holds following the same arguments in the proof of 

Theorem 1. Thus, almost surely,

sup
γ

‖ξn(γ) − ξ(γ)‖ = o(1) . (B5)

By definition, for any ρ ∈ [ρ1, ρ2],

ψn{β(ρ)} = ξn{γ(ρ)} .

Results (B4) and (B5) then lead to, almost surely,

sup
ρ ∈ [ρ1, ρ2]

‖ξ{γ(ρ)} − ξ{γ0(ρ)}‖ ≤ sup
ρ ∈ [ρ1, ρ2]

‖ξ{γ(ρ)} − ξn{γ(ρ)}‖

+ sup
ρ ∈ [ρ1, ρ2]

‖ψn{β(ρ)} − ψ{β0(ρ)}‖

+ sup
ρ ∈ [ρ1, ρ2]

‖ψ{β0(ρ)} − ξ{γ0(ρ)}‖

= o(1) .

By component-wise Taylor Expansion, almost surely,

ξ{γ(ρ)} = ξ{γ0(ρ)} + ξ′{γ0(ρ)} + o(1) {γ(ρ) − γ0(ρ)} .

Since the minimum eigen value of ξ′{γ0(ρ)} is bounded away from 0 and γ0(ρ) is also 

bounded by Condition 4b,

sup
ρ ∈ [ρ1, ρ2]

‖γ(ρ) − γ0(ρ)‖ = o(1),

almost surely.

Now we prove the weak convergence of the proposed estimators. The weak convergence of 

β(ρ) has been obtained in Li et al. (2021+):

n1
1 ∕ 2{β(ρ) − β0(ρ)} = n1

1 ∕ 2 E[Z1
⊗ 2f1{Z1

Tβ0(ρ)Z1}]
−1

ηn{β0(ρ), ρ} + op(1), (B6)

uniformly in ρ ∈ [ρ1, ρ2].

With the afore given Donsker result, n0
1 ∕ 2{ψn(β) − ψ(β)} converges weakly to a Gaussian 

process. Under Conditions 2 and 4b, n0
1 ∕ 2{ψn(β) − ψ(β)} is asymptotically uniformly 
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equicontinuous in probability using arguments similar to those given by Huang (2017, 

appendix). Therefore,

sup
ρ ∈ [ρ1, ρ2]

n0
1 ∕ 2‖ψn{β(ρ)} − ψn{β0(ρ)} − ψ{β(ρ)} + ψ{β0(ρ)}‖ = op(1) . (B7)

Since ψn{β(ρ)} = ξn{γ(ρ)} and ψ{β0(ρ)} = ξ{γ0(ρ)},

sup
ρ ∈ [ρ1, ρ2]

n0
1 ∕ 2‖ξn{γ(ρ)} − ψn{β0(ρ)} − ψ{β(ρ)} + ξ{γ0(ρ)}‖ = op(1) . (B8)

Using the similar uniform equicontinuous argument for ξn( ⋅ ), we have

sup
ρ ∈ [ρ1, ρ2]

n0
1 ∕ 2‖ξn{γ(ρ)} − ξn{γ0(ρ)} − ξ{γ(ρ)} + ξ{γ0(ρ)}‖ = op(1) . (B9)

Results (B8) and (B9) togerther lead to

sup
ρ ∈ [ρ1, ρ2]

n0
1 ∕ 2‖[ψn{β0(ρ)} − ξn{γ0(ρ)}] + [ψ{β(ρ)} − ξ{γ(ρ)}]‖

≤ sup
ρ ∈ [ρ1, ρ2]

n0
1 ∕ 2‖ξn{γ(ρ)} − ψn{β0(ρ)} − ψ{β(ρ)} + ξ{γ0(ρ)}‖

+ sup
ρ ∈ [ρ1, ρ2]

n0
1 ∕ 2‖ξn{γ(ρ)} − ξn{γ0(ρ)} − ξ{γ(ρ)} + ξ{γ0(ρ)}‖

= op(1) .

