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Abstract

Training end-to-end unrolled iterative neural networks for SPECT image reconstruction requires a 

memory-efficient forward-backward projector for efficient backpropagation. This paper describes 

an open-source, high performance Julia implementation of a SPECT forward-backward projector 

that supports memory-efficient backpropagation with an exact adjoint. Our Julia projector uses 

only ~5% of the memory of an existing Matlab-based projector. We compare unrolling a CNN-

regularized expectation-maximization (EM) algorithm with end-to-end training using our Julia 

projector with other training methods such as gradient truncation (ignoring gradients involving 

the projector) and sequential training, using XCAT phantoms and virtual patient (VP) phantoms 

generated from SIMIND Monte Carlo (MC) simulations. Simulation results with two different 

radionuclides (90Y and 177Lu) show that: 1) For 177Lu XCAT phantoms and 90Y VP phantoms, 

training unrolled EM algorithm in end-to-end fashion with our Julia projector yields the best 

reconstruction quality compared to other training methods and OSEM, both qualitatively and 

quantitatively. For VP phantoms with 177Lu radionuclide, the reconstructed images using end-to-

end training are in higher quality than using sequential training and OSEM, but are comparable 

with using gradient truncation. We also find there exists a trade-off between computational cost 

and reconstruction accuracy for different training methods. End-to-end training has the highest 

accuracy because the correct gradient is used in backpropagation; sequential training yields worse 

reconstruction accuracy, but is significantly faster and uses much less memory.
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I. INTRODUCTION

Single photon emission computerized tomography (SPECT) is a nuclear medicine technique 

that images spatial distributions of radioisotopes and plays a pivotal role in clinical 

diagnosis, and in estimating radiation-absorbed doses in nuclear medicine therapies [1, 

2]. For example, quantitative SPECT imaging with Lutetium-177 (177Lu) in targeted 

radionuclide therapy (such as 177Lu DOTATATE) is important in determining dose-response 

relationships in tumors and holds great potential for dosimetry-based individualized 

treatment. Additionally, quantitative Yttrium-90 (90Y) bremsstrahlung SPECT imaging is 

valuable for safety assessment and absorbed dose verification after 90Y radioembolization 

in liver malignancies. However, SPECT imaging suffers from noise and limited spatial 

resolution due to the collimator response; the resulting reconstruction problem is hence 

ill-posed and challenging to solve.

Numerous reconstruction algorithms have been proposed for SPECT reconstruction, of 

which the most popular ones are model-based image reconstruction algorithms such 

as maximum likelihood expectation maximization (MLEM) [3] and ordered-subset EM 

(OSEM) [4]. These methods first construct a mathematical model for the SPECT imaging 

system, then maximize the (log-)likelihood for a Poisson noise model. Although MLEM 

and OSEM have achieved great success in clinical use, they have a trade-off between 

recovery and noise. To address that trade-off, researchers have proposed alternatives such as 

regularization-based (or maximum a posteriori in Bayesian setting) reconstruction methods 

[5–7]. For example, Panin et al. [5] proposed total variation (TV) regularization for 

SPECT reconstruction. However, TV regularization may lead to “blocky” images and over-

smoothing the edges. One way to overcome blurring edges is to incorporate anatomical 

boundary side information from CT images [8], but that method requires accurate organ 

segmentation. Chun et al. [9] used non-local means (NLM) filters that exploit the self-

similarity of patches in images for regularization, yet that method is computationally 

expensive and hence less practical. In general, choosing an appropriate regularizer can be 

challenging; moreover, these traditional regularized algorithms may lack generalizability to 

images that do not follow assumptions made by the prior.

With the recent success of deep learning (DL) and especially convolutional neural networks 

(CNN), DL methods have been reported to outperform conventional algorithms in many 

medical imaging applications such as in MRI [10–12], CT [13, 14] and PET reconstruction 

[15–17]. However, fewer DL approaches to SPECT reconstruction appear in the literature. 

Reference [18] proposed “SPECTnet” with a two-step training strategy that learns the 

transformation from projection space to image space as an alternative to the traditional 

OSEM algorithm. Reference [19] also proposed a DL method that can directly reconstruct 

the activity image from the SPECT projection data, even with reduced view angles. 

Reference [20] trained a neural network that maps non-attenuation-corrected SPECT images 

to those corrected by CT images as a post-processing procedure to enhance the reconstructed 

image quality.

Though promising results were reported with these methods, most of them worked in 2D 

whereas 3D is used in practice [18, 19]. Furthermore, there has yet to be an investigation of 

Li et al. Page 2

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2023 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



end-to-end training of CNN regularizers that are embedded in unrolled SPECT iterative 

statistical algorithms such as CNN-regularized EM. End-to-end training is popular in 

machine learning and other medical imaging fields such as MRI image reconstruction [21], 

and is reported to meet data-driven regularization for inverse problems [22]. But for SPECT 

image reconstruction, end-to-end training is nontrivial to implement due to its complicated 

system matrix. Alternative training methods have been proposed, such as sequential training 

[23–26] and gradient truncation [27]; these methods were shown to be effective, though 

they could yield sub-optimal reconstruction results due to approximations to the training loss 

gradient. Another approach is to construct a neural network that also models the SPECT 

system matrix, like in “SPECTnet” [18], but this approach lacks interpretability compared to 

algorithms like unrolled CNN-regularized EM, i.e., if one sets the regularization parameter 

to zero, then the latter becomes identical to the traditional EM.

