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Abstract

We consider the batch (off-line) policy learning problem in the infinite horizon Markov Decision 

Process. Motivated by mobile health applications, we focus on learning a policy that maximizes 

the long-term average reward. We propose a doubly robust estimator for the average reward and 

show that it achieves semiparametric efficiency. Further we develop an optimization algorithm 

to compute the optimal policy in a parameterized stochastic policy class. The performance of 

the estimated policy is measured by the difference between the optimal average reward in the 

policy class and the average reward of the estimated policy and we establish a finite-sample regret 

guarantee. The performance of the method is illustrated by simulation studies and an analysis of a 

mobile health study promoting physical activity.
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1. Introduction.

Mobile health (mHealth) is a rapidly growing field due to the recent advances in mobile and 

sensing technologies. The mHealth intervention provides a unique opportunity to promote 

the healthy behaviors (e.g., regular physical activity and adherence to medications) and 

has been successfully applied in many health fields (e.g., smoking cessation, physical 

activity, drug abuse and diabetes). Just-in-time adaptive interventions (JITAI, Nahum-Shani 

et al. (2016)) use a decision rule (i.e., a treatment policy or policy) that maps real-time 

information about the individual’s context to a particular treatment. In this work we study 

the problem of how to use data consisting of multiple trajectories to estimate a policy that 

leads to good long-term performance.

We model the sequential decision making process by a time-homogeneous Markov Decision 

Process (MDP) (Puterman, 1994) over infinite time horizon. This framework is natural 
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for mobile health applications in which the number of decision times is often large. For 

example, in HeartSteps, a physical activity mHealth study, there are five decision times per 

day, resulting in thousands of decision times over a year. Tremendous progress has been 

made in finite horizon setting; see the recent review by Kosorok and Laber (2019) for 

references therein. However when the number of time points is very large, methods that are 

based on the idea of backward iteration (e.g., Q-learning) or importance sampling (Precup, 

2000) may suffer a large variance in problems or even be unpractical (Voloshin et al., 2019; 

Laber et al., 2014).

We propose to estimate the policy that optimizes the long-term average outcomes (rewards) 

using data consisting of multiple trajectories of finite length. The majority of existing 

methods focuses on the alternative, the discounted sum of rewards (Sutton and Barto, 

2018); see the recent works in statistics (Luckett et al., 2019; Ertefaie and Strawderman, 

2018; Shi et al., 2020, 2021). The discounted formulation weighs immediate rewards more 

heavily than rewards further in the future, which is practical in some applications (e.g., 

finance). However, for mHealth applications, choosing an appropriate discount rate could be 

non-trivial. The rewards (i.e., the health outcomes) in the distant future are as important as 

the near-term ones, especially when considering maintenance of health behaviors as well as 

longer term treatment burden. This suggests using a large discount rate. However, it is well 

known that algorithms developed in the discounted setting can become increasingly unstable 

as the discount rate goes to one; see for example Naik et al. (2019). The long-term average 

reward framework provides a good approximation to the long-term performance of a desired 

treatment policy in mHealth. Indeed, it can be shown that under regularity conditions the 

finite average of the expected rewards converges sublinearly to the long-term average reward 

as time goes to infinity (Hernández-Lerma and Lasserre, 1999). Therefore, a policy that 

optimizes the average reward would approximately maximize the sum of the rewards over a 

sufficiently long time horizon.

In this work, we present a novel algorithm that estimates the optimal policy in a 

prespecified, parametric policy class. Various methods have been proposed to estimate the 

global optimal policy by estimating the optimal Q-function;see for example Ormoneit and 

Sen (2003); Lagoudakis and Parr (2003); Ernst et al. (2005); Munos and Szepesvári (2008); 

Antos, Szepesvári and Munos (2008a,b); Ertefaie and Strawderman (2018); Fujimoto, 

Meger and Precup (2019); Kumar et al. (2019); Agarwal, Schuurmans and Norouzi (2020). 

In practice, the optimal Q-function could be highly non-smooth and complex, thus requiring 

the use of a flexible function class. This usually results in a learned policy that is also 

complex. If interpretability is important, this is problematic. Furthermore, when the training 

data is limited, the flexible function class might overfit the data and thus the variance of 

the estimated value function and the corresponding policy could be high. Restricting to a 

pre-specified policy class was studied by Zhang et al. (2012, 2013); Zhou et al. (2017); Zhao 

et al. (2015, 2019); Athey and Wager (2017) in finite time horizon problems and by Luckett 

et al. (2019); Murphy et al. (2016); Liu et al. (2019) in infinite time horizon problems. The 

restriction to a simple policy class enhance the interpretability of the learned policy and 

reduces the variance of the learned policy, although this induces a bias when the optimal 

policy is not in the class (i.e., trading off the bias and variance).
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To efficiently learn an optimal policy in a prespecified policy class, the main statistical 

challenge is to construct an estimator for the average reward of a policy that is both 

data-efficient and performs uniformly well when optimizing over the policy class. Our first 

contribution of this work is a novel doubly robust estimator (see Section 3); we show that 

this estimator achieves the semiparametric efficiency bound under certain conditions on the 

estimation error of nuisance functions (see Section 5). Doubly robust estimators have been 

developed in the finite time horizon problems (Robins, Rotnitzky and Zhao, 1994; Murphy 

et al., 2001; Dudík et al., 2014; Jiang and Li, 2016; Thomas and Brunskill, 2016) and 

recently in the discounted reward infinite horizon setting (Kallus and Uehara, 2019a; Tang 

et al., 2020). To the best of our knowledge, our doubly robust estimator for the long-term 

average reward is new. In the literature of the average MDP in the batch setting, only 

the non-doubly robust estimator proposed by Liao, Klasnja and Murphy (2019) for the 

long-term average reward can be shown to achieve the semi-parametric efficiency, although 

they did not explicitly derive it. Most of the previous works on the policy optimization/

evaluation under this framework are focused the online setting or under parametric models 

(e.g., Mahadevan, 1996; Abounadi, Bertsekas and Borkar, 2001; Wan, Naik and Sutton, 

2021). Theoretical studies on the average reward MDP in the batch setting are very limited, 

especially under non-parametric models.

To establish the semiparametric efficiency of the doubly robust estimator and the regret 

bound, we derive finite-sample error bounds for two nuisance function estimators, a relative 

value estimator and a ratio estimator. The obtained error bounds are shown to hold uniformly 

over the prespecified class of policies. Both the relative value and ratio estimators are both 

derived from the same principle (i.e., coupled estimation; see Section 4). In the case of the 

ratio estimator, we use an iterative procedure to obtain a near-optimal error bound for the 

ratio estimator. To the best of our knowledge, this is the first theoretical result characterizing 

the ratio estimation error, which might be of independent interest.

We learn the optimal policy by maximizing the estimated average reward over a policy 

class and derive a finite-sample upper bound of the regret. We show that the our proposed 

method achieves O(p1/2n−1/2 + pn−β) regret, where p is the number of parameters in the policy, 

n is the number of trajectories in the training data and β is a constant that can be chosen 

arbitrarily close to 1/(1 + α). Here α ∈ (0, 1) measures the complexity of nuisance function 

classes. The use of doubly robust estimation ensures the estimation error for the nuisance 

functions contributes only lower order terms to the regret. Unlike the setting in which the 

goal is to maximize the average reward defined over a finite horizon (Athey and Wager, 

2017), when the goal is to maximize the average reward defined over an infinite horizon, 

the regret analysis requires uniform control of the estimation error of the policy-dependent 

nuisance functions over the policy class. We believe this is the first regret bound result 

for an estimator of an in-class optimal policy in the average reward MDP and using batch 

data. Recently, Sharma, Jafarnia-Jahromi and Jain (2020) proposed an approximate relative 

value learning algorithm for globally optimal policies under the average reward MDP with 

non-parametric function approximation. However, they require the sample size at least 

exponentially larger than the dimension of the state for the convergence of their algorithm, 

which seems sub-optimal compared with our result, e.g., Theorem 5.1.
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The rest of the article is organized as follows. Section 2 formalizes the decision making 

problem and introduces the average reward MDP. Section 3 presents the proposed method 

of learning the in-class optimal policy, including the doubly robust estimator for average 

reward (Section 3.3). In Section 4, the coupled estimators of the policy-dependent nuisance 

functions are introduced. Section 5 provides a thorough theoretical analysis on the regret 

bound of our proposed method. In Section 6, we describe a practical optimization algorithm 

when Reproducing Kernel Hilbert Spaces (RKHSs) are used to model the nuisance 

functions. We further conduct several simulation studies to demonstrate the promising 

performance of our method in Section 7. All the technical proofs are postponed to the 

supplementary material.

2. Problem Setup.

Suppose we observe a training dataset, Dn = Di i = 1
n  that consists of n independent, 

identically distributed (i.i.d.) observations of D:

D = S1, A1, S2, …, ST, AT, ST + 1 .

We use t to index the decision time. The length of the trajectory, T, is a fixed constant. 

St ∈ S is the state at time t and At ∈ A is the action (treatment) selected at time t. We 

assume the action space, A, is finite. To eliminate unnecessary technical distractions, we 

assume that the state space, S, is finite; this assumption imposes no practical limitations and 

can be extended to the general state space.

