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ABSTRACT
There is considerable interest in the pharmaceutical industry toward development of antibody-based 
biotherapeutics because they can selectively bind diverse receptors and often possess desirable phar-
macology. Here, we studied product characteristics of 89 marketed antibody-based biotherapeutics that 
were approved from 1986 to mid-2020 by gathering publicly available information. Our analyses revealed 
major trends in their emergence as the best-selling class of pharmaceuticals. Early on, most therapeutic 
monoclonal antibodies were developed to treat cancer, with CD20 being the most common target. 
Thanks to industrialization of antibody manufacturing technologies, their use has now blossomed to 
include 15 different therapeutic areas and nearly 60 targets, and the field is still growing! Drug manu-
facturers are solidifying their choices regarding types of antibodies and their molecular formats. IgG1 
kappa continues to be the most common molecular format among marketed antibody-based biother-
apeutics. Most antibody-based biotherapeutics approved since 2015 are either humanized or fully 
human, but the data we collected do not show a direct correlation between humanness and reported 
incidence of anti-drug antibodies. Furthermore, there have also been improvements in terms of drug 
product stability and high concentration liquid formulations suitable for subcutaneous route of admin-
istration, which are being approved more often in recent years. These improvements, however, have not 
been uniformly adopted across all therapeutic areas, suggesting that multiple options for drug product 
development are being used to serve diverse therapeutic purposes. Insights gained from this analysis 
may help us devise better end-to-end antibody-based biotherapeutic drug discovery and development 
strategies.
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Introduction

Antibody-based biotherapeutics represent one of the fastest- 
growing segments in the pharmaceutical market (Figure 1(a)) 
because of their ability to bind with high selectivity along with 
desirable pharmacological attributes, such as longer half-lives, 
resulting in safe and effective medicines with convenient dos-
ing schedules. 1,2 By November 21, 2021, a total of 131 anti-
body-based biotherapeutics were approved under regulatory 
review in the United States or European Union.3 Moreover, 
the number of antibodies in clinical development (Phases I-III) 
grew by over 30% in the past year.4 Representation of anti-
body-based biotherapeutics in the portfolios of large pharma-
ceutical companies has also grown significantly in recent 
years.5 While monoclonal antibodies (mAbs) have been devel-
oped to treat infectious diseases previously,6–9 the coronavirus 
disease 2019 (COVID-19) pandemic has created renewed 
interest in using antibody-based biotherapeutics as a treatment 
option for infectious diseases.10–12 In 2021, the global antibody 
market was valued at 217.3 billion USD and is projected to 
exhibit an annual growth rate of approximately 15% in the 

next decade.13–15 Considering the scale at which antibody- 
based biotherapeutics are now being discovered and devel-
oped, it is apparent that the industrialization of mAbs has 
come of age.

Early overviews of marketed antibody-based biotherapeu-
tics were limited because very few products had been granted 
approvals at the time.16–20 As more were approved, growing 
interest in the scientific community led to broader overviews,-
21–23 as well as reviews of specific characteristics,24–26 such as 
cell culture and immunogenicity of marketed and clinical trials 
stage mAbs.27,28 In 2010, Dr. Janice Reichert started publishing 
the “Antibodies to Watch” series, which continues to be 
released yearly.29–41 More recent publications on marketed 
mAbs have looked at deeply specific characteristics,42,43 such 
as glycosylation patterns,44,45 or broad concepts like develop-
ment trajectories.46,47

Given the growth in the field, this is an opportune time to 
examine how antibody-based biotherapeutics have evolved, 
since the first approval of muromonab in 1986.48 Specifically, 
we assessed the evolution of crucial aspects of antibody-based 
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biotherapeutics, such as 1) therapeutic purpose, 2) safety 
and immunogenicity, 3) developability, and 4) patient conve-
nience, by analyzing the trends in their product characteristics 
(e.g., types and molecular formats, formulation, routes of 
administration, pharmacokinetics (PK), and product presenta-
tion) over time. Toward this goal, we collected in-depth infor-
mation on 89 antibody-based biotherapeutic products that 
were approved by the end of June 2020. We started by collect-
ing publicly available information from the websites of the 
United States Food and Drug Administration (FDA),49 the 
European Medicines Agency (EMA),50 and the World Health 
Organization (WHO),51,52 along with the information avail-
able in the package inserts and the reviews of biologics license 
applications (BLAs) of these drug products. Overall, each anti-
body in the dataset has more than 80 data points, providing us 
with multiple ways to compare antibody-based biotherapeutic 
drug product characteristics and study evolution of the bio-
pharmaceutical industry over time. Insights gained from this 
study will be useful toward improving the rate of successful 
translation of biological drug discoveries into the approved 
drug products available in the market to improve patient lives.

Results

The discovery and development of antibody-based biothera-
peutics is highly dynamic. Understanding the current trends in 
marketed drug products can potentially aid in the discovery 
and design of more developable drug candidates. Publicly 
available information, such as package inserts and reviews of 
BLAs available from regulatory agency websites were used to 
collect information on 89 antibody-based biotherapeutic drug 
products approved through June 2020 (see Methods section). 
Table 1 provides a summary of salient characteristics, such as 
the year of the first FDA approval, name, antibody format, 
type, formulation buffer, formulation pH, active pharmaceu-
tical ingredient (API) concentration, product presentation, 
and route of administration for each of the 89 antibody- 
based biotherapeutics studied in this work. Further details for 
each of these can be found in Tables S1 and S2 of the supple-
mentary material. The data we collected were analyzed to 
reveal useful trends in therapeutic purpose, safety, develop-
ability, PK, and patient convenience of antibody-based 
biotherapeutic drug products. These analyses have improved 
our understanding of the evolving landscape of antibody- 
based biotherapeutics.

Biotherapeutics are being approved at a more rapid rate

The 89 antibody-based biotherapeutics included here were 
approved from 1986 to June 2020 (Figure 1(a)) by regulatory 
agencies, including the FDA, and the European Commission 
(EC). The first antibody-based biotherapeutic to win regula-
tory approval was muromonab or Orthoclone OKT3 in 1986. 
Eight years later, the next therapeutic antibody approved in the 
United States in 1994 was abciximab. Only six antibody-based 
biotherapeutics were approved between 1994 and 1999, fol-
lowed by another 19 that were approved from 2000 to 2009. 
The next decade saw a substantial increase in approvals of 
antibody-based biotherapeutics, and 57 were approved 

between 2010 and 2019. The remaining five of the 89 products 
were approved in the first half of 2020. Three therapeutic 
antibodies approved in 1997 (daclizumab), 2000 (gemtuzumab 
ozogamicin), and 2001 (alemtuzumab) were withdrawn, and 
then reapproved in 2016, 2017, and 2014, respectively. Two 
products, muromonab, and abciximab, approved in 1986 and 
1994, respectively, were voluntarily withdrawn in 2010 and 
2019, respectively.53,54 Additionally, efalizumab was with-
drawn in 2009 (approved in 2003) and olaratumab (approved 
in 2016) was withdrawn in 2019.41,53 Three mAbs included in 
the 89 were not approved by the FDA or EC but were approved 
by other drug or medical agencies. These three drugs are 
itolizumab (approved in India),55 nimotuzumab (approved in 
various countries),56 and racotumomab (approved in Cuba 
and Argentina).57,58 Furthermore, three antibodies, tositumo-
mab, emapalumab, and teprotumumab, were approved by the 
FDA, but not by the EC (see Table S1). Tositumomab was 
granted an orphan drug designation by the EC but was with-
drawn in 2015.59 Emapalumab was not approved by the EC 
because there was no conclusive evidence of its effectiveness.60 

Teprotumumab was granted a product-specific waiver for 
pediatric trials, but a marketing application was not submitted 
for full review.61,62 It should also be noted that nebacumab and 
edrecolomab were approved by various European countries in 
1991 and 1995, respectively, and catumaxomab was approved 
by the EC in 2009, but none of these were approved in the US. 
These antibodies have not been included in this dataset of 89 
antibody products because nebacumab and edrecolomab were 
withdrawn in 1993 and 2002, respectively, due to subsequent 
trials showing little benefit; and catumaxomab was withdrawn 
in 2017 at the request of the manufacturer.63–65

In addition to the 89 included in this survey, Figure 1(a) 
shows the approval years of all marketed antibody-based 
biotherapeutic drugs through June 2022. The FDA has 
approved 111 antibody-based biotherapeutic drug products 
including one cocktail, while the EC has approved 106. Five 
antibody-based biotherapeutics approved by the EC were not 
approved by the FDA, and 11 antibody-based biotherapeutics 
approved by the FDA were not approved by the EC. Between 
the FDA and EC, 117 unique antibody-based biotherapeutics 
have been approved. Furthermore, 19 antibody-based biother-
apeutic drugs have been approved by India (3, including one 
cocktail), Cuba (2), Russia (4), China (9), and Japan (1), but 
not by the FDA or EC. In total, 136 antibody-based biother-
apeutic drugs have been approved by at least one government 
agency up to June 30, 2022. Of these 136, 4 are bispecific 
antibodies and another two are antibody-based biotherapeutic 
cocktails that contain more than one antibody. The four bis-
pecific antibodies are catumaxomab, blinatumomab, emicizu-
mab, and amivantamab. The two cocktails with more than one 
antibody are Inmazeb (atoltivimab, maftivimab, odesivimab) 
and Twinrab (docaravimab, miromavimab), the former was 
approved by the FDA and the latter one was approved in India.

International nonproprietary names

The WHO uses their International Nonproprietary Names 
(INNs) system to give biotherapeutics a generic name that is 
used publicly to refer to the drug substance.66 As defined by 
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the WHO, INNs identify pharmaceutical substances or APIs. 
Each INN is unique, is globally recognized, and is public 
property. The nonproprietary name of a biotherapeutic is 
also known as its generic name. In this report, we discuss 
antibody-based biotherapeutics using their INNs.

