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SUMMARY

Dynamic changes in protein-protein interaction (PPI) networks underlie all physiological cellular 

functions and drive devastating human diseases. Profiling PPI networks can, therefore, provide 

critical insight into disease mechanisms and identify new drug targets. Kinases are regulatory 

nodes in many PPI networks, yet facile methods to systematically study kinase interactome 

dynamics are lacking. We describe kinobead competition and correlation analysis (kiCCA), a 

quantitative mass spectrometry-based chemoproteomic method for rapid and highly multiplexed 

profiling of endogenous kinase interactomes. Using kiCCA, we identified 1,154 PPIs of 

238 kinases across 18 diverse cancer lines, quantifying context-dependent kinase interactome 

changes linked to cancer type, plasticity, and signaling states, thereby assembling an extensive 

knowledgebase for cell signaling research. We discovered drug target candidates, including 

an endocytic adapter-associated kinase (AAK1) complex that promotes cancer cell epithelial-

mesenchymal plasticity and drug resistance. Our data demonstrate the importance of kinase 

interactome dynamics for cellular signaling in health and disease.

INTRODUCTION

Proteins form dynamic protein-protein interaction (PPI) networks that cooperatively carry 

out their biological functions. PPI network topology is regulated at the level of protein 

abundance and through signaling events like protein post-translational modifications 

(PTMs), affecting network composition and connectivity.1,2 Numerous human diseases alter 
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signaling pathways and protein homeostasis, leading to the rewiring of PPI networks and 

disease progression.3–6 The 538 protein kinases in the human kinome are central players 

in cell signaling, embedded within large PPI networks that respond to physiological and 

pathological cues.7–10 Greater understanding of how the kinome integrates with cellular PPI 

networks can provide insights into physiological processes, identify disease mechanisms, 

and discover specific kinase complexes that are unique drivers of disease; such complexes 

may serve as valuable, novel drug targets and biomarkers.11

Large-scale maps of PPI networks have been generated with mass spectrometry (MS)-based 

approaches like affinity purification (AP)-MS12,13 and proximity labeling-MS methods 

like BioID14,15 and APEX.16–18 However, AP-MS and proximity labeling-MS lack the 

necessary throughput and multiplexing capabilities to globally profile PPI network dynamics 

across many samples and conditions. Furthermore, these methods typically require the 

expression of epitope-tagged proteins, which can interfere with native cell signaling and is 

difficult to implement in primary cells and tissues. Size-exclusion chromatography-MS19 

and protein crosslinking-MS20 allow multiplexed detection of native protein complexes, 

but currently lack the required sensitivity to detect low-abundance PPIs such as kinase-

dependent signaling and transcription factor complexes.17 Sensitive and high-throughput 

methods are urgently needed to map native kinase PPIs and their dynamic interactomes.

To address this need, we developed kinobead competition and correlation analysis (kiCCA), 

a MS-based chemoproteomic method for rapid and highly multiplexed profiling of native 

kinase PPIs in cell and tissue lysates. kiCCA uses a panel of multi-targeted kinase probes 

to compete kinases and their interaction partners from immobilized kinase inhibitor beads 

(kinobeads or multiplexed inhibitor beads, MIBs)21–25 to identify kinase PPIs. We used 

kiCCA to systematically map kinase interactomes in 18 diverse cancer cell lines and to 

interrogate PPI changes in the context of cancer type, plasticity, and signaling states; 

this revealed that PPI network topologies are highly dynamic and context dependent. 

Through our profiling efforts, we identified and quantified 1,154 high-confidence PPIs 

between 238 kinases and 684 non-kinase proteins, which we compiled into an extensive and 

easily accessible kinase interactome knowledgebase (Table S3 and https://quantbiology.org/

kiCCA).

Using this knowledgebase, we discovered that kinase PPIs can describe kinase functional 

states and their integration into signaling pathways. We found that cancer cells showing 

epithelial-mesenchymal plasticity (EMP) and increased therapy resistance26–28 drastically 

rewired their kinase PPI networks. Specifically, we found that EMP altered endocytic and 

vesicle trafficking pathways that are controlled by an adapter-associated kinase 1 (AAK1) 

interaction network. RNAi-mediated knockdown of AAK1 complex components affected 

EMP marker expression and greatly sensitized cancer cells to targeted therapy, highlighting 

that kiCCA can provide actionable leads for drug target discovery. Collectively, our kiCCA 

method and kinase interactome knowledgebase are invaluable tools for studying kinase PPI 

networks and can help understand how signaling events influence disease states.
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RESULTS

kiCCA, a method for rapid and highly multiplexed profiling of native kinase interactomes