The states evolve according to a time-homogeneous Markov process, that is, for t ≥ 1, 

St+1 ⊥ {S1, A1, . . . , St−1,At−1}|{St, At}, and the conditional distribution does not depend 

on t. Denote the conditional distribution by P, i.e., Pr(St+1 = s′|St = s, At = a) = P(s′|

s, a). The reward (i.e., outcome) is denoted by Rt+1, which is assumed to be a known 

function of (St, At, St+1), i.e., Rt + 1 = ℛ St, At, St + 1 . We assume the reward is bounded, i.e., 

ℛ s, a, s′ ≤ Rmax. We use r(s,a) to denote the conditional expectation of reward given state 

and action, i.e., r(s, a) = E Rt + 1 ∣ St = s, At = a .

Let Ht = {S1, A1, . . . , St} be the history up to time (t − 1) and the current state, St. Denote 

the conditional distribution of At given Ht by πb,t(a|Ht) = Pr(At = a|Ht). Let πb = {πb,1, . . . , 

πb,T}. This is often called behavior policy in the literature. Throughout this paper, the 

expectation, E, without any subscript is assumed taken with respect to the distribution of the 

trajectory, D, with the actions selected by the behavior policy πb.

Consider a time-stationary, Markovian policy, π, that takes the state as input and outputs a 

probability distribution on the action space, A, that is, π(a|s) is the probability of selecting 

action, a, at state, s. The average reward of the policy, π, is defined as

ηπ(s): = lim
t∗ ∞

Eπ
1
t∗ ∑

t = 1

t∗

Rt + 1 ∣ S1 = s , (2.1)
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where the expectation, Eπ, is with respect to the distribution of the trajectory in which the 

states evolve according to P and the actions are chosen by π. In the time-homogeneous MDP 

with finite state and bounded reward, the limit in (2.1) always exists (Puterman, 1994). The 

policy, π, induces a Markov chain of states with the transition as P π s′ |s = ∑a π(a |s)P s′ |s, a . 

When the induced Markov chain, Pπ, is irreducible, it can be shown (e.g., in Puterman 

(1994)) that the stationary distribution of Pπ exists and is unique (denoted by dπ) and the 

average reward, ηπ(s) (2.1) is independent of initial state (denoted by ηπ) and equal to

ηπ(s) = ηπ = ∑
s, a

r(s, a)π(a |s)dπ(s) . (2.2)

Throughout this paper we consider only the time-stationary, Markovian policies. In fact, 

it can be shown that the maximal average reward among all possible history dependent 

policies can be in fact achieved by some time-stationary, Markovian policy (Theorem 8.1.2 

in Puterman (1994)). Consider a pre-specified class of such policies, Π, that is parameterized 

by θ ∈ Θ ⊂ ℝp. Throughout we assume that the induced Markov chain is always irreducible 

for any policy in the class, which is summarized below.

Assumption 1.

The induced Markov chain, Pπ, is irreducible for π ∈ Π.

The goal of this paper is to develop a method that can efficiently use the training data, Dn, 

to learn a policy that maximizes the average reward over Π. We propose to construct ηn
π, an 

efficient estimator for the average reward, ηπ, for each policy π ∈ Π and learn an optimal 

policy by solving

πn ∈ argmaxπ ∈ Πη n
π . (2.3)

The performance of πn is measured by its regret, defined as

Regret πn = sup
π ∈ Π

ηπ − ηπn . (2.4)

Note that although the average reward of the learned policy, πn, is defined over an infinite 

horizon, the goal here is to characterize the regret based on using a finite number of 

trajectories, n, hence the finite sample regret bound is in terms of n. Indeed while the 

average reward, ηπ is defined as t* → ∞ (2.1), the Markovian and stationary assumptions 

allow us to estimate ηπ using fixed length trajectories.

3. Doubly Robust Estimator for Average Reward.

In this section we present a doubly robust estimator for the average reward for a given 

policy. The estimator is derived from the efficient influence function (EIF). Below we first 

introduce two functions that occur in the EIF of the average reward. Throughout this section 

we fix a time-stationary Markovian policy, π, and focus on the setting where the induced 

Markov chain, Pπ, is irreducible (Assumption 1).
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3.1. Relative value and ratio functions.

First, we define the relative value function by

Qπ(s, a): = lim
t∗ ∞

1
t∗ ∑

t = 1

t∗

Eπ ∑
k = 1

t
Rk + 1 − ηπ S1 = s, A1 = a . (3.1)

The above limit is well-defined (Puterman (1994), p. 338). If we further assume the 

induced Markov chain is aperiodic, then the Cesàro limit in (3.1) can be replaced by 

Qπ(s, a) = Eπ ∑t = 1
∞ Rt + 1 − ηπ |S1 = s, A1 = a . Qπ is often called relative value function in that 

Qπ(s, a) represents the expected total difference between the reward and the average reward 

under the policy, π, when starting at state, s, and action, a.

The relative value function, Qπ, and the average reward, ηπ, are closely related via the 

Bellman equation:

Eπ Rt + 1 + Q St + 1, At + 1 |St = s, At = a − Q(s, a) − η = 0. (3.2)

Note that in the above expectation At+1 ∼ π(·|St+1). It is known that under the irreducibility 

assumption, the set of solutions of (3.2) is given by ηπ, Q :Q = Qπ + c1, c ∈ ℝ  where 1(s, a) 

= 1 for all (s, a); see Puterman (1994), p. 343 for details. As we will see in Section 4.2, the 

Bellman equation provides the foundation of estimating the relative value function.

We now introduce the ratio function. For t = 1, . . . , T, let dt(s, a) be the probability mass 

of state-action pair at time t in the trajectory D generated by the behavior policy. Denote 

by dD(s, a): = (1/T )∑t = 1
T dt(s, a) the average probability mass across the T decision times in 

D. Similarly, define dt(s) as the marginal distribution of St and dD(s): = (1/T )∑t = 1
T dt(s) as the 

average distribution of states in the trajectory D. Recall that T is the fixed length of the 

trajectory, D; dD describes the distribution of this finite length trajectory. Further recall that 

under Assumption 1, the stationary distribution of Pπ exists and is denoted by dπ(s). We 

assume the following conditions on the data-generating process.

Assumption 2.—The data-generating process satisfies:

(2–1) There exists some pmin > 0, such that πb,t(a|Ht) ≥ pmin for all a ∈ A and 1 ≤ t ≤ 

T almost surely.

(2–2) The average distribution dD(s) > 0 for all s ∈ S.

Under Assumption 2, it is easy to see that dD(s, a) ≥ pmin · (mins dD(s)) > 0 for all 

state-action pair, (s, a). It essentially states that the data generating process ensures that 

every state-action pair (s, a) ∈ S × A has a positive probability of being visited, which 

is a standard assumption in the literature. See e.g., Theorem 7 of Kallus and Uehara 

(2019b) and (A2) of Shi et al. (2020). In particular, Assumption (2–1) is often satisfied 

in randomized trials. See our mobile health application in Section 8. In addition, the batch 

data of our mobile health application consist of 37 trajectories with 210 decision points on 

each trajectory. In this application, as long as every state has a positive probability of being 

visited in at least one of 210 decision points, Assumption (2–2) is also satisfied. Assumption 

Liao et al. Page 6

Ann Stat. Author manuscript; available in PMC 2023 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(2–2) is imposed on the data generating process. We essentially require that across an 

infinite number of draws from this data generating process/trajectory, every state s ∈ S will 

be observed. Note that Assumption 2 does not require that the form of the behavior policy is 

known. Now we can define the ratio function:

ωπ(s, a) = dπ(s)π(a |s)
dD(s, a) (3.3)

The ratio function plays a similar role as the importance weight in finite horizon problems. 

While the classic importance weight only corrects the distribution of actions between 

behavior policy and target policy, the ratio here also involves the correction of the states’ 

distribution. The ratio function is connected with the average reward by

ηπ = E 1
T ∑

t = 1

T
ωπ St, At Rt + 1

for any fixed trajectory length, T. An important property of ωπ is that for any state-action 

function f(s, a) (not only Qπ),

E 1
T ∑

t = 1

T
ωπ St, At f St, At − ∑

a′
π a′ |St + 1 f St + 1, a′ = 0. (3.4)

This orthogonality is key to develop the estimator for ωπ (see Section 4.3).

3.2. Efficient influence function.

In this subsection, we derive the EIF of ηπ for a fixed policy π under time-homogeneous 

Markov Decision Process described in Section 2. Recall that the semiparametric efficiency 

bound is the supremum of the Cramèr-Rao bounds for all parametric submodels (Newey, 

1990). EIF is defined as the influence function of a regular estimator that achieves the 

semiparametric efficiency bound. For more details, refer to Bickel et al. (1993) and Van der 

Vaart (2000). The EIF of ηπ is given by the following theorem. The proof is provided in 

Appendix A.

Theorem 3.1.—Suppose the states in the trajectory, D, evolve according to the time-

homogeneous Markov process and Assumption 2 holds. Consider a policy, π, such that 

Assumption 1 holds. Then the EIF of the average reward, ηπ, is

ϕπ(D) = 1
T ∑

t = 1

T
ωπ St, At Rt + 1 + Uπ St, At, St + 1 − ηπ

where

Uπ s, a, s′ : = ∑
a′

π a′ |s′ Qπ s′, a′ − Qπ(s, a) .
(3.5)
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Remark 1.—Recall that we impose the Markovian and time-stationary assumptions on 

the data-generating process. Even though the parameter of interest here (i.e. the average 

reward ηπ) is one-dimensional, there may exist multiple, non-efficient influence functions as 

a result of these assumptions on the multivariate distribution.