The INN nomenclature was created in 1953,67 and while the 
nomenclature for antibody-based biotherapeutics was first 
proposed in 1990,68 it was not adapted by the WHO until 
1997.69 This original WHO nomenclature has undergone 
three revisions since 1997. The first revision was in 2009 (up 
to INN proposed list 102),70 the second revision was in 2017 
(INN proposed lists 103 to 117),71 and the most recent revision 
was in 2021 (INN proposed lists 118−125).72 The original 
nomenclature from 1997 included sub-stems for source (anti-
body type) of product (rat, chimeric, humanized, or fully 
human), disease, or target class (e.g., bacterial, cardiovascular, 
or bone), and organs/tumors (e.g., colon, testis, or ovary).70 

Additional guidance was given for adding letters for facilitat-
ing pronunciation. The second nomenclature (the first revi-
sion proposed in 2009) simplified the source of product/ 
species and disease/target.71 The third nomenclature (the 

second revision proposed in 2017) provides information 
about the target. The naming scheme has a prefix, an infix 
(target class) and a suffix (mab).72 The most recent naming 
scheme (the third revision proposed in 2021) divides the sub-
stances that contain an immunoglobulin variable domain into 
four groups: unmodified immunoglobulins (−tug), artificial 
antibodies (−bart), multi-specific immunoglobulins (−mig), 
and fragments (−ment).73 This represents the first time that 
the suffix of a monoclonal antibody will not be “mab.” In 
addition, several infixes were added to indicate the mode of 
action of the biotherapeutic product. In the proposed list 126, 
there are already several products using this new naming 
scheme such as crexavibart and masavibart. Since we evaluated 
89 products approved through June 2020, no antibody ther-
apeutics with INN derived from the new naming scheme were 
included.

Isotypes and molecular format

In addition to different names, marketed antibody-based 
biotherapeutic products have multiple molecular formats. 

Figure 1. (a) Marketed antibody-based biotherapeutics by year. By June 2022, 111 antibody-based biotherapeutic drug products have been approved by the FDA 
(shown in orange) and 106 have been approved by the EC (shown in green). 19 total antibody-based biotherapeutic drugs have been approved by India (3), Cuba (2), 
Russia (4), China (9), and Japan (1), but not by the FDA or EC (shown in gray). The total number of unique marketed antibody-based biotherapeutics as of June 2022 is 
136 shown in blue with right y-axis showing growth over time. (b) Molecular formats of marketed antibody-based biotherapeutics. Gray regions represent constant 
regions. Green regions are variable regions. Red regions are a second variable region in the bispecific therapeutics. The purple circles are examples of where a small 
molecule drug could attach to an antibody and form antibody-drug conjugates (ADCs).
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Figure 1(b) shows the diversity of molecular formats among the 
89 marketed antibody-based biotherapeutics. Eighty-two of 
these 89 (92%) are full-length monospecific mAbs. One of 
these 89 is a full-length bispecific mab (emicizumab, which 
binds to FIX and FX in the blood-clotting pathway) made of 
two unique variable regions that share a common light chain. Of 
the remaining six, one is a bispecific T-cell engager (BiTE, 
blinatumomab), which consists of two murine single-chain 
variable regions (scFvs), binding to CD3 and CD19, connected 
via a peptide linker. Three antibody-based biotherapeutics are 
antigen binding fragments (Fab; abciximab, idarucizumab, and 
ranibizumab). One is Fab’ (certolizumab pegol), which is a Fab 
that has been cleaved below the hinge region; and the last one 
contains only a variable region (Fv) of the antibody fused to a 38 
kDa exotoxin called PE38 (moxetumomab pasudotox).74 

Overall, the 89 antibody-based biotherapeutics studied here 
contain 91 Fvs in 6 different antibody-based molecular formats. 
Note that there are other marketed full-length bi-specific anti-
bodies (e.g., amivantamab) that were approved after our cutoff 

date of June 2020 and consequently were not included in our 
analysis.

There are seven antibody-drug conjugates (ADCs) 
among these 89 antibody-based biotherapeutics, in which 
the antibodies are conjugated to small molecule anti-cancer 
drug payloads.75 Three of these are conjugated to mono-
methyl auristatin E,76 a synthetic analog of the marine 
natural product dolastatin 10.77 Two are conjugated to a 
cytotoxic calicheamicin antibiotic derivative.78 The remain-
ing two conjugates are conjugated to an isothiocyanato-
benzyl derivative of MX-DTPA, a chelating agent,79 and 
SN-38, the active metabolite of irinotecan.80 All the ADCs 
are used to deliver small molecule anti-cancer drugs and 
thus belong to the oncology therapeutic area. Of note, 
certolizumab pegol is not categorized as an ADC here 
because it has no anti-cancer drug as payload. Instead, it 
is pegylated,81 to improve drug PK and bioavailability.82,83 

After June 2020, three more ADCs (belantamab mafodotin, 
tisotumab vedotin, and loncastuximab tesirine) were 

Figure 2. (a) Light chain isotypes of marketed antibody-based biotherapeutics over time. Kappa isotypes are much more common than lambda isotypes. (b) Heavy 
chain isotypes of marketed antibody-based biotherapeutics over time. IgG1 is the most common heavy isotype, while IgG2 and IgG4 are equally common. (c) Types of 
marketed antibody-based biotherapeutics over time. Murine and chimeric were common early on, but nearly all approved marketed antibody-based biotherapeutics 
are now either human or humanized. (d) Heavy chain variable region (VH) percent humanness over time. VH humanness is commonly between 70 and 90%. (e) Light 
chain variable region (VL) percent humanness over time. VL humanness is commonly between 80 and 90%. (f) Reported percent anti-drug antibodies (% ADAs) over 
time. In recent years it is much more common to see a reported % ADAs below 5%. (g) Comparison of % Humanness and % ADAs. There is no statistically significant 
correlation between % Humanness and % ADAs reported for the marketed antibody-based biotherapeutics. (h) % ADAs by antibody type. In general, % ADAs decrease 
from murine to human, however a direct comparison of % ADAs across the products should be interpreted with caution (see results).
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approved by the FDA. These are not included in our 
analysis.

The 89 marketed antibody-based biotherapeutics we ana-
lyzed contain 91 variable regions (Fvs) because two of these 
products are bispecific antibodies. The light chains for 84 of 
the 91 Fvs (92%) are of kappa isotype and the remaining 7 (8%) 
are of lambda isotype (Figure 2(a)). The majority (5/7; 71%) of 
the products with lambda light chains were approved after 
2015. Figure 2(b) shows that most marketed antibody-based 
biotherapeutics are IgG1, and this heavy chain isotype is a 
popular choice. The heavy chain isotypes can be inferred for 
only 87 antibody-based biotherapeutics (83 full-length IgGs, 3 
Fabs, and 1 Fab’) because moxetumomab pasudotox and bli-
natumomab (a bispecific) contain only the variable regions. Of 
these 87, the heavy chain isotype for 63 (72.4%) is IgG1. Ten 
(11.5%) contain IgG2 heavy chains while another 12 (13.8%) 
contain IgG4 heavy chains and 2 (2.3%) are IgG2/4 hybrids 
(eculizumab and ravulizumab).84,85 However, the amino acid 
sequences for both of them show that their heavy chains are of 
IgG2 isotype. Therefore, eculizumab and ravulizumab were 
counted as full length IgG2 antibodies in this report. Since 
2015, six antibody-based biotherapeutics with IgG2 isotype 
and eight with IgG4 isotype have been granted approvals, 
while 22 IgG1 antibody-based biotherapeutics were approved 
during the same period.

Targets, clinical indications, and therapeutic areas served 
by marketed antibody-based biotherapeutics

The 89 marketed antibody-based biotherapeutics bind many 
targets and serve previously unmet medical needs in several 

therapeutic areas by addressing numerous clinical indications. 
Tables 2(a) and 2(b) summarize the data on these 89 biother-
apeutics regarding their usage in different therapeutic areas, 
clinical indications, and targets they bind (also see Tables S1 
and S2 for more details) as of December 2022. These 89 anti-
body-based biotherapeutics have received 242 drug approvals 
for 119 unique clinical indications in 15 therapeutic areas, with 
oncology, hematology, and immunology accounting for most 
of them. Moreover, several clinical indications involve multi-
ple therapeutic areas. For example, multiple myeloma (MM) 
involves immunology, hematology, and oncology. Accounting 
for clinical indications in multiple therapeutic areas, these 89 
antibody-based biotherapeutics have been approved for 140 
non-unique clinical indications. Here, we use the term non- 
unique for clinical indications that are being counted more 
than once because they fall into multiple therapeutic areas. 
Thus, oncology has 46 non-unique clinical indications, such as 
non-small cell lung cancer (NSCLC) and breast cancer. 
Immunology has 40 non-unique clinical indications and 
hematology has 15 non-unique clinical indications. The 
remaining 12 therapeutic areas have 39 non-unique clinical 
indications. One of the fastest growing therapeutic areas cur-
rently is infectious diseases, fueled by the SARS-CoV-2 pan-
demic, with recent emergency use authorizations (EUAs) for 
Evusheld (tixagevimab and cilgavimab), etesevimab with bam-
lanivimab, Xevudy (sotrovimab), and Regen-Cov (casirivimab 
and imdevimab), and formal approvals for Regkirona (regdan-
vimab) and Xevudy (sotrovimab) by the EC, as well as a newly 
approved indication for tocilizumab.86

The 89 marketed antibody-based biotherapeutics recognize 
59 different targets. In Table 2(b), the most common target is 

Table 2a. Number of clinical indications for the marketed antibody-based biotherapeutics*.