As an end-to-end training approach has not yet been investigated for SPECT image 

reconstruction, this paper first describes a SPECT forward-backward projector written in the 

open-source and high performance Julia language that enables efficient auto-differentiation. 

Then we compare the end-to-end training approach with other non-end-to-end training 

methods.

The structure of this article is as follows. Section II describes the implementation of 

our Julia projector and discusses end-to-end training and other training methods for the 

unrolled EM algorithm. Section III compares the accuracy, speed and memory use of our 

Julia projector with Monte Carlo (MC) and a Matlab-based projector, and then compares 

reconstructed images with end-to-end training versus sequential training and gradient 

truncation on different datasets (XCAT and VP phantoms), using qualitative and quantitative 

evaluation metrics. Section IV and V conclude this paper and discuss future works.

Notation:

Bold upper/lower case letters (e.g., A, x, y, b) denote matrices and column vectors, 

respectively. Italics (e.g., μ, y, b) denote scalars. yi and bi denote the ith element in vector 

y and b, respectively. ℝN and ℂN denote N-dimensional real/complex normed vector space, 

respectively. (·)* denotes the complex conjugate and (·)′ denotes Hermitian transpose.

II. METHODS

This section summarizes the Julia SPECT projector, a DL-based image reconstruction 

method as well as the dataset used in experiments and other experiment setups.

A. Implementation of Julia SPECT projector

Our Julia implementation of SPECT projector is based on [28], modeling parallel-beam 

collimator geometries. Our projector also accounts for attenuation and depth-dependent 

collimator response. We did not model the scattering events like Compton scatter and 

coherent scatter of high energy gamma rays within the object. Fig. 1 illustrates the SPECT 

imaging system modeled in this paper.
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For the forward projector, at each rotation angle, we first rotate the 3D image matrix 

x ∈ ℝnx × ny × nz according to the third dimension by its projection angle θl (typically 

2π l − 1 /nview ; l denotes the view index, which ranges from 1 to nview and nview denotes the 

total number of projection views. We implemented and compared (results shown in Section 

III) both bilinear interpolation and 3-pass 1D linear interpolation [29] with zero padding 

boundary condition for image rotation. For attenuation correction, we first rotated the 3D 

attenuation map μ ∈ ℝnx × ny × nz (obtained from transmission tomography) also by θl, yielding a 

rotated 3D array μ i, j, k; l , where i, j, k denotes the 3D voxel coordinate. Assuming ny is the 

index corresponding to the closest plane of x to the detector, then we model the accumulated 

attenuation factor μ‾ for each view angle as

μ‾(i, j, k; l) = e−Δy(1
2μ(i, j, k; l) + s = j + 1

ny
μ(i, s, k; l) , (1)

where Δy denotes the voxel size for the (first and) second coordinate. Next, for each y
slice (an x, z  plane for a given j index) of the rotated and attenuated image, we convolve 

with the appropriate slice of the depth-dependent point spread function p ∈ ℝpx × pz × ny × nview

using a 2D fast Fourier transform (FFT). Here we use replicate padding for both the i
and k coordinates. The view-dependent PSF accommodates non-circular orbits. Finally, the 

forward projection operation simply sums the rotated, blurred and attenuated activity image 

x along the second coordinate j. Algorithm 1 summarizes the forward projector, where ⊛
denotes a 2D convolution operation.
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All of these steps are linear, so hereafter, we use A to denote the forward projector, though it 

is not stored explicitly as a matrix. As each step is linear, each step has an adjoint operation. 

So the backward projector A′ is the adjoint of A that satisfies

⟨Ax, y⟩ = ⟨x, A′y⟩, ∀x, y . (2)

The exact adjoint of (discrete) image rotation is not simply a discrete rotation of the image 

by −θl. Instead, one should also consider the adjoint of linear interpolation. For the adjoint of 

convolution, we assume the point spread function is symmetric along coordinates i and k so 

that the adjoint convolution operator is just the forward convoluation operator along with the 

adjoint of replicate padding. Algorithm 2 summarizes the SPECT backward projector.