3.3. Doubly robust estimator.

It is known that EIF can be used to derive a semiparametric estimator (see, for example, 

Chap. 25 in Van der Vaart (2000)). We follow this approach. Specifically, suppose Un
π
 and ωn

π

are estimators of Uπ and ωπ respectively. Then we estimate ηπ by solving for η in the plug-

in estimating equation: ℙn{(1/T )∑t = 1
T ωn

π(St, At) Rt + 1 + Un
π St, At, St + 1 − η]} = 0, where for any 

function of the trajectory, f(D), the sample average is denoted as ℙnf(D) = (1/n)∑i = 1
n f Di . 

The solution, ηn
π, is

η n
π =

ℙn (1/T )∑t = 1
T ωn

π St, At Rt + 1 + Un
π St, At, St + 1

ℙn (1/T )∑t = 1
T ωn

π St, At
. (3.6)

We have the following doubly robustness of this estimator (the proof is given in Appendix 

A).

Theorem 3.2.—Suppose Un
π(s, a) and ωn

π(s, a) converge in probability to deterministic limits 

Uπ(s, a) and ωπ(s, a) uniformly over S × A. If either Uπ = Uπ or ωπ = ωπ, then ηn
π converges to 

ηπ in probability.

Remark 2.—The uniform convergence in probability can be relaxed to L2 convergence by 

using uniform laws of large numbers. The doubly robustness can protect against potential 

model mis-specifications since we only require one of two models is correct. Moreover, 

the doubly robust structure can be used to relax the required rate for each of the nuisance 

function estimation to achieve the semiparametric efficiency bound, especially if we use 

sample-splitting techniques (see Section 9), as discussed in Chernozhukov et al. (2018).

4. Estimators for the Nuisance Functions.

Recall the doubly robust estimator (3.6) requires the estimation of two nuisance functions, 

Uπ and ωπ. It turns out that although these two nuisance functions are defined from 

different perspectives, both nuisance functions can in fact be characterized in a similar 

way. Both estimators can be obtained by minimizing an objective function that involves a 

minimizer of another objective function (“coupled estimation”). This can be viewed as a 

generalization of the classical M-estimator with a “plug-in estimator” in the sense that the 

the second objective function also involves the unknown parameters to be estimated. The 

idea of coupled estimation was previously used by Antos, Szepesvári and Munos (2008a); 

Farahmand et al. (2016) to estimate the value function in the discounted reward setting and 

recently by Liao, Klasnja and Murphy (2019) in the average reward setting. In what follows 

we provide a general coupled estimation framework and discuss the motivation for using it. 
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We then review the coupled estimator for relative value function and ratio function in Liao, 

Klasnja and Murphy (2019).

4.1. Review of coupled estimation.

Consider a setting where the true parameter (or function), θ*, can be characterized as the 

minimizer of the following objective function:

θ∗ = argminθ J(θ) = E l1 ∘ fθ (Z) (4.1)

where l1:ℝ ℝ+ is a loss function composite with f (e.g., the squared loss, l1(x) = x2 and the 

linear model, fθ(Z) = Y −θ⊤X, where Z = (X, Y)). If we can directly evaluate fθ(Z), then we 

can estimate θ* by the classical M-estimator, argminθℙn l1 ∘ fθ (Z) .

In our setting fθ is of the form fθ(Z) = E Fθ Z′ |Z  and fθ(Z) cannot be directly evaluated 

because we don’t have an explicit formula for the conditional expectation E Fθ Z′ |Z . A 

natural idea to remedy this is to replace the unknown fθ(Z) by Fθ(Z′) and estimate θ* by 

argminθℙn (l1 ∘ Fθ Z′ . Unfortunately this estimator is biased in general. To see this, suppose 

l1(x) = x2. We note that the limit of the new objective function, ℙn (l1 ∘ Fθ Z′ , is then 

J(θ) = E (l1 ∘ Fθ Z′ = J(θ) + Δ(θ) where Δ(θ) = E Var Fθ Z′ |Z . The minimizer of J(θ) is 

not necessarily θ* unless further conditions are imposed (e.g., Var{Fθ(Z′)|Z} is independent 

of θ, which is often not the case in our setting).

The high level idea of coupled estimation is to first estimate fθ for each θ, denoted 

by f θ, and then estimate θ* by the plug-in estimator, argminθℙn{(l1 ∘ f θ)(Z)}. A standard 

empirical risk minimization can be applied to obtain a consistent estimator for fθ, e.g., 

f θ = argming ∈ Gℙn l2{(Fθ Z′ , g(Z)}] for some loss function l2:ℝ × ℝ ℝ+ and a function space, 

G to approximate fθ. We call the estimator coupled because the objective function (i.e., 

ℙn{(l1 ∘ f θ)(Z)}) involves f θ which itself is an minimizer of another objective function (i.e., 

ℙnl2 Fθ Z′ , g(Z) ) for each θ.

4.2. Relative value function estimator.

Recall the doubly robust estimator requires an estimator of Uπ. It is enough to learn 

one specific version of Qπ. More specifically, define a shifted value function by 

Qπ(s, a) = Qπ(s, a) − Qπ s∗, a∗  for some specific state-action pair (s*, a*). By restricting to 

Q(s*, a*) = 0, the solution of Bellman equations (3.2) is unique and given by {ηπ, Qπ}. 

Below we derive a coupled estimator for the shifted value function, Qπ
, using the coupled 

estimation framework in Section 4.1.

Let Zt = (St, At, St+1) be the transition sample at time t. For a given (η, Q) pair, let

δπ Zt; η, Q = Rt + 1 + ∑
a′

π a′ |St + 1 Q St + 1, a − Q St, At − η
(4.2)

be the so-called temporal difference (TD) error. The Bellman equation then becomes 

E δπ Zt; η, Q |St = s, At = a = 0 for all state-action pair, (s, a). As a result, we have
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{ηπ, Qπ} ∈ argmin
η, Q

E 1
T ∑

t = 1

T
E δπ Zt; η, Q |St, At

2 .

Note that above we choose the squared loss for simplicity; a general loss function can 

also be applied. We see that it fits in the coupled estimation framework presented in 

the previous section. In particular, θ∗ = {ηπ, Qπ} and fθ becomes the Bellman error, i.e., 

E δπ Zt; η, Q |St = ⋅ , At = ⋅ . The above characterization involves the average reward, ηπ. 

Thus in the process of obtaining an estimator of the relative value function, we will also 

obtain an estimator of the average reward. See the end of this subsection for discussion.

We use ℱ and G to denote two classes of functions of state-action. We use ℱ to model 

the shifted value function, Qπ
, and thus require f(s∗, a∗) = 0 for all f ∈ ℱ. We use G

to approximate the conditional mean of the Bellman error. In addition, J1: ℱ ℝ+ and 

J2: G ℝ+ are two regularizers that measure the complexities of these two functional 

classes respectively. Given tuning parameters (λn, μn), the coupled estimator, denoted by 

(ηn
π, Qn

π), is obtained by solving

(ηn
π, Qn

π) = argmin
(η, Q) ∈ ℝ × ℱ

ℙn
1
T ∑

t = 1

T
gn

π St, At; η, Q 2 + λnJ1
2(Q), (4.3)

where gn
π( ⋅ , ⋅ ; η, Q) is the projected Bellman error at (η, Q):

gn
π( ⋅ , ⋅ ; η, Q) = argmin

g ∈ G
ℙn

1
T ∑

t = 1

T
δπ Zt; η, Q − g St, At

2 + μnJ2
2(g) . (4.4)

Given the estimator of the (shifted) relative value function, Qn
π
, we form the estimator of Uπ 

by Un
π s, a, s′ = ∑a′ π a′ |s′ Qn

π s′, a′ − Qn
π(s, a).

Throughout this paper, we use tuning parameters, (λn, μn), that do not depend on the policy. 

In the setting where the policy class is highly complex and the corresponding relative value 

functions are very different, it could be beneficial to select the tuning parameters locally at a 

cost of higher computation burden.

Recall that the goal here is to estimate relative value function, Uπ, and then plug Un
π
 in 

the doubly robust estimator (3.6). The above ηn
π is only used to help estimate the relative 

function. In fact, Liao, Klasnja and Murphy (2019) proposed using ηn
π to estimate the average 

reward. The advantage of our doubly robust estimator (3.6), ηn
π, over ηn

π is that the consistency 

of ηn
π is guaranteed as long as at least one of the nuisance function is estimated consistently 

(Theorem 3.2).

4.3. Ratio function estimator.

Below we derive the estimator for the ratio function, ωπ using the coupled estimation 

framework. In particular we estimate a scaled version of the ratio function (denoted by eπ 
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below) and then convert this back to an estimator of ωπ. To estimate eπ, we first construct a 

new MDP and estimate the relative value function for this new MDP (denoted by Hπ) using 

the coupled estimation framework. The estimator of eπ is then derived from the estimator of 

Hπ.