Marketed Biotherapeutic Number of Clinical Indications served

Pembrolizumab 18
Nivolumab 12

Adalimumab 9
Infliximab 8

Bevacizumab 7
Ipilimumab 7

Tocilizumab 7
Canakinumab 6
Certolizumab pegol 6

Rituximab 6
Ustekinumab 6

Atezolizumab 5
Dupilumab 5

Golimumab 5
Ranibizumab 5
Secukinumab 5

Brentuximab vedotin 4
Durvalumab 4

Eculizumab 4
Ixekizumab 4

Mepolizumab 4
Ramucirumab 4

*This table shows the 89 marketed antibody-based biotherapeutic and how many clinical indications for which it 
has been approved as of December 2022. For example, pembrolizumab has been approved for most clinical 
indications, 18 so far. Only antibody-based biotherapeutic products approved for four or more clinical indications 
were included in this table. Please refer to Table S1 for full details.
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B-lymphocyte antigen CD20 (or CD20), with six marketed 
antibody-based biotherapeutics, followed by tumor necrosis 
factor alpha (TNF-α), epidermal growth factor receptor 
(EGFR), and calcitonin gene-related peptide with four 
approvals each. Moreover, many drugs have been approved 
for multiple clinical indications,88 sometimes binding to the 
same target,89 perhaps due to promising clinical data, such as 
pembrolizumab or adalimumab (see both Tables 2(a) and 2 
(b).90–95 The same target is also involved in several different 
clinical indications for multiple approved antibody-based 
biotherapeutics. For example, programmed cell death 1 ligand 
1 (PD-L1) is targeted by pembrolizumab, nivolumab, and 
cemiplimab, but these three drugs have been approved for 22 
unique clinical indications (33 non-unique). Similarly, TNF-α 
is targeted by adalimumab, certolizumab pegol, golimumab, 
and infliximab, which serve 12 unique clinical indications (28 
non-unique).

Types and immunogenicity of currently marketed 
antibody-based biotherapeutics

An antibody-based biotherapeutic’s type depends on how it 
was discovered and engineered.9 All 89 marketed antibody- 
based biotherapeutics are one of the following four types: 
murine, chimeric, humanized, or human. Note that other 
terms often used in this context are “source” or “origin.” 
However, these terms fail to account for the fact that human 
and humanized antibody-based biotherapeutics are not 
“sourced” or “originated” from humans but are derived via 
lab-based humanization of the parental murine antibodies in 
most cases.96–98 Among the 89, there are 6 murine, 10 chi-
meric, 42 humanized, and 31 human marketed antibody-based 
biotherapeutics (Figure 2(c)). The first approved antibody in 
1986 was of murine origin (muromonab). A murine mAb may 
elicit undesirable immunogenicity-related side effects due to 
the activation of the immune system,99 and it has been 

proposed that many factors, including humanization, can 
help avoid this immune response.100 The next product to 
receive approval in 1994 was a chimeric antibody (abciximab). 
The first humanized antibody was approved in 1997 (daclizu-
mab), and adalimumab became the first human antibody 
approved in 2002. Since 2003 humanized and human antibo-
dies have been approved at a higher rate than chimeric and 
murine ones. Furthermore, there is a trend toward an increas-
ing number of approvals for human antibodies, which started 
around 2005 (see Table 1 and Figure 2(c)). Similarly, Figures 2 
(d,e) show that the percent humanness of the variable portions 
of both the heavy and light chains (VHs and VLs, respectively), 
have increased over time. On average, the VHs are a little less 
humanized, when compared to their closest human germlines 
(average humanness = 83 ± 10%) than the VLs (average 
humanness = 86 ± 11%). Moreover, the VHs of 53 antibody- 
based biotherapeutics are < 85% human, while only 34 VLs are 
< 85% human. As expected, the percent humanness of the 
marketed antibody-based biotherapeutics correlates with 
their types. For example, percent humanness of human anti-
bodies ranges from 85% to 100% (average 94 ± 3%) for VLs and 
87% to 100% (average 97 ± 4%) for VHs. The percent human-
ness of the humanized antibodies ranges from 73% to 93% 
(average 84 ± 4%) for VLs and 71% to 88% (average 80 ± 4%) 
for VHs. Percent humanness of the chimeric and murine anti-
bodies ranges from 59% to 80% (average 68 ± 6%) for VLs and 
57% to 80% (average 70 ± 5%) for VHs.

The administration of an antibody-based biotherapeutic 
can elicit an anti-drug antibody (ADA) response by the 
immune system, which has important potential consequences 
for PK, efficacy, and drug safety.101 Consequently, it is a 
regulatory requirement to measure the presence of ADAs 
during clinical trials. However, each ADA assay is specific to 
a given antibody-based biotherapeutic product.102 Therefore, 
it is not possible to directly compare ADA incidences from one 
product to another. Keeping this limitation in mind, the 

Table 2b. Targets bound by the marketed antibody-based biotherapeutics*.

Targets Name UniProt ID87 Clinical Indications Drug Products

Programmed Cell Death Protein 1 Q15116 22 3

Tumor Necrosis Factor - Alpha P01375 12 4
Vascular Endothelial Growth Factor A P15692 12 2

B-Lymphocyte Antigen CD20 P11836 9 6
Programmed Cell Death 1 Ligand 1 Q9NZQ7 8 3
Interleukin-6 Receptor Subunit Alpha P08887 6 2

Interleukin-1 Subunit Beta P01584 6 1
Interleukin-12 Subunit Beta P29460 6 1

Interleukin-17 Subunit Alpha Q16552 5 2
Interleukin 5 P05113 5 2

Complement C5 P01031 4 2
Epidermal Growth Factor Receptor P00533 4 4

Tumor Necrosis Factor Receptor Superfamily Member 8 P28908 4 1
Proprotein Convertase Subtilisin/Kexin Type 9 Q8NBP7 3 2
Receptor Tyrosine-Protein Kinase erbB-2 P04626 3 2

Interleukin-2 Receptor Subunit Alpha P01589 3 2

*This table shows the UniProt87 names and identification numbers of target recognized by the 89 marketed 
antibody-based biotherapeutics. This table also shows the number of clinical indications that utilize a specific 
target and how many marketed antibody-based biotherapeutics bind to that target. Only the targets utilized in 3 
or more clinical indications were included.
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reported ADAs of 88 of the 89 marketed antibody-based 
biotherapeutics were obtained from the package inserts or 
the pharmacology sections in the reviews of the BLAs (Table 
S1). No ADA information was available for gemtuzumab ozo-
gamicin in the package insert,103 or pharmacological review 
section of the drug approval package.104 Figure 2(f) shows the 
trends of percent ADAs over time. Antibody-based biothera-
peutics with lower incidence of ADAs have been approved 
more frequently in recent years. In 1998, trastuzumab became 
the first approved antibody-based biotherapeutic with 
reported ADA incidence below 1%. Ten marketed antibody- 
based biotherapeutics report ADA incidences above 20% in 
their package inserts (Table S1). The average reported inci-
dence of ADA across all antibody-based biotherapeutics in this 
study is 11.3 ± 8.0%; it ranges from 0% for bezlotoxumab to 
62% for alemtuzumab. It is important to note that the recom-
mendations for ADA assays have also changed over the years, 
which hampers our ability to compare overall incidence 
between older products versus those that follow the 2017 
EMA and 2019 FDA guidance.105,106

The data shown in Figures 2(c–f) prompted us to pose the 
following question: Does % Humanness of the variable regions 
of marketed antibody-based biotherapeutics directly correlate 
with their reported % ADAs ? Plots of percent humanness of 
their VH and VL regions with respect to the incidence of % 
ADAs reported in the package inserts are shown in Figure 2(g). 
Although a weak downward trend suggesting a decline in % 
ADAs with increased % Humanness is observed for both VHs 
and VLs, the linear correlation coefficients (r2) values for both 
VHs and VLs are 0.02 and the p-values are 0.16 (VLs) and 0.17 
(VHs). Therefore, the correlation between % ADAs and % 
Humanness is statistically insignificant for the antibody- 
based biotherapeutics in this dataset. Figure 2(h) explores the 
same question from the perspective of antibody types. The 
boxplots shown in this figure suggest that the median values 
of % ADAs do not decrease significantly among murine, chi-
meric, humanized, or human antibodies, even though a weak 
downward trend is observed again. Furthermore, Table S3 
shows the average incidence of ADAs among murine, chi-
meric, humanized, and human antibody-based biotherapeu-
tics. On average, the murine antibodies show an 18% incidence 
of ADAs along with a wider variation in the ADA incidence 
than those observed for chimeric, humanized, or human anti-
bodies. The corresponding averages for the chimeric, huma-
nized, and human antibodies are 5%, 9%, and 5%, respectively 
(see Table S3). Taken together, these observations imply that 
the immunogenicity of marketed antibody-based biotherapeu-
tics does not depend solely on their humanness.

Generation of immune response among patients receiving 
immunotherapy is a very complex and multifactorial 
process.107,108 In addition to the type of the antibody, 
other factors such as molecular sequence features (e.g., pre-
sence or absence of T- and B-cell immune epitopes, stability/ 
aggregation of the molecule under physiological conditions), 
manufacturing processes, formulation, aggregates already 
present at the time of drug administration, route of admin-
istration, product presentation, as well as genetic and disease 
history of the patients including presence of preexisting 
antibodies, can play significant roles.26,109 Furthermore, the 

real-life experience on immunogenicity of a given antibody- 
based biotherapeutic product, outside of the clinical trial 
setting, may be different than the % ADAs reported in the 
package inserts or BLA reviews.