(B10)

To build the connection between ψ{β(ρ)} and β(ρ), ξ{γ(ρ)} and γ(ρ), respectively, we apply 

the component-wise Taylor expansion. Almost surely,

sup
ρ ∈ [ρ1, ρ2]

‖ψ{β(ρ)} − ψ{β0(ρ)} − E[Z0
⊗ 2f0{Z0

Tβ0(ρ)}]{β(ρ) − β0(ρ)}‖
‖β(ρ) − β0(ρ)‖

= o(1) (B11)

and

sup
ρ ∈ [ρ1, ρ2]

‖ξ{γ(ρ)} − ξ{γ0(ρ)} − E[Z0
⊗ 2 exp{Z0

Tγ0(ρ)}
[1 + exp{Z0

Tγ0(ρ)}]2 ]{γ(ρ) − γ0(ρ)}‖

‖γ(ρ) − γ0(ρ)‖ = o(1
) .

(B12)

Combining results (B10), (B11) and (B12) leads to

n0
1 ∕ 2 −E[Z0

⊗ 2f0{Z0
Tβ0(ρ)}]{β(ρ) − β0(ρ)} + E[Z0

⊗ 2 exp{Z0
Tγ0(ρ)}

[1 + exp{Z0
Tγ0(ρ)}]2

]{γ(ρ) − γ0(ρ)}

= n0
1 ∕ 2[ψn{β0(ρ)} − ξn{γ0(ρ)}] + op(1) .

Together with (A1), we have
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n1
1 ∕ 2 β(ρ) − β0(ρ)

γ(ρ) − γ0(ρ)
=

E[Z1
⊗ 2f1{Z1

Tβ0(ρ)}] 0

−E[Z0
⊗ 2f0{Z0

Tβ0(ρ)}] E[Z0
⊗ 2 exp{Z0

Tγ0(ρ)}
[1 + exp{Z0

Tγ0(ρ)}]2
]

1

×
n1

1 ∕ 2ηn{β0(ρ)}
n1

1 ∕ 2[ψn{β0(ρ)} − ξn{γ0(ρ)}]
+ op(1),

uniformly in ρ ∈ [ρ1, ρ2]. Then n1
1 ∕ 2 β( ⋅ ) − β0( ⋅ )

γ( ⋅ ) − γ0( ⋅ )
 over [ρ1, ρ2] converges weakly to a Gaussian 

process.

Abbreviations:

ROC Receiver Operating Characteristic

PDF parametric distribution-free

PSA prostate-specific antigen

phi prostate health index
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FIGURE 1. 
Exploratory plots of PSA versus patient characteristics in the NCI-EDRN cohort.
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FIGURE 2. 
Results from applying the proposed method to PSA of the NCI-EDRN cohort. Panel A is 

the monotonized ROC curve. Panel B is the PSA threshold for controlled sensitivity level for 

different race and age groups. Panel C is the 95% bootstrap-based confidence band for the 

monotonized ROC curve in different subpopulations.
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FIGURE 3. 
The covariate-specifc ROC curve estimated from the proposed method and the empirical 

ROC curve based on NCI-EDRN data for the biomarker PSA.
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FIGURE 4. 
Exploratory plots for the aggressive prostate cancer clinical study with the biomarker phi.
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FIGURE 5. 
Covariate-adjusted ROC curve for specific sub-populations from the aggressive prostate 

cancer clinical trial data by controlling sensitivity levels for the biomarker phi.
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FIGURE 6. 
The estimated covariate-adjusted ROC curve (black solid curves) with ROC-based 

monotonization and bootstrap-based confidence bands (colored areas between the dashed 

lines) for the biomarker phi.
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TABLE 1

Estimation and inference results under the first simulation setting. Specificity ϕ0(z) under controlled sensitivity 

level ρ0 at covariate value z = (0.5, 0.5)T.

n1 = n0
Proposed method Pepe (1998) Faraggi (2003)