We start with introducing eπ:

eπ(s, a) = ωπ(s, a)
∑s, a ωπ(s, a)dπ(s)π(a |s) . (4.5)

By definition, ∑s, a eπ(s, a)dπ(s)π(a |s) = 1. If we were to replace the reward function in our 

MDP by 1−eπ(s, a), then the “average reward” of π in this new MDP is constant and 

equal to zero under Assumption 1 (i.e., ∑s, a 1 − eπ(s, a) dπ(s)π(a |s) = 0). The “relative value 

function” of policy π under the new MDP is,

Hπ(s, a) = lim
t∗ ∞

1
t∗ ∑

t = 1

t∗

Eπ ∑
k = 1

t
1 − eπ Sk, Ak |S1 = s, A1 = a . (4.6)

Note that Hπ is well-defined under Assumption 1. Furthermore, consider the following 

Bellman equation for the new MDP:

Eπ 1 − eπ St, At + H St + 1, At + 1 |St = s, At = a = H(s, a) . (4.7)

Note that since the “average reward” in the new MDP is zero, the above equation only 

involves H. The set of solutions of (4.7) can be shown to be H :H = Hπ + c1, c ∈ ℝ .

Below we construct a coupled estimator for a shifted version of Hπ, i.e., Hπ = Hπ − Hπ s∗, a∗ . 

Recall Zt = (St, At, St+1, Rt+1) is the transition sample at time t. For a given state-action 

function, H, let Δπ Zt; H = 1 − H St, At + ∑a′ π a′ |St + 1 H St + 1, a′ . As a result of the above 

Bellman-like equation and the orthogonality property (3.4), we know that

Hπ ∈ argmin
H

E 1
T ∑

t = 1

T
E Δπ Zt; H |St, At

2 .

Now it can be seen that the estimation of Hπ
 fits into the coupled estimation framework 

(4.1), i.e., θ∗ = Hπ
 and fθ is E Δπ Zt; H |St = ⋅ , At = ⋅ . With a slight abuse of notation, we 

use ℱ to approximate Hπ
 and G to form the approximation of E Δπ Zt; H |St = ⋅ , At = ⋅ . 

The coupled estimator, Hn
π
, is then found by solving

Hn
π = argmin

H ∈ ℱ
ℙn

1
T ∑

t = 1

T
gn

π St, At; H 2 + λn
′J1

2(H), (4.8)

where for any H ∈ ℱ, gn
π( ⋅ , ⋅ ; H) solves
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gn
π( ⋅ , ⋅ ; H) = argmin

g ∈ G
ℙn

1
T ∑

t = 1

T
Δπ Zt; H − g St, At

2 + μn
′J2

2(g) . (4.9)

Recall that eπ can be written in terms of Hπ by (4.7); that is, re-arranging terms,

Eπ 1 − H St, At + H St + 1, At + 1 |St = s, At = a = eπ(s, a) .

Thus given the estimator, Hn
π
, we estimate eπ by e n

π(s, a) = gn(s, a; Hn
π). By the definition of 

ωπ, we have E[(1/T )∑t = 1
T ωπ St, At ] = 1. Since eπ is a scaled version of ωπ up to a constant, 

we finally construct the estimator for ratio, ωπ, by scaling eπ, that is,

ωn
π(s, a) = e n

π(s, a)/ℙn[(1/T ) ∑
t = 1

T
e n

π St, At ], ∀(s, a) ∈ S × A . (4.10)

Remark 3.—The above ratio function estimator was developed by Liao, Klasnja and 

Murphy (2019). In this paper we, for the first time, derive a finite-sample error bound 

for this ratio function estimator, uniformly over the policy class (Theorem B.2 in the 

appendix). This is the key element in establishing the finite-sample bound regret bound for 

the estimated optimal policy.

Remark 4.—Our ratio function estimator is different from most in the existing literature, 

such as Liu et al. (2018); Uehara and Jiang (2019); Nachum et al. (2019); Zhang et al. 

(2020), which are obtained by min-max based estimating methods. For example, Liu et 

al. (2018) aimed to estimate the ratio between stationary distribution induced by a known, 

Markovian time-stationary behavior policy and target policy, which is then used to estimate 

the average reward of a given policy. This is not suitable for the setting where the behavior 

policy is history dependent. Uehara and Jiang (2019) estimated the ratio, ωπ(s, a), based on 

the observation that for every state-action function f,

E 1
T ∑

t = 1

T
ωπ St, At ∑

a′
π a′ |St + 1 f St + 1, a − ωπ St, At f St, At = 0,

with the restriction that E[ 1
T ∑t = 1

T ωπ St, At ] = 1. Then they constructed their estimator by 

solving the empirical version of the following min-max optimization problem:

min
w ∈ Δ

max
f ∈ ℱ′

E2 1
T ∑

t = 1

T
ω St, At ∑

a′
π a′ |St + 1 f St + 1, a − ω St, At f St, At ,

where Δ is a simplex space and ℱ′ is a set of discriminator functions. This method 

minimizes the upper bound of the bias of their average reward estimator if the state-action 

value function is contained in ℱ′. They proved consistency of their ratio and average reward 
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estimators in the parametric setting, that is, where ωπ(St, At) can be modelled parametrically 

and ℱ′ is a finite dimensional space. Subsequently Zhang et al. (2020) developed a general 

min-max based estimator by considering variational f-divergence, which subsumes the case 

in Uehara and Jiang (2019). Unfortunately, there are no error bounds guarantee for ratio 

function estimators developed in Uehara and Jiang (2019) and Zhang et al. (2020). Our ratio 

estimator appears closely related to the estimation developed by Nachum et al. (2019) as 

they also formulated the ratio estimator as a minimizer of a loss function. However, relying 

on the Fenchel’s duality theorem, they still use the min-max based method to estimate 

the ratio. Furthermore, their method cannot be applied in average reward settings. Instead 

of using min-max based estimators, we use coupled estimation. This will facilitate the 

derivation of estimation error bounds as will be seen below. We will derive the estimation 

error of the ratio function, which will enable us to provide a strong theoretical guarantee, 

and finally demonstrate the efficiency of our average reward estimator without imposing 

restrictive parametric assumptions on the nuisance function estimations, see Section 5 below.

5. Theoretical Results.

5.1. Regret bound.

In this section, we provide a finite sample bound on the regret of πn defined in (2.4), i.e., the 

difference between the optimal average reward in the policy class, Π, and the average reward 

of the estimated policy, πn.

Consider a state-action function, f(s, a). Let ℐ be the identity operator, i.e., ℐ (f) = f. 

Denote the conditional expectation operator by Pπ f : (s, a) Eπ f St + 1, At + 1 |St = s, At = a . 

Let the expectation under stationary distribution induced by π be μπ(f) =∫f(s, a) μπ (ds, 

da). Denote by ∥ · ∥tv the total variation distance between two probability measures. For 

a function g(s, a, s′), define ∥ g ∥2 = E (1/T )∑t = 1
T g2 St, At, St + 1 . For a set X and M > 0, 

let ℬ (X, M) be the class of bounded functions on X such that ∥f∥∞ ≤ M. Denote by 

N(ϵ, ℱ , ∥ ⋅ ∥ ) the ϵ-covering number of a set of functions, ℱ, with respect to the norm, ∥· 

∥.

We make use of the following assumption on Π.

Assumption 3.—The policy class, Π = πθ:θ ∈ Θ ⊂ ℝp , satisfies:

(3–1) Θ ⊂ ℝp is compact and let diam(Θ) = supθ1, θ2 ∈ Θ θ1 − θ2 2.

(3–2) There exists LΘ > 0, such that for θ1, θ2 ∈ Θ and for all (s, a) ∈ S × A, the 

following holds

πθ1(a |s) − πθ2(a |s) ≤ LΘ θ1 − θ2 2 .

(3–3) There exists constants C0 > 0 and 0 ≤ β < 1, such that for every π ∈ Π, the 

following hold for all t ≥ 1:

P π St = ⋅ |S1 = s − dπ( ⋅ ) tv ≤ C0βt, (5.1)
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Pπ tf − μπ(f) ≤ C0 ∥ f ∥ βt . (5.2)

Remark 5.—The Lipschitz property of the policy class (3–2) is used to control the 

complexity of nuisance function induced by Π, that is, {Uπ(·,·,·) : π ∈ Π} and {ωπ(·,·) : 

π ∈ Π}. This is commonly assumed in the finite-time horizon problems (e.g., Zhou et al. 

(2017)). Assumptions (3–1) and (3–2) can be easily satisfied by many policy classes such 

the one we used in Section 7. Our analysis can be extended to more general policy classes 

if a similar complexity property holds for these two nuisance function classes. Intuitively the 

constant β in the assumption (3–3) relates to the “mixing time” of the Markov chain induced 

by π ∈ Π. A similar assumption was used by Van Roy (1998); Liao, Klasnja and Murphy 

(2019) in average reward setting. Specifically, Equation (5.1) in Assumption (3–3) is used 

to show that two nuisance functions Uπ and ωπ are Lipschitz continuous with respect to 

the policy parameter θ so that we can quantify their estimation error uniformly over the 

policy class. See Lemma C.1 of Supplementary Material for more details. Equation (5.2) in 

Assumption (3–3) basically requires an exponential convergence rate of the policy induced 

Markov chain to the stationary distribution in terms of the expectation under the L2-norm 

with respect to the data generating process. This assumption, together with Assumption 

(5–3) stated below is used to guarantee the Bellman operator for Uπ based on Equation 

(3.2) (or a similar quantity related to the ratio function estimation defined in Lemma B.4 

of Supplementary Material) is well-posed in the sense of L2-norm with respect to the data 

generating process so as to derive their estimation errors. See Lemma B.5 of Liao, Klasnja 

and Murphy (2019) and Lemma B.4 of Supplementary Material for more details.