The absence of correlation between the incidence of ADAs 
and the humanness of antibody-based biotherapeutics, how-
ever, does not imply that humanization of antibody drug 
candidates discovered using murine and other species is unne-
cessary. On the contrary, this report shows that technological 
advances in antibody generation, humanization, and manufac-
turing along with improved understanding of causes that 
underpin undesired immunogenicity have resulted in the 
increased approval of antibody-based biotherapeutics with 
low incidence of percent ADAs in recent years (see Figure 2 
(f)). However, as described above, humanization does not fully 
mitigate the risk of unwanted immunogenicity.

In addition to the humanness of antibody-based biothera-
peutics, recent research has also explored the role of formula-
tion in unwanted immunogenicity.110,111 For example, a 
citrate-free formulation of adalimumab has fewer reports of 
injection site pain (ISP) and adverse immune reactions.112 This 
is consistent with reports that use citrate buffer in antibody 
formulations can lead to stinging and ISPs.113 In general, it is 
preferable to include fewer inactive ingredients in antibody 
formulations to lower ISPs.114–118

In addition to the incidence of ADAs, biological drug safety 
involves several factors, such as target-mediated toxicity, dos-
ing, and formulation.119–121 Target biology, target-mediated 
toxicity and toxicity induced by dosing levels are out of scope 
for this analysis because such information is often absent from 
package inserts and publicly available regulatory submission 
documents. Nonetheless, package inserts often do contain 
additional information on the product presentation of anti-
body-based biotherapeutics, routes of administration, and dos-
ing. These are studied next.

Multiple drug product presentations and routes of 
administration options for antibody-based 
biotherapeutics

Antibody-based drug products are packaged as vials, pre-filled 
syringes or pens containing their liquid formulations, or lyo-
philized powders for reconstitution of drug product as a liquid 
injectable at the time of administration (Table 1). Decisions on 
the product presentation often involve consideration of many 
factors. Molecular integrity of the API (conformational stabi-
lity, aggregation propensity or lack thereof, and impact of 
chemical degradation such as oxidation, deamidation, and 
isomerization) in a liquid formulation determined by stability 
studies during early development phases plays a crucial role.122

As of June 2020, there were 96 product presentations for the 
89 antibody-based biotherapeutics studied here. Figure 3(a) 
shows the evolution of the product presentations for the mar-
keted antibody-based biotherapeutics over time. Vial has been 
the most common drug product presentation for the marketed 
antibody-based biotherapeutics over the years, accounting for 
53 (55.2%) of the 96 product presentations. Of the remainder, 
22 (22.9%) products are presented as lyophilized powders and 
21 (21.9%) are presented as pre-filled syringes or pens (Table 
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S4). Six antibodies, namely, omalizumab, secukinumab, rani-
bizumab, ustekinumab, golimumab, and mepolizumab, are 
marketed in multiple product presentations as described 
below. Omalizumab and secukinumab are available as lyophi-
lized powders and as pre-filled syringes. Ranbizumab, golimu-
mab, and ustekinumab are available as pre-filled syringes and 
as vials. Mepolizumab is the only product available as a lyo-
philized powder, as a pre-filled syringe, and as a vial. 
Pembrolizumab was originally approved in a lyophilized 
form in 2014,123 and a vial product presentation was added 
in 2015.124 As of 2020, pembrolizumab is only available as a 
vial.125

Routes of administration for antibody-based drug products 
include intradermal, intramuscular, intravenous (i.v.), intravi-
treal, and subcutaneous (s.c.).126–129 Of the 89 antibody-based 
biotherapeutics, approximately two-thirds (59, 66.2%) are i.v. 
administered and another 27 (30.4%) are s.c. administered. Of 
the remaining three, one each has been developed for the 
intradermal (racotumomab), intramuscular (palivizumab), 
and intravitreal (ranibizumab) routes of administration. 
Figure 3(b) shows the trends in routes of administration over 
time for the 89 marketed antibody-based biotherapeutics. The 
i.v. route of administration has the highest number of 
approvals over years, but the share of s.c. administered pro-
ducts has also increased from 19% (8 of 42) before 2015 to 40% 
(19 of 47) from 2015 to 2020. Coincident with this increase in 
the development of s.c. administered antibody-based biother-
apeutics is the use of hyaluronidase PH20 enzyme (rHuPH20, 
ENHANZE) to help increase the volume available for these 
injections.130 Four of the 89 marketed antibody-based biother-
apeutics (daratumumab, trastuzumab, pertuzumab, and ritux-
imab) have used this technology so far.

Looking at product presentations and routes of administra-
tion together, 16 of the 22 lyophilized drug products are for i.v. 
administration and the remaining six are for s.c. administra-
tion. In contrast, 20 of the 21 pre-filled syringes containing 
high concentration liquid formulations (HCLF) are for s.c. 
administration and the remaining one is for intravitreal 
administration. Similarly, 43 of the 52 vial product presenta-
tions are i.v. administered, 6 s.c., and 1 each are administered 
intradermally, intramuscularly, and intravitreally.

Several antibody-based biotherapeutic products available pre-
viously only for i.v. administrations are now being marketed in their 
s.c. form as well. So far, 11 antibodies have been approved for both i. 
v. and s.c. routes of administration. In the case of s.c. administered 
antibodies, four are co-administered with PH20 as mentioned 
previously. Trastuzumab was originally approved by the FDA as a 
lyophilized powder for i.v. infusions to treat metastatic breast cancer 
in 1998, then by the EC as an s.c. injection for the same clinical 
indication in 2013, and by the FDA again in 2019 as an s.c. injection 
co-administered with PH20. These two routes of administration of 
trastuzumab have similar efficacy and tolerability, which leads to s.c. 
administration being preferred by patients.131 The remaining three 
s.c. administered antibodies approved along with PH20 co-admin-
istration are rituximab in 2017 and daratumumab and pertuzumab 
in 2020. Of the remaining 7 of the 11 antibodies approved for both i. 
v. and s.c. administrations, belimumab was originally approved in 
2011 as a lyophilized powder for i.v. infusions to treat systemic 
lupus erythematosus then later as an s.c. injection in 2017. 

Daclizumab was originally approved for i.v. infusions to prevent 
kidney transplant rejection in 1997. In 2009, Daclizumab was with-
drawn due to limited usage as newer products with a less burden-
some dosing schedule were available in the market,132 but then it 
was reapproved for s.c. administration to treat multiple sclerosis in 
2016, a change in both routes of administration and clinical indica-
tion. Similarly, ofatumumab was approved as an i.v. injection to 
treat chronic lymphocytic leukemia and as s.c. administration to 
treat multiple sclerosis in 2009. Interestingly, ofatumumab is mar-
keted as separate drug products with different brand names 
(Arzerra and Kesimpta) for each of the two routes. Golimumab 
was approved for s.c. administration in 2009 to treat rheumatoid 
arthritis (RA), psoriatic arthritis, and ankylosing spondylitis and 
then for i.v. route of administration in 2013 to also treat RA. 
Tocilizumab was originally approved for both i.v. and s.c. routes 
of administration to treat arthritis (RA, polyarticular juvenile idio-
pathic arthritis, systemic juvenile idiopathic arthritis) in 2009. 
Ustekinumab was originally approved as an s.c. injection to treat 
plaque psoriasis in 2009 and as an i.v. infusion to treat Crohn’s 
disease in 2016. Vedolizumab was approved for i.v. infusion in 2014 
by the FDA and then as an s.c. injection in 2020 by the EC.

There are also clear preferences for routes of administration in 
the different therapeutic areas. For example, there are 46 clinical 
indications for oncology and all but one of the 38 products for 
these clinical indications are i.v. administered (97%). The only 
exception is racotumomab, which is an intradermally adminis-
tered product to treat NSCLC. Like oncology, hematology has 15 
clinical indications, but all except two of the 21 products are i.v. 
administered (90%). The exceptions are emicizumab and mepo-
lizumab, both s.c. administered. In comparison to oncology and 
hematology, there are 40 clinical indications for immunology that 
are served by 38 drug products. Of these 38 drug products, only 
20 (53%) are i.v. administered (Tables S1 and S2).

Maintenance dosing frequency

Maintenance dosing frequency refers to how often a maintenance 
dose is administered to the patient. This is a major consideration 
from the perspectives of patient convenience and healthcare costs. 
In the literature, the dosing frequencies are normally represented 
as QW, Q2W, and so on (from Latin “quaque”; English transla-
tion, “each”) where the number represents how many weeks 
between doses (QW is used instead of Q1W).133 Seventy of the 
89 marketed antibody-based biotherapeutics require a regular 
maintenance dose schedule and 6 of them offer more than one 
option for dosing regimens. Daratumumab, for example, offers 
dosing options for QW, Q2W, Q3W, and Q4W. Thus, in total, 
there are 79 dosing regimens for these 70 antibody-based biother-
apeutics. Nine of these 79 dosing regimens are QW (11%), 23 are 
Q2W (29%), 10 are Q3W (14%), 24 are Q4W (30%), and 13 
are ≥Q5W (16%) (Supplementary Figure S1). Figure 3(c) shows 
the dose frequency over time divided into the following cate-
gories: once weekly (QW), once every 2 weeks (Q2W), once 
every 3 weeks (Q3W), once every 4 weeks (Q4W), and once 
every 5 or more weeks (≥Q5W). Q2W and Q4W have been the 
most common dosing regimens for antibody-based biotherapeu-
tics over the years.