To accelerate the for-loop process, we used multi-threading to enable projecting or 

backprojecting multiple angles at the same time. To reduce memory use, we pre-allocated 

necessary arrays and used fully in-place operations inside the for-loop in forward and 

backward projection. To further accelerate auto-differentiation, we customized the chain 

rule to use the linear operator A or A′ as the Jacobian when calling Ax or A′y
during backpropagation. We implemented and tested our projector in Julia v1.6; we also 

implemented a GPU version in Julia (using CUDA.jl) that runs efficiently on a GPU by 

eliminating explicit scalar indexing. For completeness, we also provide a PyTorch version 

but without multi-threading support, in-place operations nor the exact adjoint of image 

rotation.
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B. Unrolled CNN-regularized EM algorithm

Model-based image reconstruction algorithms seek to estimate image x ∈ ℝN from noisy 

measurements y ∈ ℝM with imaging model A ∈ ℝM × N. In SPECT reconstruction, the 

measurements y are often modeled by

y ∼ Poisson(Ax + r−), (3)

where r− ∈ ℝM denotes the vector of means of background events such as scatters. 

Combining regularization with the Poisson negative log-likelihood yields the following 

optimization problem:

x̂ = arg min
x ≥ 0

f(x) + R(x),

f(x) ≜ 1′(Ax + r−) − y′log(Ax + r−),
(4)

where f x  is the data fidelity term and R x  denotes the regularizer. For deep learning 

regularizers, we follow [23] and formulate R x  as

R(x) ≜ β
2 ∥ x − gθ x ∥2

2, (5)

where β denotes the regularization parameter; gθ denotes a neural network with parameter θ
that is trained to learn to enhance the image quality.

Based on (4), a natural reconstruction approach is to apply variable splitting with u = gθ x
and then alternatively update the images x and u as follows

uk + 1 = gθ xk ,
xk + 1 = arg min

x ≥ 0
f(x) + β

2∥ x − uk + 1 ∥2
2, (6)

where subscript k denotes the iteration number. To minimize (6), we used the EM-surrogate 

from [30] as summarized in [23], leading to the following vector update:

x̂k = 1
2β −d(β) + d(β)2 + 4βxk ⊙ e xk , (7)

d(β) ≜ A′1 − βuk, e xk ≜ A′(y ⊘ (Axk + r−)), (8)

where ⊙ and ⊘ denote element-wise multiplication and division, respectively. To compute 

xk + 1, one must substitue x̂k back into e ⋅  in (8), and repeat. Hereafter, we refer to (6) 

as one outer iteration and (7) as one inner EM iteration. Algorithm 3 summarizes the 

CNN-regularized EM algorithm.
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To train gθ, the most direct way is to unroll Algorithm 3 and train end-to-end with an 

appropriate target; this supervised approach requires backpropagating through the SPECT 

system model, which is not trivial to implement with previous SPECT projection tools 

due to the memory issues. Non-end-to-end training methods, e.g., sequential training [23], 

first train uk by the target and then plug into (7) at each iteration. This method must use 

non-shared weights for the neural network per each iteration. Another method is gradient 

truncation [27] that ignores the gradient involving the system matrix A and its adjoint A′

during backpropagation. Both of these training methods, though reported to be effective, 

may be sub-optimal because they approximate the overall training loss gradients.

C. Phantom dataset and simulation setup

We used simulated XCAT phantoms [31] and virtual patient phantoms for experiment results 

presented in Section III. Each XCAT phantom was simulated to approximately follow the 

activity distributions observed when imaging patients after 177Lu DOTATATE therapy. We 

set the image size to 128×128×80 with voxel size 4.8×4.8×4.8mm3. Tumors of various 

shapes and sizes (5–100mL) were located in the liver as is typical for patients undergoing 

this therapy.

For virtual patient phantoms, we consider two radionuclides: 177Lu and 90Y. For 177Lu 

phantoms, the true images were from PET/CT scans of patients who underwent diagnostic 
68Ga DOTATATE PET/CT imaging (Siemens Biograph mCT) to determine eligibility for 
177Lu DOTATATE therapy. The 68Ga DOTATATE distribution in patients is expected to 

be similar to 177Lu and hence can provide a reasonable approximation to the activity 

distribution of 177Lu in patients for DL training purposes but at higher resolution. The 

PET images had size 200 × 200 × 577 and voxel size 4.073 × 4.073 × 2 mm3 and were 

obtained from our Siemens mCT (resolution is 5–6 mm FWHM [32]) and reconstructed 

using the standard clinic protocol: 3D OSEM with three iterations, 21 subsets, including 

resolution recovery, time-of-flight, and a 5mm (FWHM) Gaussian post-reconstruction filter. 
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The density maps were also generated using the experimentally derived CT-to-density 

calibration curve.

For 90Y phantoms, the true activity images were reconstructed (using a previously 

implemented 3D OSEM reconstruction with CNN-based scatter estimation [33]) from 90Y 

SPECT/CT scans of patients who underwent 90Y microsphere radioembolization in our 

clinic.

In total, we simulated 4 XCAT phantoms, 8 177Lu and 8 90Y virtual patient phantoms. We 

repeated all of our experiments 3 times with different noise realizations. All image data have 

University of Michigan Institutional Review Board (IRB) approval for retrospective analysis. 

For all simulated phantoms, we selected the center slices covering the lung, liver and kidney 

corresponding to SPECT axial FOV (39cm).