Recall that we use the same pair of function classes ( ℱ , G ) in the coupled estimation for 

both Uπ and ωπ. We make the following assumptions on ( ℱ , G ).

Assumption 4.—The function classes, ( ℱ , G ), satisfy the following:

(4–1) ℱ ⊂ ℬ S × A , Fmax  and G ⊂ ℬ S × A , Gmax  (4–2) f(s∗, a∗) = 0, f ∈ ℱ.

(4–3) The regularization functionals, J1 and J2, are pseudo norms and induced by the 

inner products J1(·,·) and J2(·,·), respectively.

(4–4) Let ℱM = f ∈ ℱ :J1(f) ≤ M  and GM = g ∈ G :J2(g) ≤ M . There exists C1 

and α ∈ (0, 1) such that for any ϵ, M > 0,

max logN ϵ, GM , ∥ ⋅ ∥∞ , logN ϵ, ℱM , ∥ ⋅ ∥∞ ≤ C1
M
ϵ

2α

Remark 6.—The boundedness assumption on ℱ and G are used to simplify the analysis 

and can be relaxed by truncating the estimators. We restrict f(s*, a*) = 0 for all f ∈ ℱ
because ℱ is used to model Qπ

 and Hπ
, which by definition satisfies Qπ s∗, a∗ = 0 and 

Hπ s∗, a∗ = 0. In Section 6, we show how to shape an arbitrary kernel function to ensure 

this is satisfied automatically when ℱ is RKHS. The complexity assumption (4–4) on ℱ
and G are satisfied for common function classes, for example RKHS and Sobolev spaces 
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(Steinwart and Christmann, 2008; Györfi et al., 2006). Taking the Sobolev spaces as an 

example, the entropy exponent α will be p/q, where p is the dimension of state-variables and 

q is the number of continuous derivatives possessed by the functions in the corresponding 

space. Assumption (4–4) is imposed to control the estimation error for two nuisance 

functions.

We now introduce the assumption that is used to bound the estimation error of value 

function uniformly over the policy class. Define the projected Bellman error operator:

gπ
∗( ⋅ , ⋅ ; η, Q): = argmin

g ∈ G
E 1

T ∑
t = 1

T
δπ Zt; η, Q − g St, At

2

where δπ is given in (4.2).

Assumption 5.—The triplet, (Π, ℱ , G ), satisfies the following:

(5–1) Qπ( ⋅ , ⋅ ) ∈ ℱ for π ∈ Π and supπ ∈ ΠJ1(Q
π) < ∞.

(5–2) 0 ∈ G.

(5–3) There exits κ > 0, such that 

inf gπ
∗( ⋅ , ⋅ ; η, Q) : E δπ Zt; η, Q |St = ⋅ , At = ⋅ = 1, |η | ≤ Rmax, Q ∈ ℱ , π ∈ Π

≥ κ
.

(5–4) There exists two constants C2, C3 such that J2 gπ
∗( ⋅ , ⋅ ; η, Q) ≤ C2 + C3J1(Q) holds 

for all η ∈ ℝ, Q ∈ ℱ and π ∈ Π.

Remark 7.—Assumption (5–1) basically assumes that the non-parametric function class 

ℱ can model Qπ
 correctly, which is mild. Note that in the coupled estimator of Qπ

, we do 

not require the much stronger condition that the Bellman error for every tuple of (η, Q, π) 

is correctly modeled by G. In other words, E δπ Zt; η, Q |St = ⋅ , At = ⋅  is not required to 

belong to G. Instead, the combination of conditions (5–2) and (5–3) is enough to guarantee 

the consistency of the coupled estimator (recall that the Bellman error is zero at {ηπ, Qπ}). 

The last condition (5–4) essentially requires the transition matrix is sufficiently smooth so 

that the complexity of the projected Bellman error, J2 gπ
∗( ⋅ , ⋅ ; η, Q) , can be controlled by 

J1(Q), the complexity of Q (see Farahmand et al. (2016) for an example).

A similar set of conditions are employed to bound the estimation of ratio function. For π ∈ 
Π and H ∈ ℱ, define the projected error:

gπ
∗( ⋅ , ⋅ ; H) = argmin

g ∈ G
E 1

T ∑
t = 1

T
Δπ Zt; H − g St, At

2

where, as before, Δπ Zt; H = 1 − H St, At + ∑a′ π a′ |St + 1 H St + 1, a′ .

Assumption 6.—The triplet, (Π, ℱ , G ), satisfies the following:
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(6–1) For π ∈ Π, Hπ( ⋅ , ⋅ ) ∈ ℱ, and supπ ∈ ΠJ1(H
π) < ∞.

(6–2) eπ( ⋅ , ⋅ ) ∈ G, for π ∈ Π.

(6–3) There exits κ′ > 0, such that 

inf{gπ
∗( ⋅ , ⋅ ; H) − gπ

∗( ⋅ , ⋅ ; Hπ): ( ℐ − Pπ )(H − Hπ) = }1, H ∈ ℱ , π ∈ Π} ≥ κ′.

(6–4) There exists two constants C2
′, C3

′ such that J2 gπ
∗( ⋅ , ⋅ ; H) ≤ C2

′ + C3
′J1(H) holds 

for H ∈ ℱ and π ∈ Π.

Remark 8.—The interpretation of Assumption 6 is similar to that of Assumption 5. 

Specifically, Assumption (6–1) basically assumes the non-parametric function class ℱ can 

model Hπ
 correctly. As in the case of estimation of relative value function, we do not require 

the correct modelling of E Δπ Zt; H |St = ⋅ , At = ⋅  for every (π, H) ∈ Π × ℱ but instead 

only assume Assumptions (6–2) and (6–3) hold. A major difference between Assumption 5 

and 6 is that (5–2) is now replaced by (6–2). This is because according to the Bellman-like 

equation (4.7), we have E[Δπ(Zt; Hπ) |St = s, At = a] = eπ(s, a).

Theorem 5.1.—Suppose Assumptions 1 to 6 hold. Let πn be the estimated 

policy (2.3) in which the nuisance functions are estimated with tuning parameters 

μn = λn = μn
′ = λn

′ = Ln−1/(1 + α), for some constant L > 0. Define βk = 1
1 + α 1 − (1 − α)2−k + 1 . Fix 

any integer k ≥ 2, δ ∈ (0, 1) and sufficiently large n. With probability at least 1 − δ, we have

Regret πn ≤ C(δ) p1/2n−1/2 + pn−βk ,

where C(δ) is a function of k, L, Fmax, Gmax, LΘ, diam(Θ), supπ ∈ ΠJ1(H
π), supπ ∈ ΠJ1(Q

π), 

supπ ∈ Π ωπ , α, constants C0, C1, C2, C3, C2
′ , C3

′ , κ, κ′, β, pmin and ‖dT + 1
dD

‖
∞
.

Remark 9.—Recall that p is the number of parameters in the policy, α is given in 

(4–4), and n is the number of trajectories in the data. Theorem 5.1 shows that when 

the tuning parameters are of the order O(n−1/(1+α)), the regret of the estimated policy is 

O p1/2n−1/2 + pn−βk . The leading term (in terms of n), O( p/n), corresponds to the regret of 

an estimated policy as if the nuisance functions are known beforehand. The second term is 

due to the estimation error of nuisance functions. In particular, we show in Theorem B.1 in 

Section B of the appendix that the uniform estimation error of the relative value function is 

of O(pn−1/(1+α)) and in Theorem B.2 in the same section that the uniform estimation error of 

ratio is of O pn−βk  (see the remark after Theorem B.2 for why the rate depends on k). Note 

that the error of ratio is the dominant term as βk < 1/(1 + α) and βk can be chosen arbitrarily 

close to 1
1 + α  by choosing a sufficiently large k. Therefore the proposed ratio estimator can 

achieve the near-optimal nonparametric convergence rate. See the proof of Theorem B.2 in 

Section B.1 of the appendix for more details. To the best of our knowledge, this is the first 

result that characterizes the regret of the estimated optimal in-class policy in the infinite 

horizon setting.
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5.2. Asymptotic results.

In this section, we prove that the average reward for our estimator of the optimal policy 

converges to the optimal average reward at a parametric rate (i.e., n). Recall ϕπ(D) is the 

efficient influence function of ηπ given in Theorem 3.1.

Theorem 5.2.—Suppose Assumptions 1 to 6 hold. For each n ≥ 1, let ηn
π be the doubly 

robust estimator defined in (3.6) and πn be the estimated policy defined in (2.3) with tuning 

parameters μn = λn = μn
′ = λn

′ = Ln−1/(1 + α), for some constant L > 0. Then as n → ∞,

i. n ηn
π − ηπ :π ∈ Π G(π) in l∞(Π) where G(π) is a zero mean Gaussian Process 

with covariance function C :Π × Π ℝ, C π1, π2 = E ϕπ1(D)ϕπ2(D) .

ii. n(ηn
πn − supπ ∈ Πηπ) supπ ∈ ΠmaxG(π), where G(π) is the Gaussian Process defined 

above and Πmax = argmaxπ ∈ Πηπ is the set of policies that maximize the average 

reward in Π.