There is a relationship between dosing frequency, nature 
of diseases, and routes of administration. Comparisons 
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between regular dosing regimens for i.v. and s.c. routes of 
administration and therapeutic areas are shown in Table 3. 
For example, most s.c. administered products (21 of 31, 
68%) developed to treat chronic diseases are prescribed to 
be dosed Q4W or more. This less frequent dosing regimen 
is clearly advantageous from the perspective of patient 
convenience (Table S1).134 However, even with such advan-
tages, the patients and clinicians may not always prefer s.c. 
over i.v. administration and the option used in the clinical 

setting may depend on preferences of patient groups and 
clinicians.135,136

Pharmacokinetics of marketed antibody-based 
biotherapeutics.

PK data are available consistently for most of the marketed 
antibody-based biotherapeutics. The data include clearance 
(the volume of blood cleared of drug per unit time; 80 out of 

Figure 3. Product information. (a) Product presentation of marketed antibody-based biotherapeutics over time. Current trends show a preference of lyophilized and 
pre-filled syringe or pen over vial. (b) Route of administration of marketed antibody-based biotherapeutics over time. Intravenous is the most used route of 
administration, but recently, subcutaneous has seen a similar number of approvals as intravenous. Other routes of administration are intradermal, intramuscular, and 
intravitreal. (c) Regular maintenance dose frequency for marketed antibody-based biotherapeutics over time. QW stands for once weekly, Q2W stands for once every 
two weeks, and so on. There are 79 regular dosing regiments. In general, Q2W and Q4W are the most used maintenance dosing regimens.
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89, 90%),137 elimination half-life (the time required for 
plasma/blood concentration to decrease by 50% (after 
pseudo-equilibrium of distribution is reached; 86 out of 89, 
97%)),138,139 and volume of distribution (83 of the 89, 93%) 
(Table S1).140 Table S1 also contains data on bioavailability 
(fraction of the dose that reaches systemic circulation as an 
intact drug),141 which is available for 26 of the 27 (96%) s.c. 
administered antibody-based biotherapeutics. Bioavailability 
values for i.v. administered antibody-based biotherapeutics 
were not included in the analysis because they are assumed 
to be 100%.141 For volume of distribution, steady state values 
were used when available and if volume values were given 
representing different body compartments, these values were 
added together.

Six other PK parameters also had data, but these were 
associated with clinical data in the reviews of BLAs, and 
not included in the package inserts. The parameters are 
the maximum concentration (Cmax, 89%), time to reach 
maximum concentration (Tmax, 63% for all; 100% for s.c. 
administered mAbs), area under the concentration-vs- 
time curve (AUC, 74%), trough concentration (Ctrough, 

66%), time to reach steady state (Tss, 74%), and elimina-
tion linearity (89%, of which 68% have linear clearance). 
Note that the PK values reported in the package inserts 
and reviews of BLAs are derived from PK data collected 
from many subjects or patients (sometimes from different 
patient cohorts) and in general show large biological 
variability. Furthermore, it is not always clear whether 
the PK parameters in the package inserts are reported as 
geometric means, arithmetic means, or median values of 
the patient PK data. Therefore, caution should be used 
when analyzing and interpreting PK data across different 
marketed antibody-based biotherapeutics. Moreover, it 
may be worth further harmonizing reporting of clinical 
PK data (and units) to allow better comparisons in the 
future.

Figures 4(a–d) show time-series analyses for the four com-
mon PK parameters mentioned above. Only full-length antibo-
dies were included in the analysis because small molecular size 
can affect distribution and involve additional renal elimination 
of a drug product.142 Figure 4(a) shows trends for elimination 
half-life for 82 full-length antibodies over time. Their half-life 

Figure 4. Pharmacokinetic (PK) data over time. (a) Elimination half-life. This varies for all antibody-based biotherapeutics, but most marketed products are eliminated 
between 15 and 25 days. (b) Clearance. This varies too, but most antibody-based biotherapeutics have a clearance between 5 and 15 mL/hour. (c) Volume of 
distribution. Values fall mainly between 3 and 9 liters with values between 3 and 6 liters being the most common. (d) Bioavailability. Recent marketed drugs with a 
subcutaneous route of administration commonly have 90% or more bioavailability. (e) Clearance versus dosing frequency. In general, a higher clearance should result 
in more frequent dosing, but the median values do not reflect this. (f) Elimination half-life versus dosing frequency. A trend of longer elimination half-lives enabling less 
frequent dosing is observed. 
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ranges from 17 hours (sacituzumab goitecan) to 50 days (ravu-
lizumab) with a geometric mean of 14.5 days (average = 17.8 ±  
9.2 days; Median = 18.0 days); and most marketed antibody- 
based biotherapeutics are eliminated between 15 and 25 days. 
Furthermore, the elimination half-life of a drug can be calcu-
lated using Equation (1) as shown in the data sources and 
methods section. This equation connects the elimination half- 
life with the volume of distribution and clearance, which was 
derived assuming a first-order exponential decay.143 Table 4 
shows that the calculated elimination half-life values are usually 
lower than those reported in the package inserts and BLA 
reviews even though there is still a significant correlation 
between the calculated and the reported elimination half-lives 
for 45 full-length IgG antibodies, excluding the ADCs, that show 
linear PK, i.e., no target mediated effects (r = 0.84, p-value < 
0.001, see table S5). This discrepancy between the calculated and 
reported elimination half-lives can arise from several sources 
besides the large scatter in the data obtained from individual 
patients. Both clearance and volume of distribution are depen-
dent on many factors, such as physical size and molecular 
characteristics of the antibody, expression of the target and 
target internalization rate, nature of the target (intracellular, 
membrane, extracellular), patient characteristics (e.g., body 
weight, disease history, age, gender, and so on),144 and route 
of administration.138–147 Clearance varies greatly for all anti-
body-based biotherapeutics, which is reflected in a wide range of 
elimination half-lives for reasons mentioned above.148–150

Figure 4(b) shows clearance trends for 76 full-length anti-
bodies over time. The clearance values range from 0.46 mL/ 
hour (palivizumab) to 350 mL/hour (gemtuzumab ozogami-
cin) and the geometric mean is 14.8 mL/hour (average = 29.0  
± 58.1 mL/hour; median = 12.1 mL/hour). Despite the enor-
mous range, 73% of the marketed antibody-based biothera-
peutics have a clearance of <20 mL/hour and 62% have 
clearance of <15 mL/hour (Figure 4(b)). All four products 
with a PH20 option show a decrease in clearance compared 
to their original i.v. approvals. Clearance for daratumumab 
decreases from 7.1 mL/hour to 6.8 mL/hour; from 10 mL/ 
hour to 8.3 mL/hour for pertuzumab; 14 mL/hour to 8 mL/ 
hour for rituximab; and from 5.9 mL/hour to 4.6 mL/hour 
for trastuzumab. This may be partly attributed to slower 
absorption and a later Tmax for the s.c. administered products 
(see Table S1). Note that these observations do not separate the 
impact of ‘use of PH20’ from the ‘change in route of adminis-
tration’ on the clearance of these products.

Figure 4(c) shows volume of distribution trends for 79 
antibody-based biotherapeutics. The volume of distribution 
ranges from 2.5 L (cetuximab) to 21.4 L (gemtuzumab ozoga-
micin) with an average of 6.4 ± 3.2 L (5.6 L median, 5.7 L 
geometric mean). Volume of distribution for 64 of the 79 
(81%) antibodies falls between 3 and 9 L and for 38 of them 
(48%) between 3 and 6 L. This is one of the few trends for 
antibody-based biotherapeutics that has not changed much, 
and 3–6 L has been the most common volume of distribution 
over the years. The main reason is that antibody-based 
biotherapeutics are mainly confined to the volume of plasma 
(Vc ~45 mL/kg or ~3 L for a 70 kg patient),151,152 and the 

interstitial tissue space, as their high molecular weight restricts 
their uptake by tissues and cells.153

Figure 4(d) shows bioavailability trends for 26 s.c. adminis-
tered products over time. The average bioavailability for such 
products approved before 2015 was 60 ± 6% (50–70%) and 
from 2015 to June 2020 it has increased to 74 ± 13% (49– 
100%). Therefore, early s.c. products had lower bioavailability 
and it was not until 2018 that an s.c. administered antibody- 
based biotherapeutic product had a bioavailability above 90% 
(burosumab, 100%). Co-administration of PH20 with the for-
mulations of the s.c. administered antibody-based biothera-
peutics was expected to increase their bioavailability.154 

However, the bioavailability of the four mAb products co- 
administered with PH20 (daratumumab, pertuzumab, rituxi-
mab, and trastuzumab) ranges from 64% to 77% (see Table S1).

The PK of antibody-based biotherapeutics is important to 
determine appropriate dosing frequencies.155 We studied this 
relationship by plotting clearance and elimination half-lives 
with respect to the dosing frequencies. Figures 4(e–f) show 
boxplots of dosing frequencies versus clearance and versus 
elimination half-life. There is a slight trend that higher clear-
ance, and therefore shorter elimination half-lives, can lead to 
shorter dosing intervals, e.g., QW dosing, but in general the 
data did not reveal a clear correlation, possibly due to the large 
scatter. However, in general longer elimination half-life values 
can support less frequent dosing regimen. QW dosing has a 
geometric mean for elimination half-life of 9.8 days, Q2W of 
15.8 days, Q3W of 16.4 days, Q4W of 18.2 days, and ≥Q5W of 
22.8 days (Table S6).

The PK of antibody-based biotherapeutics can also vary 
with their routes of administration. Table 4 compares PK 
data for s.c. and i.v. routes of administrations (also see Table 
S7). For the antibody-based biotherapeutics s.c. administered, 
the average bioavailability was 71 ± 12% and average time 
to maximum concentration (Tmax) was 5.7 ± 2.4 days. 
The geometric means of elimination half-life, clearance, and 
volume of distribution for s.c. administered antibodies were 
19.7 days (average = 21.2 ± 8.0 days), 14.2 mL/hour (average =  
20.4 ± 25.3 mL/hour), and 6.3 L (average = 7.0 ± 3.2 L), respec-
tively. In comparison to s.c. route, i.v. administered biologics 
have shorter average elimination half-life (geometric mean =  
12.5 days; average = 16.1 ± 9.4 days), faster clearance (geo-
metric mean = 15.2 mL/hour; average = 33.1 ± 68.5 mL/hour) 
and lower volume of distribution (geometric mean = 5.6 L; 
average = 6.2 ± 3.2 L). A potential explanation for the longer 
half-life of s.c. administered antibodies is that their overall 
clearance is partly limited by a slow rate of absorption.