Then we ran SIMIND Monte Carlo (MC) program [34] to generate the radial position of 

SPECT camera for 128 view angles. The SIMIND model parameters for 177Lu were based 

on 177Lu DOTATATE patient imaging in our clinic (Siemens Intevo with medium energy 

collimators, a 5/8” crystal, a 20% photopeak window at 208 keV, and two adjacent 10% 

scatter windows) [35]. For 90Y, a high-energy collimator, 5/8” crystal, and a 105 to 195 keV 

acquisition energy window was modeled as in our clinical protocol for 90Y bremsstrahlung 

imaging. Next we approximated the point spread function for 177Lu and 90Y by simulating 

point source at 6 different distances (20, 50, 100, 150, 200, 250mm) and then fitting a 2D 

Gaussian distribution at each distance. The camera orbit was assumed to be non-circular 

(auto-contouring mode in clinical systems) with the minimum distance between the phantom 

surface and detector set at 1 cm.

III. EXPERIMENT RESULTS

A. Comparison of projectors

We used an XCAT phantom to evaluate the accuracy and memory-efficiency of our Julia 

projector.

1) Accuracy: We first compared primary (no scatter events included) projection images 

and profiles generated by our Julia projector with those from MC simulation and the 

Matlab projector. For results of MC, we ran two SIMIND simulations for 1 billion histories 

using 177Lu and 90Y as radionuclide source, respectively. Each simulation took about 10 

hours using a 3.2 GHz 16-Core Intel Xeon W CPU on MacOS. The Matlab projector was 

originally implemented and compiled in C99 and then wrapped by a Matlab MEX file as 

a part of the Michigan Image Reconstruction Toolbox (MIRT) [36]. The physics modeling 

of the Matlab projector was the same as our Julia projector except that it only implemented 

3-pass 1D linear interpolation for image rotation. Unlike the memory-efficient Julia version, 

the Matlab version pre-rotates the patient attenuation map for all projection views. This 

strategy saves time during EM iterations for a single patient, but uses considerable memory 

and scales poorly for DL training approaches involving multiple patient datasets.
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Fig. 2 compared the primary projections generated by different methods without adding 

Poisson noise. Visualizations of image slices and line profiles illustrate that our Julia 

projector (with rotation based on 3-pass 1D interpolation) is almost identical to the Matlab 

projector, while both give a reasonably good approximation to the MC. Using MC as 

reference, the NRMSE of Julia1D/Matlab/Julia2D projectors were 7.9%/7.9%/7.6% for 
177Lu, respectively; while the NRMSE were 8.2%/8.2%/7.9% for 90Y. We also compared 

the OSEM reconstructed images using Julia (2D) and Matlab projectors, where we did not 

observe notable difference, as shown in Fig. 3. The overall NRMSD between Matlab and 

Julia (2D) projector for the whole 3D OSEM reconstructed image ranged from 2.5% to 2.8% 

across 3 noise realizations.

2) Speed and memory use: We compared the memory use and compute times 

between our Julia projector (with 2D bilinear interpolation) and the Matlab projector using 

different number of threads when projecting a 128 × 128 × 80 image. Fig. 4 shows that our 

Julia projector has comparable computing time for a single projection with 128 view angles 

using different number of CPU threads, while using only a very small fraction of memory 

(~5%) and pre-allocation time (~1%) compared to the Matlab projector.

3) Adjoint of projector: We generated a set of random numbers to verify that the 

backprojector is an exact adjoint of the forward projector. Specifically, we generated the 

system matrix of size (8 × 6 × 7) × (8 × 8 × 6) using random (nonnegative) attenuation maps 

and random (symmetric) PSF. Fig. 5 compares the transpose of the forward projector to the 

backprojector. As shown in Fig. 5 (d), the Frobenius norm error of our backprojector agrees 

well with the regular transpose within an accuracy of 10−6 across 100 different realizations, 

as expected for 32-bit floating point calculations. A more comprehensive comparison is 

available in the code tests at https://github.com/JuliaImageRecon/SPECTrecon.jl.

B. Comparison of CNN-regularized EM using different training methods

This section compares end-to-end training with other training methods that have been used 

previously for SPECT image reconstruction, namely the gradient truncation and sequential 

training. The training targets were simulated activity maps on 177Lu XCAT phantoms and 
177Lu & 90Y virtual patient phantoms. We implemented an unrolled CNN-regularized EM 

algorithm with 3 outer iterations, each of which had one inner iteration. Only 3 outer 

iterations were used (compared to previous works such as [27]) because we used the 

16-iteration 4-subset OSEM reconstructed image as a warm start for all reconstruction 

algorithms. We set the regularization parameter (defined in (5)) as β = 1. The regularizer 

was a 3-layer 3D CNN, where each layer had a 3 × 3 × 3 convolutional filter followed by 

ReLU activation (except the last layer), and hence had 657 trainable parameters in total. 