Remark 10.—The first result shows that the estimated average reward by the doubly robust 

estimator reaches the semiparametric efficiency bound when we plug in the estimator for the 

two nuisance functions. The double robustness structure ensures that the estimation error of 

nuisance functions is only of lower order and does not impact the asymptotic variance of the 

estimated average reward. The second result shows the asymptotic of the estimated optimal 

value, ηn
πn, converges to the maximum of the Gaussian process at the optimal policies. When 

there is a unique optimal policy π∗ = argmaxπ ∈ Πηπ, we have n(ηn
πn − ηπ∗) weakly converges to 

a Gaussian distribution. Estimating the limiting distribution could be challenging (especially 

when there exists non-unique policies) and is left for future work. Alternatively one can 

consider resampling-based method to construct confidence interval for supπ ηπ (see the 

recent work by Wu and Wang (2020) in single-stage problem).

6. Practical Implementation.

In this section, we describe an algorithm to estimate an in-class optimal policy based on our 

efficient average reward estimator ηn
π. Without loss of generality, we consider a binary-action 

setting, i.e., A = 0, 1 , and the following stochastic parametrized policy class Π indexed by 

θ:

Π = π |π(1 |s, θ) = exp sTθ
1 + exp sTθ , ∥ θ ∥∞ ≤ c, θ ∈ ℝp ,

for some pre-specified constant c > 0. Note that other link functions such as the probit 

function might be used here instead. Here ∥ · ∥∞ refers to sup-norm in Euclidean space. 

We fix c = 10 throughout our paper. In addition, we set ℱ and G in the estimation of 

both value and ratio functions to be Reproducing Kernel Hilbert Spaces (RKHSs) associated 

with Gaussian kernels because of the representer theorem and the property of universal 

consistency.
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The constraint on θ, ∥θ∥∞ ≤ c, is used to maintain sufficient stochasticity in our learned 

policy. The stochasticity facilitates the use of πn as a “warm start” policy for use by an 

online algorithm with future individuals. A nice side effect is that the restriction on θ 
provides a computational stability and can avoid degenerative cases in policy optimization 

similar to that when using logistic regression in classification problems (Friedman, Hastie 

and Tibshirani, 2001). As discussed in the introduction, we consider the simple policy class 

Π instead of nonparametric models such as neural networks or tree-based models mainly 

due to the concern of overfitting. In the batch setting, data are limited and often noisy. 

Using flexible function classes for modeling the policy may lead to overfitting and thus the 

variance of the resulting policy could be very large. The use of a simple policy class can 

reduce the variance while it may induce some possible bias. In addition, interpretability is 

critical in our batch policy learning problem. The interpretability of decision tree models 

are often not very stable, whereas neural networks are not very interpretable. Therefore we 

prefer using this simple policy class Π.

To obtain πn ∈ Π, we solve a multi-level optimization problem (6.1)–(6.5). Recall a multi-

level optimization problem (Richardson, 1995) is a optimization problems in which the 

feasible set is implicitly determined by a sequence of nested optimization problems. It 

typically consists of an upper level optimization task that represents the objective function, 

and a series of (possibly nested) lower level optimization tasks that represents the feasible 

set.

Upper level optimization task:

max
π ∈ Π

ℙn (1/T )∑t = 1
T ωn

π St, At Rt + 1 + Un
π St, At, St + 1

ℙn (1/T )∑t = 1
T ωn

π St, At

(6.1)

Lower level optimization task 1:

(η n
π, Qn

π) = argmin
(η, Q) ∈ ℝ × ℱ

ℙn
1
T ∑

t = 1

T
gn

π St, At; η, Q 2 + λnJ1
2(Q) (6.2)

s.t . gn
π( ⋅ , ⋅ ; η, Q) = argming ∈ G ℙn

1
T ∑

t = 1

T
δπ Zt; η, Q − g St, At

2 + μnJ2
2(g) (6.3)

Lower level optimization task 2:

Hn
π( ⋅ , ⋅ ) = argmin

H ∈ ℱ
ℙn

1
T ∑

t = 1

T
gn

π St, At; H 2 + λn
′J1

2(H) (6.4)
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s.t . gn
π( ⋅ , ⋅ ; H) = argmin

g ∈ G
ℙn

1
T ∑

t = 1

T
Δπ Zt; H − g St, At

2 + μn
′J2

2(g) . (6.5)

As a reminder, recall that in Section 4 we have defined

δπ Zt; η, Q = Rt + 1 + ∑
a′

π a′ |St + 1 Q St + 1, a − Q St, At − η,

Un
π St, At, St + 1 = ∑

a ∈ A
π a |St + 1 Qn

π St + 1, a − Qn
π St, At ,

and

Δπ Zt; H = 1 − H St, At + ∑
a′

π a′ |St + 1 H St + 1, a′ .

Also, the ratio estimator ωn
π can be obtained from Hn

π( ⋅ , ⋅ ) by using (4.10).

The upper optimization task (6.1) is used to search for πn and the two parallel lower 

optimization tasks (6.2)–(6.3) and (6.4)–(6.5) are used to compute two nuisance function 

estimators for a given π ∈ Π, i.e., the feasible set, respectively. Note that each nuisance 

function estimation is itself a nested optimization sub-problem. Multi-level optimization 

problems in general cannot be computed by iteratively updating solutions to lower problems 

(6.2)–(6.3) and (6.4)–(6.5), and solutions to the upper problem (6.1), in a similar manner 

to coordinate descent. Hence, in order to solve this problem, one common approach is to 

replace the inner optimization problems (6.2)–(6.3) and (6.4)–(6.5) by their corresponding 

Karush-Kuhn-Tucker (KKT) conditions so that the overall problem can be equivalently 

formulated as a nonlinear constraint optimization problem. However, this approach can 

be computationally expensive and may not be suitable for large scale settings. Instead 

we overcome this computational obstacle by using the representer theorem and obtain 

the closed-form solutions for our inner optimization problems (6.2)–(6.3) and (6.4)–(6.5) 

respectively. After plugging these closed-form solutions into (6.1), we can use a gradient-

based method to find πn.

6.1. RKHS reformulation.

In the following subsection, we briefly discuss how to simplify our multi-level optimization 

problem (6.1) using the representer theorem. The details of computation can be found 

in Appendix E. For the ease of illustration, we rewrite the training data Dn into tuples 

Zℎ = Sℎ, Aℎ, Rℎ, Sℎ
′  where h = 1, . . . , N = nT indexes the tuple of the transition sample 

in the training set Dn, Sh and Sℎ
′  are the current and next states and Rh is the associated 

reward. Let Wh = (Sh, Ah) be the state-action pair, and W ℎ
′ = Sℎ, Aℎ, Sℎ

′ . Suppose the kernel 

function for the state is denoted by k0(s1, s2), where s1, s2 ∈ S. In order to incorporate the 

action space, we can define k s1, a1 , s2, a2 = 1 a1 = a2 k0 s1, s2 . Basically, we model each Q(·,a) 
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separately for each arm in the RKHS with the same kernel k0. Recall that we have to restrict 

the function space ℱ such that Q(s*, a*) = 0 for all Q ∈ ℱ so as to avoid the identification 

issue. Thus for any given kernel function k defined on S × A, we make the following 

transformation by defining k(Wh, Wj) = k0(Wh, Wj) − k0((s*, a*), Wh) − k0((s*, a*), Wj) + 

k0((s*, a*),(s*, a*)) for any 1 ≤ h, j ≤ N. One can check that the induced RKHS by k(·,·) 

satisfies the constraint in ℱ automatically.

We denote kernel functions for ℱ and G by k(·,·), l(·,·) respectively. The corresponding 

inner products are defined as ⋅ , ⋅ ℱ and ⋅ , ⋅ G. We first discuss the inner minimization 

problem (6.2)–(6.3). Note that this is indeed a nested kernel ridge regression problem, 

different from the standard ridge regression. The closed form solution can be obtained as 

gn
π( ⋅ , ⋅ ; η, Q) = ∑ℎ = 1

N l W ℎ, ⋅ γ (η, Q). In particular, γ (η, Q) = L + μIN
−1δN

π (η, Q), where Q ∈ ℱ
and L is the kernel matrix induced by l, μ = μnN, and δN

π (η, Q) = δπ Zℎ; η, Q ℎ = 1
N  is a vector of 

TD error. Each TD error can be further written as δπ Zℎ; η, Q = R − η − Q, fW ℎ′ ℱ where

fW ℎ′ ( ⋅ ) = k W ℎ, ⋅ − ∑
a′

π a′ |Sℎ
′ k Sℎ

′ , a′ , ⋅ ∈ ℱ ( S × A )

It can be shown that Qn
π
 in (6.2) must be in the linear span 

{∑ℎ = 1
N αℎfW ℎ′ ( ⋅ ):αℎ ∈ ℝ, ℎ = 1, …, N} by using the representer property.