In Table 4, the PK data is further broken down into several 
categories depending on the light and heavy chain isotypes, 
antibody types (chimeric, humanized, or human), and routes 
of administration. While a large scatter in the data precludes 
definitive conclusions, a few trends become apparent if one 
focuses on geometric mean values. For example, antibody- 
based biotherapeutics with IgG4 heavy chains for all routes 
of administration have greater volumes of distribution (geo-
metric mean = 7.2 L) and faster clearance rates (geometric 
mean = 17.6 mL/hour) than IgG1 (geometric means of 5.7 L 
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and 13.8 mL/hour, respectively) and IgG2 (geometric means of 
4.9 L and 15.4 mL/hour, respectively) isotypes. Consequently, 
IgG4 antibody-based biotherapeutics have a shorter elimina-
tion half-life (geometric mean = 13.9 days) compared to IgG1 
(geometric mean = 14.6 days) and IgG2 (geometric mean =  
15.8 days).

When the route administration is considered, we were 
surprised to find that the s.c. administered IgG4 (4 products) 
antibody-based biotherapeutics show a geometric mean elim-
ination half-life of 21.4 days, which is longer by nearly 2 days 
than the geometric mean elimination half-life of 19.7 days for 
s.c. administered IgG1s (16 products) and 18.7 days for s.c. 
administered IgG2s (6 products). The s.c. administered IgG4 
products also have slower clearance rates overall (geometric 
mean = 9.2 mL/hour) when compared to s.c. administered 
IgG1 antibodies (geometric mean = 14.1 mL/hour) and s.c. 
administered IgG2 antibodies (geometric mean = 20.9 mL/ 
hour), while the volumes of distribution remain similar for 
IgG4 and IgG1 but are lower for IgG2 (IgG4 = 7.3 L, IgG1 =  
6.8 L, IgG2 = 4.6 L). Previously, IgG4 antibodies showed 
slower clearance compared to the IgG1 antibodies in a cyno-
molgus monkey study.156 However, the availability of only a 
small number of data points for the s.c.-administered IgG4 
antibodies prevents us from arriving at any definitive con-
clusions in this regard. Furthermore, in the case of the IgG 
subclasses that contain fewer than 10 antibodies, some PK 
parameters might also be influenced by the nature and 
expression levels of the target and thus non-linearity. Note 
that data on non-IgG formats such as Fabs, Fvs, and scFvs 
were not included in Table 4 because of their smaller mole-
cular size. Typically, such molecules have significantly faster 
clearance rates and shorter elimination half-lives.157 By 
removing smaller non-IgG, the averages were not dominated 
by outlier PK data, but values still varied widely for all PK 
parameters, specifically clearance. Note that IgG-based ADCs 
were included in the route of administration analysis.

Relationship between the isoelectric point and 
pharmacokinetics

Intrinsic molecular characteristics of antibody-based 
biotherapeutics can influence their clearance and 
pharmacology.158–160 For example, their PK properties 
have been reported to be influenced by the charge or iso-
electric point (pI).161–164 It has been shown that antibodies 
with a high pI value have a lower bioavailability and a 
faster clearance rate.165 However, package inserts and 
reviews of BLAs do not contain information on isoelectric 
points of antibody-based biotherapeutics. In this work, we 
have estimated isoelectric points of the variable regions 
(pIFv3D) of the 89 antibody-based biotherapeutics using 
their homology-based structural models (see methods and 
Table S1 for pI data). This is because full-length antibodies 
demonstrate different solution behaviors and PK properties 
depending on the electrostatic properties of their variable 
regions.166,167 Table S8 shows Pearson linear correlation 
coefficients (r – values) of pIFv3D with the PK parameters 
reported in the package inserts for different subsets of 
marketed antibody-based biotherapeutics. As stated above, 

out of the 89 antibody-based biotherapeutics, only 45 full- 
length IgG antibodies show linear PK and therefore no 
target-mediated effects. Moreover, this set excludes ADCs. 
No statistically significant correlations between pIFv3D and 
the four PK parameters, namely bioavailability, volume of 
distribution, clearance, and elimination half-life, were 
observed for these 45 antibodies. However, when they are 
grouped into different subsets, like those shown in Table 4, 
a few statistically significant correlations are found. 
Interestingly, s.c. administered antibodies showed a signifi-
cant negative correlation between volume of distribution 
and pIFv3D (number of observations = 17, r = −0.50, p-value 
< 0.05, see Table S8), which indicates that the higher the 
pIFv3D, the lower the volume of distribution.

Formulation characteristics of the marketed antibody- 
based biotherapeutics

Formulation is a cardinal aspect of biological drug develop-
ment with important consequences for stability, safety, phar-
macology, and product presentation, as well as route of 
administration of antibody-based biotherapeutic drug 
products.168 Figures 5(a–d) show time-series plots for four 
commonly used inactive ingredients, buffer, stabilizer, tonicity 
modifier and surfactants, for formulation development of the 
marketed antibody-based biotherapeutics. In several instances, 
the drug products have multiple formulations (e.g., adalimu-
mab). In this work, we focused on the antibody formulations at 
the time of the first approval, i.e., the original formulations. Of 
the 89 antibody-based biotherapeutics, 87 used a buffering 
agent, 35 a tonicity modifier, 60 a stabilizing agent, and 79 a 
surfactant. Trends in the usage of each of these inactive ingre-
dients over time are discussed below.

Figure 5(a) shows trends in the buffers used in antibody- 
based biotherapeutic formulations over time. Of the 87 formu-
lations that contain a buffering agent, histidine, which provides 
higher colloidal stability compared to other buffers,169 is the 
most common one. It has been used for 36 (41%) marketed 
antibodies at an average concentration of 3.0 ± 1.8 mg/mL 
(range of 0.7–8.9 mg/mL). Before 2015, the top 4 commonly 
used formulation buffers were histidine (13 of 38, 34%), phos-
phate (12 of 38, 32%), acetate (5 of 38, 13%), and citrate (5 of 38, 
13%). From 2015 through June 2020, the top 4 formulation 
buffers were histidine (22 of 47, 47%), acetate (10 of 47, 21%), 
citrate (6 of 47, 12%), and phosphate (4 of 47, 9%). This shows 
an increase in the use of histidine and acetate as buffering 
agents, while the use of the phosphate buffer has decreased 
over time.

Figure 5(b) shows usage of stabilizing agents in drug pro-
duct formulation over time. Sucrose has been the most used 
stabilizer over the years. Of the 60 product formulations that 
contain stabilizers, sucrose is added to 32 (53%) of them at an 
average concentration of 91.9 ± 134.2 mg/mL (range of 4–822  
mg/mL). The top four stabilizers before 2015 were sucrose (11 
of 22, 50%), trehalose (6 of 22, 27%), mannitol (3 of 22, 13%), 
and sorbitol (2 of 22, 9%). From 2015 through June 2020, the 
top 4 stabilizers were sucrose (19 of 35, 54%), trehalose (7 of 
35, 20%), sorbitol (5 of 35, 14%), and mannitol (4 of 35, 11%). 
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Therefore, sucrose and sorbitol have seen an increase in use, 
and trehalose and mannitol have seen a decrease in recent 
years. Nonetheless these excipients continue to be used regu-
larly in drug formulations.170,171

Figure 5(c) shows the use of tonicity modifiers over time for 
antibody formulations. Sodium chloride (NaCl) has been used 
as tonicity modifier in formulations of 35 marketed antibody- 
based biotherapeutics at an average concentration of 7.0 ± 6.5  
mg/mL. Potassium chloride (KCl) is used with NaCl in the 
formulation of alemtuzumab, approved in 2001. Since then, 
NaCl has been the only salt used as a tonicity modifier in 
marketed antibody-based biotherapeutics formulations. NaCl 

and KCl are used mainly in product formulations presented as 
vials (77%) and i.v. administered (83%).172

Surfactants are used in formulations of antibody-based 
biotherapeutics to prevent aggregation and denaturation of 
antibodies at the air–water interface.173 Figure 5(d) shows 
use of surfactants in formulations of antibody-based biother-
apeutics over time. Of the 79 formulations that utilize surfac-
tants, 53 use polysorbate 80 (67%) at an average concentration 
of 0.41 ± 0.48 mg/mL (range of 0.04–2.00 mg/mL). Before 
2015, polysorbate 80 was included in 24 of 42 formulations 
(57%), polysorbate 20 in 8 (19%), poloxamer 188 in 1 (2%), 
and no surfactant was used in 9 (22%). From 2015 through 

Figure 5. Four of the main inactive ingredient categories for marketed antibody-based biotherapeutics over time (see Table S1 for all). (a) Buffers. Histidine is the most 
common, included in 36 marketed antibody-based biotherapeutic formulations. (b) Stabilizing agents. No stabilizing agents is the most common, but if one is used, 
sucrose is the most common. (c) Tonicity modifiers. No tonicity modifier is the most common, but if one is used, NaCl is the most common. (d) Surfactants. Polysorbate 
80 is included in 52 formulations. (e) Buffering agent usage versus heavy chain isotype. The four most common buffers are seen in all isotypes, but histidine is much 
more common in IgG1. (f) Stabilizing agent usage. Sucrose is the most common in all isotypes, but trehalose is not used in IgG2 or IgG4 products. (g) Tonicity modifiers. 
Sodium chloride and no tonicity modifier have similar representation across all isotypes. (h) Surfactant. Polysorbate 20 is paired mostly with IgG1 formulations while 
polysorbate 80 is paired with IgG2 and IgG4.
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June 2020, polysorbate 80 accounted for 29 of 47 (62%), poly-
sorbate 20 for 16 (34%), poloxamer 188 for 1 (2%), and no 
surfactant for 1 (2%). These observations show that the use of 
polysorbate-based nonionic detergents as surfactants is wide-
spread in antibody formulations. This reliance on polysorbates 
has been rationalized by their biocompatibility and low toxi-
city. However, the observation that polysorbates can degrade, 
leading to particulate formation during long-term storage of 
protein formulations, has emerged as a major product quality 
concern and a potential patient safety risk factor for antibody- 
based biotherapeutics.174,175 It is therefore clear that diversifi-
cation of surfactants beyond polysorbates would be beneficial 
toward assuring long-term formulation stability and quality of 
formulation of antibody-based biotherapeutics.