We added the input image xk to the output of CNN following the common residual learning 

strategy [37]. End-to-end training and gradient truncation could also work with a shared 

weights CNN approach, but were not included here for fair comparison purpose, since the 

sequential training only works with non-shared weights CNN. All the neural networks were 

initialized with the same parameters (drawn from a Gaussian distribution) and trained on 

an Nvidia RTX 3090 GPU for 600 epochs by minimizing mean square error (loss) using 

AdamW optimizer [38] with a constant learning rate 0.002.
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Besides line profiles for qualitative comparison, we also used mean activity error (MAE) and 

normalized root mean square error (NRMSE) as quantitative evaluation metrics, where MAE 

is defined as

MAE ≜ 1 −
1
np j ∈ VOI x̂[j]

1
np j ∈ VOI xtrue[j]

× 100%, (9)

where np denotes number of voxels in the voxels of interest (VOI). x̂ and xtrue denote the 

reconstructed image and the true activity map, respectively. The NRMSE is defined as

NRMSE ≜
1
np j ∈ VOI x̂ j − xtrue j 2

1
np j ∈ VOI xtrue j 2

× 100% . (10)

All activity images were scaled by a factor that normalized the whole activity to 1 MBq per 

field of view (FOV) before comparison. All quantitative results (Table I, Table II, Table III) 

were averaged across 3 different noise realizations.

1) Loss function, computing time and memory use: We compared the training 

and validation loss using sequential training, gradient truncation and end-to-end training. We 

ran 1800 epochs for each method on 177Lu XCAT phantoms with the AdamW optimizer 

[38]. Fig. 6 shows that the end-to-end training achieved the lowest validation loss while it 

had comparable training loss with the gradient truncation (which became lower at around 

1400 epochs). For visualization, we concatenated the first 600 epochs of each outer iteration 

for the sequential training method, as shown by the spikes in sequential training curve. We 

ran 600 epochs for each algorithm for subsequent experiments because the validation losses 

were pretty much settled at around 600 epochs.

We also compared the computing time of each training method. We found that for MLEM 

with 3 outer iterations and 1 inner iteration, where each outer iteration had a 3-layer 

convolutional neural network, sequential training took 48.6 seconds to complete a training 

epoch; while gradient truncation took 327.1 seconds and end-to-end training took 336.3 

seconds. Under the same experiment settings, we found sequential training took less than 

1GB of memory to backpropagate through one outer iteration; compared to approximately 

6GB used in gradient truncation and end-to-end training that backpropagated through three 

outer iterations.

2) Results on 177Lu XCAT phantoms: We evaluated the CNN-regularized EM 

algorithm with three training methods on 4 177Lu XCAT phantoms we simulated. We 

generated the primary projections by calling forward operation of our Julia projector and 

then added uniform scatters with 10% of the primary counts before adding Poisson noise. Of 

the 4 phantoms, we used 2 for training, 1 for validation and 1 for testing.

Fig. 7 shows that the end-to-end training yielded incrementally better reconstruction of the 

tumor in the liver center over OSEM, sequential training and gradient truncation. Fig. 7 (g) 
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also illustrates this improvement by the line profile across the tumor. For the tumor at the 

top-right corner of the liver, all methods had comparable performance; this can be attributed 

to the small tumor size (5mL) for which partial volume (PV) effects associated with SPECT 

resolution are higher; and hence its recovery is even more challenging.

Table I demonstrates that the CNN-regularized EM algorithm with all training methods 

(sequential training, gradient truncation and end-to-end training) consistently had lower 

reconstruction error than the OSEM method. Among all training methods, the proposed 

end-to-end training had lower MAE over nearly all lesions and organs than other training 

methods. The relative reduction in MAE by the end-to-end training was up to 32% (for 

lesion 3) compared to sequential training. End-to-end training also had lower NRMSE for 

most lesions and organs, and was otherwise comparable to other training methods. The 

relative improvement compared to sequential training was up to 29% (for lesion 3).

3) Results on 177Lu VP phantoms: Next we present test results on 8 177Lu virtual 

patient phantoms. Out of 8 177Lu phantoms, we used 4 for training, 1 for validation and 3 for 

testing.

Fig. 8 shows that the improvement of all learning-based methods was limited compared 

to OSEM, which was also evident from line profiles. For example, in Fig. 8 (g), where 

the line profile was drawn on a small tumor. We found that OSEM yielded a fairly 

accurate estimate already, and we did not observe as much improvement as we had seen 

on 177Lu XCAT phantoms for end-to-end training or even learning-based methods. Table II 

also demonstrates this observation. The OSEM method had substantially lower MAE and 

NRMSE compared to the errors shown for 177Lu XCAT data (cf Table I). Moreover, the 

end-to-end training method had comparable accuracy with gradient truncation. For example, 

gradient truncation was the best on lesion, liver and lung in terms of MAE; end-to-end 

training had the lowest NRMSE on lesion, liver, lung, kidney and spleen. Perhaps this could 

be due to the loss function used for training, i.e., MSE loss was used in our experiments so 

that end-to-end training might yield lower NRMSE. A more comprehensive study would be 

needed to verify this conjecture.

4) Results on 90Y VP phantoms: We also tested with 8 90Y virtual patient phantoms. 

Of the 8 phantoms, we used 4 for training, 1 for validation and 3 for testing.