Then we can solve the optimization problem (6.2)–(6.3). The solutions for {Un
π W ℎ

′ }ℎ = 1

N
 can 

be found as −F (π)α(π) where F (π) = (〈fW ℎ′ , fW j′〉ℱ)j, ℎ = 1
N  is a N by N matrix and α(π) is the 

vector of coefficients with a closed-form expression (see Appendix E for details). Similarly, 

we can compute the closed-form solutions {gn
π(W ℎ, Hn

π)}ℎ = 1
N

 to the problem (6.4)–(6.5) as 

Lν(π). Here ν(π) is the corresponding estimated coefficients associated with the kernel 

matrix L. The details can be found in appendix E. Note that all of these intermediate terms 

except for L depends on the policy π.

Summarizing together and plugging all the intermediate results into (6.1), the multi-level 

optimization problem can be simplified as:

max
π ∈ Π

(ν(π))⊤L RN − F (π)α(π)
ν(π)⊤L1N

, (6.6)

where 1N is a length-N vector of all ones.

6.2. Optimization.

Note that problem (6.6) becomes a smooth nonlinear optimization with box constraints. 

We use limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm with box constraints 

(L-BFGS-B) to compute the solution θ  (Liu and Nocedal, 1989). The gradient computing 

is provided in appendix. The computational complexity/operations of our algorithm is of 

order ΥN3p, where Υ is the number of iterations in our optimization algorithm. The memory 

requirement is of order N2p. One may implement some sub-sampling methods such as 
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stochastic gradient decent to further improve both computation and memory complexity of 

our algorithm. We will leave it for future work. Although the overall optimization problem 

is non-convex and, thus an optimal solution may not be achievable, the performance of our 

numerical experiments in the following section are quite stable and promising. Recently, 

there is a growing interest in studying statistical properties of algorithm-type of nonconvex 

M-estimators, e.g., (Mei et al., 2018; Loh et al., 2017). For many practical applications, 

gradient decent methods with a random initialization have been demonstrated to converge to 

local minima (or even global minima) that are statistically good. While this is not the focus 

of our paper, it will be interesting to pursue toward this direction for future research such as 

studying the landscape of ηπ and its related properties.

6.3. Tuning parameters selection.

In this subsection, we discuss the choice of tuning parameters in our method. The 

bandwidths in the Gaussian kernels are selected using median heuristic, e.g., median of 

pairwise distance (Fukumizu et al., 2009). The tuning parameters (λn, μn) and λn
′ , μn

′  are 

selected based on 3-fold cross-validation. Given assumptions in Theorems B.1 and B.2 of 

the appendix that these tuning parameters are independent of the policy π, we can select 

them for the ratio and value functions separately. Specifically, for the tuning parameters (λn, 

μn) in the estimation of value function, we focus on (6.2)–(6.3). For the tuning parameters 

λn
′ , μn

′  in the estimation of ratio function, we focus on (6.4)–(6.5). At the first glance, one 

may think the selection of tuning parameters will be the same as those in the standard 

supervised learning. However, this actually requires an additional step as we cannot observe 

responses when estimating these two coupled estimators (recalled that we need to first 

compute projected bellman errors), in contrast to the standard kernel regression setting. In 

the following, we discuss our selection procedure of (λn, μn) and λn
′ , μn

′  with more details.

Algorithm 1:

Tuning parameters selection via cross-validation

1 Input: Data Zℎ ℎ = 1
N

, a set of M policies {π1, · · ·, πM} ⊂ Π, a set of J candidate tuning parameters 

μj, λj j = 1
J

 in the value function estimation, and a set of J candidate tuning parameters {(μj
′, λj

′)}j = 1
J

 in 
the ratio function estimation.

2 Randomly split Data into K subsets: Zℎ ℎ = 1
N = Dk k = 1

K

3 Denote e(1) (m, j) and e(2) (m, j) as the total validation error for m-th policy and j-th pair of tuning parameters in 
value and ratio function estimation respectively, for m = 1, · · · M and j = 1, · · ·, J. Set their initial values as 0.

4 Repeat for m = 1, · · ·, M,

5  Repeat for k = 1, · · ·, K,

6   Repeat for j = 1, · · ·, J

7    Use Zℎ ℎ = 1
N \Dk to compute ηn

πm, α πm  and ν(πm) by (6.2)–(6.3) and (6.4)–(6.5) using tuning 

parameters (μj, λj) and (μj
′, λj

′) respectively;

8
   Compute δπm( ⋅ ; η πm , Qn

πm) and επm( ⋅ ; Hn
πm) and their corresponding squared Bellman errors mse(1) 

and mse(2) on the dataset Dk by Gaussian kernel regression;

9    Assign e(1) (m, j) = e(1) (m, j) + mse(1) and e(2) (m, j) = e(2)(m, j) + mse(2);

10 Compute j(1)* ∈ argminj maxm e(1) (m, j) and j(2)* ∈ argminj maxm e(2) (m, j)
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11 Output:(μj(1) ∗
(1) , λj(1) ∗

(1) ) and (μj(2) ∗′ , λj(2) ∗′ ).

We first randomly choose a set of candidate policies used to gauge our tuning parameters. 

For each candidate policy, π, in this set, we can firstly estimate ηn
π, α(π)  by the proposed 

method using two folds of data. Then for the value function estimation, we calculate 

temporal difference errors δπ ⋅ ; ηn
π, α(π)  for each transition sample in the validation set. 

Since we cannot observe/calculate the true bellman error, following the idea in (Farahmand 

and Szepesvári, 2011), we estimate the Bellman error by projecting these temporal 

differences on the space of S × A in the validation set using the standard Gaussian kernel 

regression. Thus for each policy π and each pair of tuning parameters, we output the squared 

estimated Bellman error in the validation set as a criterion to evaluate the performance of 

our value function estimation. Since tuning parameters are assumed independent of policies, 

we then select the tuning parameters that minimize the worst case of estimated Bellman 

errors among the set of all candidate policies. We use the same strategy to select the tuning 

parameters for our ratio estimation. The details are given in the Algorithm 1. Without the 

independent assumptions of tuning parameters from the policies in Π, one may alternatively 

choose these tuning parameters jointly by maximizing ηn
π on the validation set, which 

requires large computational costs and we omit here. But it would be very interesting to 

study the theoretical properties of these two cross-validation procedures, or more generally, 

the selection of tuning parameters in the framework of couple estimation, which we leave it 

as future work.

7. Simulation Studies.

In this section, we consider two scenarios to evaluate the proposed algorithm. For both 

scenarios, we consider St = (St,1, St,2, St,3) as a three-dimensional state at each decision 

point t, and the action space is binary, i.e., A = 0, 1 . The behavior policy used to generate 

actions follows Bernoulli distribution with equal probabilities. In addition, the initial state S1 

is sampled from standard multi-variate normal distribution, i.e., S1 ∼ MV N(0, I4)

The first scenario we consider is a standard MDP setting. Let ξt follows a standard 

multivariate normal distribution. Then we generate the transition of states and reward 

functions via following models:

St + 1, 1 = 0.5St, 1 + 2ξt, 1,

St + 1, 2 = 0.25St, 2 + 0.125At + 2ξt, 2,

St + 1, 3 = 0.9St, 3 + 0.05St, 3At + 0.5At + ξt, 3,
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Rt + 1 = 10 − 0.4St, 3 + 0.25St, 1At × 0.04 + 0.02St, 1 + 0.02St, 2 + 0.16ξt, 4,

for t = 1, · · ·, T. Here St,3 can be interpreted as the treatment burden or fatigue.

The second scenario we consider is a non-stationary environment. In particular, we consider 

the same transition models as above, but let the reward function to be time-dependent. More 

specifically, we consider

Rt + 1 = 10 − τtSt, 3 + βtSt, 1At 0.04 + 0.02St, 1 + 0.02St, 2 ,

where the time-varying parameters βt = 0.25×exp(−0.05(t−1)) and τt = 0.4×exp(−0.05(t−1)). 

This generative model represents the scenario in which as the study progresses, the overall 

impact of intervention is decreasing. Note that since the reward function is non-stationary, 

we do not have a guarantee for our proposed algorithm to find an optimal policy.

We compare with four baseline methods, which were proposed in the setting of the 

discounted sum of rewards. The first two are recently proposed deep off-policy RL 

algorithms (Fujimoto, Meger and Precup, 2019; Kumar et al., 2019) denoted by BCQ 

and BEAR respectively. The underlying idea behind these two state-of-art algorithms is to 

conservatively estimate the optimal Q-function on the less explored state-action pair and 

restrict the resulting policy close to the behavior one. The third method is the celebrated 

fitted-Q iteration (FQI) method proposed by Ernst et al. (2005). At each iteration, relying 

on the optimal Bellman equation, FQI algorithm updates the estimation of the optimal Q-

function via solving a supervised learning problem. The last method is V-learning proposed 

by (Luckett et al., 2019), which also aims to learn an optimal in-class policy. Since our 

goal is to maximize the long-term average reward, we set the discount factor γ in these 

four methods as 0.99 to approximate the average reward for comparison. In addition, to 

draw a relatively fair comparison, we implement these four methods using the same policy 

class as ours. Specifically, the first three methods will output an estimation of the optimal 

Q-function (defined in the discounted setting), after which we implement a weighted logistic 

regression to estimate the optimal in-class policy. For V-learning, we keep the default setup 

and use the same policy class as ours. Finally, for BEAR and BCQ, we use two-hidden 

layers neural networks with 32 nodes for each and ReLU activation functions to model the 

optimal Q-function. The other hyper-parameters are either tuned for their best performance, 

or recommended in the official implementation as robust choices. For FQI, we implement 

a kernel ridge regression at each iteration with tuning parameters selected similar to our 

nuisance parameter estimation.