Bias SD SE LCov Bias SD SE LCov Bias SD SE LCov

ρ0 = 0.95
100 174 1061 1126 96.0 348 992 936 91.4 1250 866 782 59.0

200 78 710 779 96.4 181 687 660 92.7 1250 622 571 41.3

500 22 435 469 96.1 47 429 415 94.1 1230 391 371 12.2

1000 21 306 323 95.2 6 298 292 94.0 1230 275 264 1.22

5000 3 136 140 95.1 −22 135 130 93.6 1230 124 119 0

ρ0 = 0.90
100 134 1086 1184 97.2 256 1030 963 92.1 876 769 704 68.1

200 71 752 807 96.0 123 728 693 93.1 886 543 506 55.4

500 20 457 492 96.0 19 459 443 94.3 872 342 326 27.9

1000 19 329 343 95.2 −11 326 313 93.8 871 240 231 6.32

5000 2 147 150 95.3 −34 144 140 93.8 874 108 104 0

ρ0 = 0.85
100 93 1035 1113 97.2 173 985 901 92.9 406 665 614 81.6

200 53 711.4 766 96.6 85 692 659 93.8 415 464 437 76.9

500 17 441 473 96.0 2 440 424 93.9 406 292 280 64.9

1000 15 320 329 94.8 −23 314 303 94 405 206 198 45.8

5000 −1 142 145 95.1 −38 141 136 92.8 408 92.4 88.7 0.8

ρ0 = 0.80
100 63 928 998 97.4 106 869 799 93.3 −19 573 532 90.9

200 44 648 685 96.5 41 622 587 93.9 −11 397 377 92.2

500 10 399 424 96.0 −12 391 381 94.6 −18 250 240 93.0

1000 12 286 297 95.2 −31 282 272 93.7 −19 177 170 93.2

5000 −2 128 131 95.3 −39 126 122 92.5 −16 79.1 75.9 93.3

Bias, (ϕ − ϕ0) × 104
; SD, standard deviation ×104; SE, standard error estimated using bootstrap ×104; LCov (%), coverage rates of logit 

transformation-based 95% confidence interval.
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TABLE 2

Estimation and inference results under the second simulation setting. Specificity ϕ0(z) under controlled 

sensitivity level ρ0 at the covariate selection z = (0.5, 0.5)T by our proposed method and two existing 

methods9,11 are estimated and presented.

n1 = n0
Proposed method Pepe (1998) Faraggi (2003)

Bias SD SE LCov Bias SD SE LCov Bias SD SE LCov

ρ0 = 0.95
100 136 1025 1073 93.5 468 1000 932 91.1 130 695 654 91.1

200 63 658 734 95.7 242 672 644 93.4 68 475 456 92.7

500 −16 401 432 96.7 88 406 389 94.1 21 294 282 93.3

1000 −40 281 297 95.9 49 280 275 94.2 13 206 200 93.5

5000 −50 125 128 94.0 8 126 122 93.4 2 91.7 89 93.3

ρ0 = 0.90
100 87 1377 1495 97.4 389 1300 1180 92.6 76 1030 944 91.3

200 37 957 1039 97.1 210 915 861 93.5 46 727 686 92.8

500 −42 622 642 95.5 68 578 557 94.2 8 457 439 93.1

1000 −55 432 449 95.3 42 409 394 94.2 9 322 313 93.5

5000 −60 193 196 94.0 9 184 178 93.3 1 145 141 93.0

ρ0 = 0.85
100 90 1395 1514 97.8 244 1270 1160 92.8 9 1060 959 91.5

200 54 976 1045 96.7 135 911 857 93.5 15 746 701 92.9

500 11 625 652 95.5 48 577 558 94.1 −6 468 451 93.1

1000 11 440 454 95.5 27 407 398 94.4 3 330 321 93.1

5000 8 195 200 95.0 3 187 179 93.6 0 149 144 93.3

ρ0 = 0.80
100 78 1206 1328 98.2 139 1100 1010 93.4 −33 931 844 91.9

200 82 845 909 96.6 87 801 750 93.4 −7 656 614 93.0

500 58 540 562 95.4 22 504 483 93.8 −13 410 395 93.1

1000 63 381 393 94.9 16 353 346 94.1 −1 289 281 93.2

5000 63 170 171 93.3 3 160 156 93.8 −1 131 126 93.1

Bias, (ϕ − ϕ0) × 104
; SD, standard deviation ×104; SE, standard error estimated using bootstrap ×104; LCov (%), coverage rates of logit 

transformation-based 95% confidence interval.
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