Fig. 9 compares the reconstruction quality between OSEM and CNN-regularized EM 

algorithm using sequential training, gradient truncation and end-to-end training. Visually, 

the end-to-end training reconstruction yields the closest estimate to the true activity. This is 

also evident through the line profiles (subfigure (m) and (n)) across the tumor and the liver.

Table III reports the mean activity error (MAE) and NRMSE for lesions and organs 

across all testing phantoms. Similar to the qualitative assessment (Fig. 9), the end-to-end 

training also produced lower errors consistently across all testing lesions and organs. 

For instance, compared to sequential training/gradient truncation, the end-to-end training 

relatively reduced MAE on average by 8.7%/7.2%, 18.5%/11.0% and 24.7%/16.1% for 

lesion, healthy liver and lung, respectively. The NRMSE was also relatively reduced by 
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6.1%/3.8%, 7.2%/4.1% and 6.1%/3.0% for lesion, healthy liver and lung, respectively. All 

learning-based methods consistently had lower errors than the OSEM method.

C. Results at intermediate iterations

One potential problem associated with end-to-end training (and gradient truncation) is that 

the results at intermediate iterations could be unfavorable, because they are not directly 

trained by the targets [39]. Here, we examined the images at intermediate iterations and did 

not observe such problems as illustrated in Fig. 10, where images at each iteration gave a 

fairly accurate estimate to the true activity. Perhaps under the shallow-network setting (e.g., 

3 layers used here, with only 3 outer iterations), the network for each iteration was less 

likely to overfit the training data. Another reason could be due to the non-shared weights 

setting so that the network could learn suitable weights for each iteration.

IV. DISCUSSION

Training end-to-end CNN-based iterative algorithms for SPECT image reconstruction 

requires memory efficient forward-backward projectors so that backpropagation can be less 

computationally expensive. This work implemented a new SPECT projector using Julia 

that is an open-source, high performance and cross-platform language. With comparisons 

between Monte Carlo (MC) and a Matlab-based projector, we verified the accuracy, speed 

and memory-efficiency of our Julia projector. These favorable properties support efficient 

backpropagation when training end-to-end unrolled iterative reconstruction algorithms. Most 

modern DL algorithms process multiple data batches in parallel, so memory efficiency is of 

great importance for efficient training and testing neural networks. To that extent, our Julia 

projector is much more suitable than the Matlab-based projector.

We used the CNN-regularized EM algorithm as an example to test end-to-end training 

and other training methods on different datasets including 177Lu XCAT phantoms, 177Lu 

and 90Y virtual patient phantoms. Simulation results demonstrated that end-to-end training 

improved reconstruction quality on these datasets. For example, end-to-end training 

improved the MAE of lesion/liver in 90Y phantoms by 8.7%/16.6% and 7.2%/12.4% 

compared to sequential training and gradient truncation. This improvement could be 

attributed to the correct gradient was used in backpropagation. Although the end-to-end 

training yielded the lowest reconstruction error on both 177Lu XCAT phantoms and 90Y 

VP phantoms, the reconstruction errors on 177Lu VP phantoms were comparable with the 

gradient truncation. This could be due to the choice of loss functions and CNN architectures 

in the EM algorithm, which we will explore in the future. Also we noticed that the recovery 

of the nonuniform activity in VP phantoms was generally higher than activity for the XCAT 

phantom (MAE reported in Table I and Table II) because the assigned “true” activities at 

the boundaries of organs did not drop sharply, and instead, were blurred out. And therefore 

the OSEM algorithm was fairly competitive as reported in Table II; in 90Y VP results, 

the OSEM performed worse than learning-based methods, which could be attributed to the 

high downscatter associated with 90Y SPECT due to the continuous bremsstrahlung energy 

spectrum. We found all learning methods did not work very well for small tumors (e.g., 

5mL), potentially due to the worse PV effect. Reducing PV effects in SPECT images has 
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been studied extensively [40, 41]. Recently, Xie et al. [42] trained a deep neural network 

to learn the mapping between PV-corrected and non-corrected images. Incorporating their 

network into our reconstruction model using transfer learning is an interesting future 

direction.

Although promising results were shown in previous sections, this work has several 

limitations. First, we did not test numerous hyperparameters and CNN architectures, nor 

with a wide variety of phantoms and patients for different radionuclides therapies. Secondly, 

our experiments used OSEM images as warm start to the CNN-regularized EM algorithm, 

where the OSEM itself was initialized with a uniform image. We did not investigate using 

other images such as uniform images as the start of the EM algorithm. Using a uniform 

image to initialize the network would likely require far more network iterations which would 

be very expensive computationally and therefore impractical. Additionally, this paper used 

fixed regularization parameter (β in (5)) rather than declaring β as a trainable parameter. 