To demonstrate the performance of our algorithm compared with other methods, we 

consider different combinations of the number of trajectories n and the length of each 

trajectory T. Specifically, we consider (n, T) = (40, 50), (40, 100), and (80, 50). Once 

all estimated policies are obtained, we generate another 100 test samples with the length 

of trajectories 1000 using all learned policies and compute the corresponding empirical 

average of observed rewards. In order to compare results with the best in-class stationary 

policy, we combine the gradient-type optimization algorithm with Monte Carlo method to 
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estimate the best in-class policy that can maximize Eπ 1
1000 ∑t = 1

1000 Rt + 1 . Specifically, for each 

policy with parameter θ, we generate a sample of n = 100 and T = 1000 to approximate 

Eπ 1
1000 ∑t = 1

1000 Rt + 1  by the empirical average of rewards. Then we apply L-BFGS algorithm 

and require θ to be between −10 to 10 to search for the best in-class stationary policy, which 

is treated as the oracle policy.

Results of the above two scenarios can be found in Table 1. As we can see, our algorithm 

performs well in finding optimal in-class stationary policies, compared with the other four 

baseline methods. Compared with the oracle one with the best average reward about 10, the 

regret of our algorithm is almost the smallest among all these methods, which is expected 

as we aim to maximize the average reward while the other four methods are for maximizing 

the discounted sum of rewards. For BEAR and BCQ with neural network models, due to the 

relatively small sample size and a large discount factor γ, the performances seem unstable. 

FQI and V-learning methods overall show competitive performances. But it can be seen that 

V-learning may suffer some large variance. In addition, one possible reason for the high 

quality performance of our method in Scenario 2 is that the time-dependent effect in reward 

function is exponentially decaying by our design. Therefore we expect the performance of 

our algorithm may not be affected severely by the non-stationarity. In addition, it can be seen 

that as the sample size n or the length of each trajectory T increases, the average rewards 

of our estimated policies are also improved, demonstrating the appealing performance of the 

proposed method. Finally, we remark that the maximum running time of our method for one 

replication in our simulation studies is less than 40 minutes.

8. Application to mobile health.

We apply the proposed method to HeartSteps. HeartSteps is mobile health application 

focusing on physical activity. Three studies were conducted to develop the intervention. In 

this work, we apply the proposed method to the data collected from the first study, which we 

will refer to as HS1 in the throughout. HS1 is a 42-day micro-randomized trial (Klasnja et 

al. (2015); Liao et al. (2016)). Each participant was provided with a Jawbone wrist tracker to 

collect step count data and specified five decision times, roughly 2.5 hours apart during each 

day, that would be good times to potentially receive contextually tailored activity suggestion 

message. In HS1, the activity message was sent with a fixed probability 0.6 at each of the 

five decision times. Our goal is to use HS1 data to learn a treatment policy that determines at 

each decision time whether to send the activity message (i.e., binary action).

We construct the state variable using the previous step count (the 30-min step count prior 

to the decision time and from yesterday), location, temperature and past notifications. We 

set the reward to be the log transformation of the step count in 30-min window after each 

decision time. In this analysis, we include 37 participants’ data and exclude the decision 

times when participants were traveling abroad or experiencing technical issues or when the 

reward (i.e., post 30-min step count) was considered as missing (Klasnja et al., 2018).

Next, we construct the policy class. In this analysis, we include two state variables in 

the policy. The first variable is the location (home/work vs. other locations). Location is 
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important because people, in a more structured environment (i.e. at home or work), may 

respond better to an activity suggestion as compared to when they are at other locations. 

As a proxy for participant burden, the second variable included in the policy is “dosage”, a 

discounted sum of the number of past activity messages sent with the discount rate chosen 

as 0.95. The rationale for using this variable is that receiving too many notifications in the 

recent past is likely to decrease the effectiveness of sending the activity message due to over-

burdening participants. We consider the policy class of the form πθ(1|s) = expit(θ⊤ϕ(s)), θ 
∈ Θ, where the feature vector ϕ(s) = (1, dosage, location) and Θ is the box constraint within 

−10 and 10. Here dosage is standardized to be within 0 and 1.

We apply the proposed method with the tuning parameter selected by cross-validation in 

Algorithm 1. The estimated coefficients are [10, −10, −4.788]. Figure 1 shows the estimated 

policy at different combination of dosage and location. As one would expect, the learned 

policy tends to send fewer suggestions if the participant received many suggestions in the 

recent past. Also, the policy indicates that it is more effective to send the message when 

the user is at home/work location. The estimated average reward of this policy is 3.301. 

As a comparison, the estimated average reward of the simple location-based policy (i.e., 

send only when the user is at home/work) is 3.15 and the send-nothing policy is 2.96. 

Transforming to the scale of the raw step count as that in (Klasnja et al., 2018), the 

learned policy can result in 16% (i.e., exp(3.301 − 3.15) − 1 = 0.16) improvement, which 

is equivalent to 40 more steps (the mean step count across all decision times in the data is 

248) compared with the simple location-based policy, and 40% (i.e., exp(3.301 − 2.96) − 1 = 

0.40) improvement, or equivalently 101 steps more, compared with the send-nothing policy. 

Lastly, we remark that the running time of our real data analysis is about 2 hours, which is 

acceptable in the batch setting. This is ultimately different from online RL domains where 

the policy is usually updated upon the arrival of each observation.

9. Discussion.

Double/Debiased machine learning

An alternative way to construct the estimator for the average reward is based on the 

idea of double/debiased machine learning (a.k.a. cross-fitting, Bickel et al. (1993) and 

Chernozhukov et al. (2018)). There is growing interest in using double machine learning 

in causal inference and in the policy learning literature (Zhao et al., 2019) in order to 

relax assumptions on the convergence rates of nuisance parameters. The basic idea is to 

split the data into K folds. For each of the K folds, construct the estimating equation by 

plugging in the estimated nuisance functions that are obtained using the remaining (K − 1) 

folds. The final estimator is obtained by solving the aggregated estimation equations. While 

cross-fitting requires weaker conditions on the nuisance function estimations, it indeed 

incurs additional computational cost, especially in our setting where nuisance functions are 

policy-dependent and we aim to search for the in-class optimal policy. Further, this sample 

splitting procedure may not be stable when the sample size is relatively small, e.g., in a 

typical mHealth clinical trial. A more efficient way of data splitting under the framework of 

MDP is needed, which we leave as future work
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Computation and optimization

Our current algorithm requires relatively large computation and memory because of the 

non-parametric estimation and the policy-dependent structure of nuisance functions. It is 

therefore desirable to develop a more efficient algorithm. One possible remedy is to consider 

a zero-order optimization method such as Bayesian optimization (Snoek, Larochelle and 

Adams, 2012), which is suitable when the dimension of state variables is small. Another 

possible way to improve the computational efficiency is to first apply some simple algorithm 

to estimate a sub-optimal policy, based on which we can implement our method to estimate 

two nuisance parameters. Then one can develop the performance difference lemma in terms 

of the average reward MDP, similar to that in the discounted setting (Kakade and Langford, 

2002), to construct a lower bound for V (π) using two estimated nuisance parameters. The 

last step is to optimize this lower bound for obtaining a better policy. This method may 

require less computational cost.

Tuning parameters/Model selection

In our proposed algorithm, we assume tuning parameters are independent of policies, based 

on which we develop a min-max cross-validation procedure for the selection of tuning 

parameters. Model selection in the offline RL setting, which is necessary for improving 

generalization of RL techniques, is often considered as a challenging task as there is no 

ground truth available for performance demonstration, in contrast to the online setting with 

simulated environment. Therefore, it will be interesting to systematically investigate how to 

perform model selection in offline RL and to provide theoretical guarantees.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
The estimated policy in HeartSteps data.
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Table 1

Monte Carlo estimation of the average rewards of the learned policy from proposed algorithm and three 
baseline offline RL algorithms over T = 1000 with 100 replications. Numbers in parentheses are corresponding 
standard deviations. The oracle in-class optimal average rewards for both scenario are about 10.002.

n T Our method BEAR BCQ FQI V-learning

Scenario 1

40 50 9.215 (0.133) 7.513 (0.044) 8.187 (0.067) 9.728 (0.007) 9.246 (0.470)

40 100 9.913 (0.050) 6.949 (0.053) 7.362 (0.068) 9.820 (0.028) 9.345 (0.476)

80 50 9.834 (0.052) 7.487 (0.033) 7.992 (0.059) 9.764 (0.005) 9.461 (0.457)

Scenario 2

40 50 9.243 (0.133) 9.128 (0.009) 9.426 (0.020) 9.579 (0.028) 9.834 (0.097)

40 100 9.905 (0.006) 9.508 (0.006) 9.692 (0.012) 9.858 (0.011) 9.840 (0.108)

80 50 9.919 (0.005) 9.141 (0.011) 9.384 (0.020) 9.652 (0.025) 9.873 (0.097)
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