MAbs with different isotypes show different electrostatic 
properties that may affect their solution behaviors in different 
formulation buffers.166 This leads to the following question: 
Do inactive ingredients of antibody-based biotherapeutic for-
mulations show a relationship with the isotypes of the anti-
bodies? Figures 5(e–h) shows data for the four inactive 
ingredient types (buffer, stabilizer, tonicity modifier, and sur-
factant) with respect to heavy chain isotypes (IgG1, IgG2, and 
IgG4). Note that only the 83 full-length antibodies were used 
for this analysis. Figure 5(e) shows data for the buffering 
agents used in the formulations of antibody-based biothera-
peutics broken down by their heavy chain isotypes. Histidine is 
used as the formulation buffer for 29 of 59 (49%) IgG1s and for 

5 of 12 (42%) IgG4 ones. However, only one of the 12 (8%) 
IgG2s has been formulated in histidine buffer. On the other 
hand, acetate has been used as the formulation buffer for 42% 
(5 of 12) of IgG2s, but only for 10% (6 of 59) of IgG1s and 17% 
(2 of 12) of IgG4s. These observations show that heavy chain 
isotypes can potentially influence the outcomes of pH/buffer 
screening studies carried out during formulation process 
development. An analogous analysis exploring the influence 
of the light chain isotypes was not carried out because of the 
low representation of lambda light chains among the marketed 
antibody-based biotherapeutics. Figure 5(f) illustrates the use 
of stabilizing agents across different antibody heavy chain 
isotypes. Sucrose is used consistently with all isotypes, but 
trehalose is not. Trehalose is included only in IgG1 formula-
tions. This is consistent with the reports that IgG1 mAbs are 
more stable when formulated with trehalose, but other isotypes 
like IgG2 show instability during freeze-thaw.176,177 Figure 5 
(g) shows that there is no preference for tonicity modifiers for 
different antibody heavy chain isotypes. That is, all isotypes use 
NaCl.151 Lastly, Figure 5(h) shows that Polysorbate 80, the 
most common surfactant, appears to be equally used across 
all antibody isotypes (IgG1, (34 of 59, 58%); IgG2 (7 of 12, 
58%); and IgG4 (9 of 12, 75%)).152,153 Note that biopharma-
ceutical companies often use their own preferred discovery 
pipelines, platform formulations, and manufacturing pro-
cesses. Such information is often proprietary and typically 
unavailable in the public domain. Therefore, it is difficult to 

Figure 6. API concentration and formulation pH. (a) API concentration over time. The most common API concentration is between 10 and 50 mg/mL, however, API 
concentrations≥100 mg/mL are becoming more common in recent years. (b) Formulation pH over time. In recent years, drug products are being more frequently 
formulated under acidic formulations (≤6.0). (c) API concentration and formulation pH comparison. Antibody-based biotherapeutics with high concentration 
formulations are often formulated in mildly acidic conditions.
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ascribe the above observations solely to the molecular proper-
ties of different IgG isotypes.

In addition to composition of inactive ingredients, the 
concentration of the API and pH of the formulation are also 
important considerations.178 Figure 6(a) shows the API con-
centration of all 89 marketed antibody-based biotherapeutics 
over time. For our analysis, the API concentration is divided 
into four categories of 0–10 mg/mL, 10–50 mg/mL, 50–100  
mg/mL, and more than 100 mg/mL. High concentration liquid 
formulations (HCLFs) are finding greater representation 
among the newer antibody-based biotherapeutic drug pro-
ducts. Seven products approved before 2015 had API concen-
tration > 100 mg/mL, while additional 16 HCLF products were 
approved from 2015 to June of 2020. A major hurdle to the 
development of HCLFs of antibody-based biotherapeutics has 
been that certain concentrated antibody solutions become 
unacceptably viscous, leading to challenges in drug adminis-
tration. Several studies have sought to understand this 
phenomenon,179 developed molecular properties-based 
screening tools for viscosity of highly concentrated antibody 
formulations,167,180,181 and have shown that viscosity can be 
reduced via sequence optimization and use of excipients.182,183

Five antibody-based biotherapeutics have been approved 
with multiple API concentrations, ranibizumab (6 mg/mL 
and 10 mg/mL), burosumab (10 mg/mL, 20 mg/mL, and 30  
mg/mL), denosumab (60 mg/mL and 70 mg/mL), alirocumab 
(75 mg/mL and 150 mg/mL) and sarilumab (132 mg/mL and 
175 mg/mL). Therefore, there are 95 data points for API con-
centrations for the 89 marketed antibody-based biotherapeu-
tics. Overall, the API concentrations range from 0.0125 mg/mL 
(blinatumomab) to 200 mg/mL (certolizumab pegol) with an 
average of 51 ± 52 mg/mL. There are 18 antibody-based 
biotherapeutic products with API conc. < 10 mg/mL (19%), 
39 with API conc. in range of 10–50 mg/mL (41%), 14 with 
API conc. between 50 and 100 mg/mL (15%), and the remain-
ing 24 have API conc. > 100 mg/mL (25%). When comparing 
API concentration and %ADAs, there is no clear significance 
or correlation between the two, even when i.v. and s.c. values 
are considered separately (Suplementary Figure S2).

Formulation buffer pH is another important considera-
tion for antibody-based biotherapeutic formulations.-
166,167,184,185 Figure 6(b) shows the formulation pH over 
time for the 89 marketed antibody-based biotherapeutics. 
The pH values of the antibody formulations range from 4.8 
(brodulamab) to 8.0 (inotuzumab ozogamicin) with the aver-
age pH being 6.1 ± 0.6 for 81 formulations. Information on 
the pH of formulation buffers is not available for eight anti-
body-based biotherapeutics in any of their public documen-
tations. Of the 81 marketed antibodies with the known 
formulation buffer pH values, two (2.5%) have been formu-
lated at a pH ≤ 5, 51 (63%) have been formulated in the range 
5<pH ≤ 6, 27 (33%) formulations are in the range of 6<pH ≤  
7.4, and only one (1.2%) has been formulated at pH > 7.4. 
These observations suggest that most antibody-based 
biotherapeutics have been formulated in mildly acidic con-
ditions. Before 2015, there were 14 marketed antibodies with 
formulation buffer pH ≤ 6.0 and 22 with formulation pH >  
6.0. In comparison, 39 antibody-based biotherapeutics have 
been approved with formulation pH ≤ 6.0 since 2015, while 

only six of them have been approved with formulation pH >  
6.0. Moreover, antibody-based biotherapeutics formulated in 
mildly acidic conditions (5.0<pH ≤ 6) have been granted 
more approvals every year than those formulated above for-
mulation buffer pH > 6 (Figure 6(b)). These observations are 
consistent with our recent findings that antibodies with 
weakly basic isoelectric points are better at balancing the 
trade-offs required for good colloidal stability of their for-
mulations and the need to minimize off-target binding.186

Is there a correlation between decrease in formulation buffer 
pH and emergence of high concentration liquid formulations 
for antibody-based biotherapeutics? Figure 6(c) shows boxplots 
of API concentration classes with respect formulation buffer 
pH. There is a downward trend showing that lower formulation 
buffer pH supports formulations at higher API concentrations. 
Although this trend is not statistically significant (r2 = 0.11, p- 
value = 0.002; Figure S2), it does appear to be consistent with the 
recent rise in approvals for antibody-based biotherapeutics with 
high concentration formulations.166,185 Furthermore, Table S9 
shows that API concentration does increase with a decrease in 
formulation pH, on average. At high API concentrations, the 
colloidal stability of the antibody formulations is expected to be 
reduced because of greater interactions among antibody mole-
cules (solute: solute interactions rather than solute: solvent 
interactions) due to molecular crowding. However, the effect 
of molecular crowding is countered by the electrostatic proper-
ties of the antibody molecules. MAbs, which constitute most of 
the marketed antibody-based biotherapeutics, are positively 
charged when formulated in mildly acidic conditions, promot-
ing repulsive self-interactions.169

Discussion

Antibody-based biotherapeutics have emerged as the most 
successful class of biopharmaceuticals in recent decades. 
Starting from the first approval in 1986, we now have 
more than a hundred marketed antibodies serving patients 
with previously unmet medical needs. The rapid rise of 
antibodies as biotherapeutics was facilitated by several 
technological advances in antibody discovery, manufactur-
ing, product and clinical development, and drug delivery. 
In this report, we studied the emergence of antibody-based 
biotherapeutics as the best-selling medicines by analyzing 
the trends gleaned from publicly available information in 
their package inserts, reviews of BLAs, and websites of 
regulatory agencies. We analyzed the data to identify the 
drivers behind the observed trends. These include: 1) ther-
apeutic purpose; 2) need to improve safety by minimizing 
adverse effects, e.g., immunogenicity; 3) easier developabil-
ity via improvements in CMC processes, pharmacokinetics, 
and dosing frequency; and 4) increased attention to patient 
convenience. All these drivers are interconnected and will 
continue to evolve as our collective experience with anti-
body-based biotherapeutics grows and new therapeutic 
concepts, molecular formats, and manufacturing technolo-
gies emerge. To our knowledge, this report is the first to 
analyze antibody-based biotherapeutic products from sev-
eral different perspectives simultaneously and provide a 
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comprehensive understanding of issues involved in their 
discovery and development. Many useful lessons can be 
learned from this report. These are broadly summarized 
as follows:

(a) Notwithstanding the diversification of antibody-based 
biotherapeutics to different therapeutic areas and 
recent approvals granted to such molecules for infec-
tious diseases, they continue to primarily serve thera-
peutic areas of oncology, immunology, and 
hematology. This observation points to significant 
opportunities for biotechnology to serve unmet medi-
cal needs in other therapeutic areas.