We and others have shown that kinobeads enrich kinases along with their 

interactors,21,25,29–31 yet assigning iterators to specific kinase complexes remained 

challenging. We demonstrated that selective, ATP-competitive kinase inhibitors (KIs) can 

be used to identify specific kinase interactors by monitoring the co-competition of kinases 

and non-kinase proteins (Figure 1A).32,33 We reasoned that if one selective KI displaces 

a protein complex from the kinobeads, then broadly selective KIs will compete for 

multiple kinase complexes in a single experiment. By correlating abundances of kinases and 

their interaction partners across a panel of competition experiments using multiple broad-

selectivity KIs with orthogonal kinase binding affinities, hereafter referred to as kinase 

interactome probes (KIPs), our kiCCA approach would simultaneously identify hundreds of 

kinobead-bound kinase complexes (Figure 1B).

To identify suitable KIPs, we collated kinobead competition data (i.e., MS intensity ratios) 

from a study profiling targets of 243 KIs22 and applied pairwise Pearson correlation of MS 

intensity ratios for all KIs, followed by unsupervised hierarchical clustering of the resulting 

matrix of r-values (Table S1); this identified 12 distinct groups of KIs with orthogonal 

kinome binding profiles. On average, clusters 1–5, 8–10, and 12 contained more broadly 

selective inhibitors compared to clusters 6, 7, and 11. Consequently, we chose one to five 

KIs from clusters 1–5, 8–10, and 12 to obtain 21 KIPs with broad kinome coverage (Figure 

2A and Table S1).

To validate that our KIPs compete most expressed kinases, we evaluated their kinome 

selectivity, each at a single high concentration in HeLa cell lysate (10–50 μM, STAR 

Methods) using our kinobead/LC-MS workflow and label-free quantification.23,32 Of the 

232 kinases quantified, 199 (86%) were efficiently competed by at least one KIP (log2 

MS Intensity ratio >0.75, two sample t-test p < 0.1, n = 2) and kinase binding profiles 

of individual KIPs were highly dissimilar (average Pearson’s r-value = 0.27, Figures S1A, 

S1B and Table S2). Because highly homologous kinases like the adenosine monophosphate-

activated kinases AMPK1 and 2 (PRKAA1 and 2) showed very similar KIP binding profiles 

(Pearson’s r ≥ 0.9), we combined these kinases into 54 groups of two to four members, with 

the other 239 kinase groups comprising one member each (293 kinase groups total, Figure 

S1C, Table S2, STAR Methods). Our results show that by binding and competing kinases of 

all major families, our 21 KIPs can broadly identify kinase PPIs in kiCCA.

kiCCA accurately and broadly identifies native kinase PPIs

Seeing that our KIPs competed not only kinases but also non-kinase proteins in HeLa cell 

lysate, we next sought to identify specific kinase PPIs in our HeLa data using correlation 

analysis (Figure 1B, STAR Methods). We correlated the MS intensity values of all 199 

competed kinases and 573 co-competed non-kinase proteins across the 21 KIP panel and 

the DMSO control experiment and called the kinase group showing the highest Pearson’s 

r-value for each non-kinase protein its most likely interactor. Matching the resulting list of 

PPIs with the BioGRID protein interaction database v.4.4.20034, the BioPlex 3.0 dataset13, 
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and the kinome-centric AP-MS dataset from Buljan et al.12 showed that 144 of 573 

kiCCA interactions had been previously reported, with independent validation for 58 of 

these. Validated PPIs had highly positive Pearson’s r-values (median r = 0.88, Figure 2B 

and Table S3), demonstrating that kiCCA can identify known kinase PPIs. Previously 

reported but unvalidated kinase PPIs showed a bimodal distribution of r-values, with 

many kiCCA interactions showing high r-values (n = 38, r > 0.5). In contrast, unreported 

kiCCA interactions generally had low r-values (median r = 0.43) although a tail of kiCCA 

interactions with highly positive r-values suggested that novel kinase PPIs were identified 

(Figure 2B). Importantly, previously reported, and validated interactions were distributed 

among 37 distinct kinase groups from all kinome sub-families, showing that kiCCA achieves 

broad and unbiased coverage of kinase PPIs (Figures 2C and S1D, Table S3).

To explore kiCCA’s ability to identify kinase interactomes across different model systems, 

we analyzed 17 additional cell lines representing distinct types of cancers, including 

carcinoma (10 HCC lines), neuroblastoma (SK-N-SH and SH-SY5Y), glioblastoma (A172), 

osteosarcoma (U2-OS), as well as myeloid malignancies such as chronic myeloid leukemia 

(K562), mantle cell lymphoma (JeKo1), and T-cell leukemia (Jurkat, Tables S2 and S3). 