We compared different methods for backpropagation, which requires using the same cost 

function (4) for a fair comparison. If one set β as a trainable parameter, then different 

methods could learn different β values, leading to different cost functions. However, the 

investigation of trainable β values is an interesting future work. Another limitation is that 

we did not investigate more advanced parallel computing methods such as distributed 

computing using multiple computers to further accelerate our Julia implementation of 

SPECT forward-backward projector. Such acceleration is feasible using existing Julia 

packages if needed. The compute times reported in Fig. 4 show that the method needs a 

few seconds per 128 projection views using 8 threads, which is already feasible for scientific 

investigation.

We also found there exists a trade-off between computational cost and reconstruction 

accuracy for different training methods. End-to-end training yielded reconstruction results 

with the lowest MAE and NRMSE because the correct gradient was used during 

backpropagation. Sequential training yielded worse results, but it was significantly faster 

and more memory efficient than the end-to-end training method. It is notably faster because 

it splits the whole training process and trains each of neural networks separately, and 

its backpropagation does not involve terms associated with the MLEM algorithm, so 

sequential training is actually equivalent to training that neural network alone without 

considering MLEM. Sequential training also used much less memory because the training 

was performed iteration by iteration, one network by one network, and hence the memory 

limitation did not depend on the number of unrolled iterations in the MLEM algorithm.

V. CONCLUSION

This paper presents a Julia implementation of backpropagatable SPECT forward-backward 

projector that is accurate, fast and memory-efficient compared to Monte Carlo (MC) and a 

previously developed analytical Matlab-based projector. Simulation results based on 177Lu 

XCAT phantoms, 90Y and 177Lu virtual patient (VP) phantoms demonstrate that: 1) End-to-

end training yielded reconstruction images with the lowest MAE and NRMSE when tested 

on XCAT phantoms and 90Y VP phantoms, compared to other training methods (such 

as sequential training and gradient truncation) and OSEM. 2) For 177Lu VP phantoms, 
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end-to-end training method yielded better results than sequential training and OSEM; but 

was rather comparable with gradient truncation. We also found there exists a trade-off 

between computational cost and reconstruction accuracy in different training methods (e.g., 

end-to-end training and sequential training). These results indicate that end-to-end training, 

which is feasible with our developed Julia projector, is worth investigating for SPECT 

reconstruction.
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Fig. 1: 
SPECT imaging model for parallel-beam collimators, with attenuation and depth-dependent 

collimator point spread response.
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Fig. 2: 
Primary (scatter-free) projections generated by MC simulation, Matlab projector and our 

Julia projector with 3-pass 1D linear interpolation and 2D bilinear interpolation for image 

rotation, using 177Lu and 90Y radionuclides. Subfigure (i)-(l) show line profiles across 

tumors as shown in subfigure (a) and (e), respectively. MC projections were scaled to have 

the same total activities as the Matlab projector per field-of-view.
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Fig. 3: 
Comparison of one slice of the 128 × 128 × 80 OSEM reconstruction (16 iterations, 4 

subsets) using Matlab and Julia (2D interpolation) projectors.
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Fig. 4: 
Time and memory comparison between Matlab projector and our Julia projector for 

projecting 128 view angles of a 128 × 128 × 80 image. “time pre” denotes the time cost 

for pre-allocating necessary arrays before projection; “time proj” denotes the time cost for 

a single projection; “mem” denotes the memory usage. All methods were tested on MacOS 

with a 3.8 GHz 8-Core Intel Core i7 CPU.
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Fig. 5: 
Accuracy of the backprojector. In subfigure (d), A′ denotes regular transpose of A; Ab

denotes the backprojector.
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Fig. 6: 
Training and validation loss of three backpropagation methods.
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Fig. 7: 
Qualitative comparison of different training methods and OSEM tested on 177Lu XCAT 

phantoms. Subfigure (a)-(c): true activity map, attenuation map and OSEM reconstruction 

(16 iterations and 4 subsets); (d)-(f): regularized EM using sequential training, gradient 

truncation, end-to-end training, respectively; (g) and (h): line profiles in (a).
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Fig. 8: 
Qualitative comparison of different training methods and OSEM tested on 177Lu VP 

phantoms. Subfigure (g) and (h) correspond to line profiles marked in (a).
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Fig. 9: 
Qualitative comparison of different training methods and OSEM tested on 90Y VP 

phantoms. Subfigure (a)-(f) and (g)-(l) show two slices from two testing phantoms. 

Subfigure (m) and (n) correspond to line profiles in (a) and (g), respectively.
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Fig. 10: 
Visualization of intermediate iteration results of different training methods. Subfigure (d)-

(f): sequential training; (g)-(i): gradient truncation; (j)-(l): end-to-end training.
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TABLE I:

The average(± standard deviation) MAE(%) and NRMSE(%) across 3 noise realizations of 177Lu XCAT 

phantoms.