(b) While a diverse range of different antibody-based 
molecular formats is reaching stages of clinical devel-
opment (Phases 1–3),187–189 IgG1 kappa remains the 
most common molecular format among marketed anti-
body-based biotherapeutics. This is true across differ-
ent therapeutic areas, indications, formulations, and 
routes of administration. The literature shows that 
this format is also the best understood one from several 
perspectives of drug discovery as well as development. 
Scientists involved in the early formulation of thera-
peutic concepts need to be aware of this to assure a 
successful end-to-end discovery and development 
strategy with increased efficiency of translation of 
drug discoveries to antibody-based drug products.

(c) Most of the recently approved antibody-based biother-
apeutics are either humanized or human, even though 
the percent humanness of their variable regions shows 
no correlation with the incidence of ADAs as reported 
in the package inserts. This observation, unexpected at 
first, is consistent with the complexity of the immune 
pathways and processes that underpin the generation of 
ADAs.102,190,191 The absence of this correlation does 
not imply that humanization of antibody-based drug 
candidates originating from non-human species is not 
needed before product and clinical development.

(d) Several options are now available when it comes to con-
centration, formulation, product presentation, and 
administration of antibody-based biotherapeutic pro-
ducts. The actual usage of these options depends on 
multiple factors, including molecular stability and format-
ting, therapeutic purposes, and clinical indications the 
products need to serve, dosing frequency requirements, 
as well as patient convenience/preference. Availability of 
these multiple options has important consequences for 
immunogenicity and pharmacology of these products, 
both of which show large variations. For example, for s. 
c. administration, biotherapeutics needs to be amenable to 
high concentration formulation, slow clearance, and long 
elimination half-lives. The converse is also true. 
Antibody-based biotherapeutic drug candidates that can 
be formulated at high concentrations, have long elimina-
tion half-lives and slow clearance may face fewer hurdles 
to their development as drug products suitable for s.c. 
route of administration.

(e) Molecular characteristics, API concentration, and pre-
sence/absence of salt in antibody formulations can 

influence PK properties of antibody-based biotherapeu-
tic products. During the transition from preclinical to 
clinical stages, clinical pharmacologists rely on opti-
mized molecular characteristics leading to slower clear-
ance, longer half-life, and greater bioavailability in 
humans. Optimal clinical PK of mAbs allows clinical 
pharmacologists to choose an optimized therapeutic 
dose and a convenient dosing interval for patients.

Although comprehensive in its scope, this analysis was 
limited by several factors. For example, detailed information 
on discovery, formulation, and biomanufacturing processes 
followed by manufacturers is often not included in package 
inserts and is not easily available in the public domain. This 
prevents a more complete understanding of how such 
biotherapeutics are developed, tested, and manufactured 
commercially. There are also limitations to the data reported 
in the package inserts along with inconsistencies in the 
format and units used to report similar information. A 
more consistent reporting of information made available in 
the package inserts by the manufacturers would help scien-
tists, patients, pharmacists, and medical professionals clearly 
understand advantages and limitations of these products and 
make informed choices. Furthermore, different biopharma-
ceutical companies often use different methods for collecting 
toxicology, PK, immunogenicity, and other data.192,193 

Regulatory agencies have also updated approval policies sev-
eral times over the years as our understanding of antibody- 
based biotherapeutics improved.194–196 Due to these changes, 
it is often difficult to make direct comparisons among mar-
keted antibody-based biotherapeutics.197–199

Despite the above limitations, it is feasible to construct a 
profile of a therapeutic antibody drug candidate most likely to 
succeed in product and clinical developments and win regula-
tory approvals. It is likely to be a full-length human or huma-
nized IgG1 kappa mAb with a liquid formulation in mildly 
acidic conditions suitable for i.v. or s.c. administration. The 
formulation would consist of a histidine buffer, contain sucrose 
as a stabilizer, and polysorbate 80 as a surfactant. Depending on 
API concentration, the formulation may also contain viscosity- 
reducing excipients,200,201 and sodium chloride as a tonicity 
modifier if needed. It must also be emphasized here that dis-
covery, development, and regulation of antibody-based biother-
apeutics are inherently multi-factorial, and decisions are often 
made on a case-to-case basis after critical evaluations of benefits 
versus risks involved. Therefore, this profile should be taken as 
advisory rather than as a requirement.

While this report has focused on the trends gleaned from 
drug product information contained in package inserts and 
other regulatory documents, it has not escaped our attention 
that molecular sequences and structures of active ingredients 
play crucial roles in their discovery, development, and clinical 
approval. In-silico tools can also be used during discovery, 
design, and development of antibody-based biotherapeutics.202 

For example, computed physiochemical descriptors could 
potentially be used to assess if a given antibody-based drug 
candidate is like currently marketed ones. Ahmed et al. pre-
viously showed, through sequence and structural analysis, that 
non-redundant physicochemical descriptors can be used to 
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flag Fv regions of antibodies for medicine-likeness.203 There 
are numerous ways computer-aided drug design can contri-
bute to the marketed antibody-based biotherapeutic 
landscape,204 including sequence analysis (for example, see 
Figures S3 (a, b)),205 structure analysis,206 and machine 
learning.207

Data sources and methods

Data were compiled from several resources provided by the 
FDA, EMA, and WHO. Additional resources from The Antibody 
Society,208 ClinicalTrials.gov,209 The International Immunogenetics 
Information System (IMGT),210,211 and The Therapeutic Antibody 
Database212 were used to verify the sequences and provide addi-
tional information. Table 1 shows an example of information 
collected from publicly available resources, with the full table avail-
able as a supplement (Table S1), while Table 5 shows examples of 
where and how these data were collected.

In the case of each marketed antibody, percent humanness 
values are the sequence identity values calculated for heavy and 
light chains, individually, by aligning them to their respective 
v-genes in the closest human germlines identified by 
IMGT,210,211 as implemented in IgBLAST version 1.15.213 

Note that the sequence alignments were performed using the 
amino acid sequences and not the nucleotide ones. 
Furthermore, HCDR3s were not included in our calculations 
of percent humanness.

Values of the structure-based pI for the Fv portions of the 
antibodies (pIFv3D) were calculated by building their homol-
ogy-based molecular models using Molecular Operating 
Environment (MOE) version 2022.02214 with the default 
Amber10: EHT force field. Solvation was included using the 
Generalized Born implicit model with internal and external 
dielectric values set, respectively, to 4 and 80 and the non- 
bonded interaction tapered to zero between 10 and 12 Å. C- 
termini of the Fv light and heavy chains were amidated to 
neutralize charges on them. All structures were energy mini-
mized below a 10−6 kcal/mol/Å2 root mean square gradient 
threshold. The protein property pIFv3D was calculated using 
energy-minimized homology models.

Equation (1) was used to predict the half-life from the 
observed clearance and distribution of the full-length anti-
body-based biotherapeutics. The predicted values are com-
puted for all 89 antibodies (Table S1) and divided into 
specific groups based on their isotypes, API concentrations, 
presence/absence of salt in their formulations and routes of 
administration, wherever sufficient data were available 
(Table 4). 

Half-lifeðhoursÞ¼ 0:693
Volume of DistributionðLÞ

ClearanceðL=hourÞ
(1) 

Abbreviations

ADA Anti-Drug Antibody
ADC Antibody-Drug Conjugate
API Active Pharmaceutical Ingredient

BiTE Bispecific T-cell Engager
CDR Complementarity Determining Region
CH Constant region of the heavy chain
CL Constant region of the light chain
EC European Commission
EMA European Medicines Agency
EUA Emergency Use Authorization
Fab Fragment antigen binding
Fv Fragment variable
FDA U.S. Food and Drug Administration
i.v. Intravenous
IgG Immunoglobulin G
IgM Immunoglobulin M
IGMT The international ImMunoGeneTics information system
INN International Nonproprietary Name
mAb Monoclonal antibody
MM Multiple Myeloma
NSCLC Non-small Cell Lung Cancer
PD Pharmacodynamics
PH20 Recombinant human PH20 hyaluronidase (or rHuPH20)
PJIA Polyarticular Juvenile Idiopathic Arthritis
PK Pharmacokinetics
PS20 Polysorbate 20
PS80 Polysorbate 80
PsA Psoriatic Arthritis
QW Once a Week
RA Rheumatoid Arthritis
s.c. Subcutaneous
scFv Single-chain fragment variable
sdAb Single-domain antibody
SJIA Systematic Juvenile Idiopathic Arthritis
TNBC Triple Negative Breast Cancer
VH Variable region of the heavy chain
VL Variable region of the light chain
WHO World Health Organization
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