MAE(%)

Lesion/Organ OSEM Sequential Truncation End2end

Lesion 1 (67mL) 12.5 ± 0.6 6.7 ± 1.8 2.8 ± 0.9 2.1 ± 1.1

Lesion 2 (10mL) 20.2 ± 0.9 11.5 ± 4.1 10.8 ± 0.9 9.7 ± 1.1

Lesion 3 (9mL) 25.6 ± 0.6 18.8 ± 0.4 15.2 ± 0.9 12.8 ± 1.0

Lesion 4 (5mL) 43.0 ± 0.6 40.0 ± 1.2 38.8 ± 0.8 38.7 ± 0.7

Liver 6.4 ± 0.7 6.2 ± 1.5 4.6 ± 1.1 3.7 ± 1.2

Lung 2.4 ± 0.7 2.2 ± 0.4 0.7 ± 0.6 0.9 ± 0.5

Spleen 14.2 ± 0.9 12.6 ± 2.4 8.9 ± 0.7 9.3 ± 1.5

Kidney 15.9 ± 1.0 15.1 ± 1.2 14.4 ± 1.4 13.6 ± 1.6

NRMSE(%)

Lesion/Organ OSEM Sequential Truncation End2end

Lesion 1 (67mL) 27.3 ± 0.3 21.7 ± 1.3 18.9 ± 0.6 18.3 ± 0.6

Lesion 2 (10mL) 26.8 ± 0.6 19.2 ± 2.2 16.4 ± 0.4 16.3 ± 0.8

Lesion 3 (9mL) 28.4 ± 0.4 22.8 ± 0.8 18.3 ± 0.7 16.3 ± 0.7

Lesion 4 (5mL) 43.5 ± 0.5 41.1 ± 1.3 40.0 ± 0.7 40.2 ± 0.6

Liver 28.5 ± 0.1 25.0 ± 0.8 24.3 ± 0.3 24.5 ± 0.3

Lung 32.1 ± 0.1 31.2 ± 1.1 29.5 ± 0.3 30.4 ± 0.4

Spleen 25.7 ± 0.3 22.8 ± 1.1 20.4 ± 0.4 19.9 ± 0.6

Kidney 40.8 ± 0.3 39.7 ± 0.4 39.7 ± 0.2 39.2 ± 0.3
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TABLE II:

The average(± standard deviation) MAE(%) and NRMSE(%) across 3 noise realizations of 177Lu VP 

phantoms.

MAE(%)

Lesion/Organ OSEM Sequential Truncation End2end

Lesion (6–152mL) 11.1 ± 2.5 9.4 ± 3.2 6.7 ± 2.4 7.3 ± 2.8

Liver 4.8 ± 0.1 4.5 ± 0.2 3.4 ± 0.6 4.0 ± 0.2

Healthy liver 4.1 ± 0.1 4.1 ± 0.1 3.5 ± 0.6 4.1 ± 0.2

Lung 3.4 ± 0.1 3.0 ± 0.2 2.4 ± 0.7 3.0 ± 0.5

Kidney 5.2 ± 0.3 4.3 ± 0.1 2.6 ± 0.1 2.3 ± 0.2

Spleen 0.8 ± 0.2 0.6 ± 0.1 1.3 ± 0.6 1.2 ± 0.4

NRMSE(%)

Lesion/Organ OSEM Sequential Truncation End2end

Lesion (6–152mL) 16.1 ± 2.2 14.9 ± 2.4 14.3 ± 1.7 14.2 ± 2.1

Liver 15.9 ± 0.2 15.3 ± 0.1 15.5 ± 0.6 15.3 ± 0.1

Healthy liver 16.8 ± 0.1 16.6 ± 0.1 17.3 ± 0.5 17.1 ± 0.3

Lung 22.3 ± 0.3 22.1 ± 0.4 22.0 ± 0.4 21.9 ± 0.5

Kidney 17.4 ± 0.1 16.8 ± 0.1 16.4 ± 0.3 16.3 ± 0.5

Spleen 13.5 ± 0.2 12.4 ± 0.3 12.3 ± 0.7 12.3 ± 0.5
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TABLE III:

The average(± standard deviation) MAE(%) and NRMSE(%) across 3 noise realizations of 90Y VP phantoms.

MAE(%)

Lesion/Organ OSEM Sequential Truncation End2end

Lesion (3–356mL) 32.5 ± 1.3 25.3 ± 1.3 24.9 ± 1.0 23.1 ± 1.8

Liver 25.0 ± 0.1 18.7 ± 0.1 17.8 ± 1.3 15.6 ± 3.6

Healthy liver 25.1 ± 0.2 23.8 ± 0.5 21.8 ± 1.2 19.4 ± 3.1

Lung 88.4 ± 2.1 64.9 ± 1.6 58.3 ± 6.6 48.9 ± 8.4

NRMSE(%)

Lesion/Organ OSEM Sequential Truncation End2end

Lesion (3–356mL) 35.3 ± 1.5 29.6 ± 1.4 28.9 ± 1.1 27.8 ± 1.2

Liver 29.9 ± 0.4 22.7 ± 0.1 22.1 ± 0.9 21.2 ± 1.5

Healthy liver 31.6 ± 0.4 27.9 ± 0.3 27.0 ± 0.9 25.9 ± 2.0

Lung 62.4 ± 1.3 59.2 ± 1.1 57.3 ± 3.0 55.6 ± 4.6
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