Across all 18 lines, our KIPs competed 357 kinases (66% of the human kinome) and 4136 

non-kinase proteins. kiCCA identified 10,791 interactions of these proteins with 294 kinase 

groups, of which 1783 PPIs were previously reported.12,13,34 The kiCCA data from our full 

cell line panel recapitulated our observations in HeLa cell lysates (Figure S1E). Comparing 

the r-value distributions of reported and unreported interactions from each of the 18 cell 

lines using Kolmogorov–Smirnov (KS)-tests (Figure S2), we found that most reported PPIs 

were identified above a median Pearson’s r-value ≥ 0.594, and that hundreds of unreported 

PPIs had r-values surpassing this threshold (Figure S1E, Tables S2 and S3). We concluded 

that an r-value of > 0.6 identifies kinase PPIs, both previously reported and unreported, with 

high confidence.

Applying our r > 0.6 selection rule to our kiCCA dataset of 18 diverse cancer lines, we 

mapped 1,154 high confidence kinase PPIs, of which 692 interactions (60%) were not 

previously reported. Each kinase group interacted on average with six proteins, with the 

casein kinase 2 group (CK2 or CSNK2A1, 2, and 3) forming the largest interaction network 

of 88 members (Figure 2E and Table S3). For proteins interacting with several kinases, 

we introduced a compound score, hereafter referred to as the kiCCA score, to identify its 

most likely kinase interactor. This kiCCA score considers both the kiCCA r-value and the 

frequency of identification across our 18-cancer line panel (STAR Methods) and can be 

used to annotate kinase PPIs in kinobead/LC-MS profiling data. For example, while 14–3-3 

binding protein YWHAZ can interact with multiple kinase groups, including the MAP3K2/3 

(kiCCA score = 0.21) and the PDPK1/2 group (kiCCA score = 0.08), the higher kiCCA 

score suggested that the MAP3K2/3-YWHAZ PPI is the more likely interaction (Table S3).

To experimentally validate the accuracy of kiCCA, we performed co-

immunoprecipitation/MS (Co-IP/MS) experiments in the U2-OS osteosarcoma line using 

antibodies specific to the catalytic CK2α subunit and the regulatory CK2β subunit, as well 

as GFP (control). kiCCA identified 31 CK2 interactions in U2-OS cells, and our antibody-

based Co-IP/MS study confirmed 24 (83%) of these interactions (Figures 2F, S3A, and Table 
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S3). Collectively, these results highlight the high accuracy of kiCCA and its potential to 

identify cancer cell-type specific kinase PPIs.

kiCCA quantifies kinase interactome changes linked to cancer cell plasticity

Cancer cells dramatically rewire signaling pathways in response to drugs and changing 

conditions in the tumor microenvironment, resulting in cellular plasticity that promotes 

therapy escape and metastasis.24,26,28 To explore if kiCCA can quantify differences in 

kinase interactomes associated with pathway rewiring and plasticity, we compared the 

abundances of high confidence kiCCA PPIs between related cell lines with distinct 

phenotypic marker gene expression (Figure S3B). From our 18-cell line panel, we chose the 

neuroblastoma line SK-N-SH and its subclone SH-SY5Y as models of cancer cell plasticity. 

Previous reports showed that the parental SK-N-SH line has mesenchymal stem cell-like 

characteristics, whereas SH-SY5Y exhibits a noradrenergic neuronal phenotype, suggesting 

the noradrenergic-mesenchymal plasticity (NMP) of these lines (Figure 3A).35,36 Our own 

analysis of mRNA expression data from the Cancer Cell Line Encyclopedia (CCLE)37 

confirmed high expression of mesenchymal and low expression of noradrenergic neuronal 

markers in SK-N-SH compared to SH-SY5Y cells (Figure S3B and C). Furthermore, our 

differential expression analysis (DEA, STAR Methods) of kinases confirmed that SK-N-SH 

cells express a kinome profile typical for mesenchymal-like cancer cells, including high 

expression of the receptor tyrosine kinase UFO (AXL) and the transforming growth factor 

β receptor TGFBR2,31 whereas SH-SY5Y cells show high expression of neuronal-specific 

kinases like the anaplastic lymphoma kinase ALK and the β-adrenergic receptor kinase 

ADRBK2 (Figure 3A and Table S4, Student’s t-test, Benjamini-Hochberg (BH)-FDR < 

0.05, n = 22). Together, these results suggested that neuroblastoma line NMP is associated 

with wide-spread changes in kinase expression and a rewiring of kinome-dependent 

signaling networks.

To clarify if kinome rewiring was accompanied by kinase interactome changes, we next 

subjected high confidence kiCCA PPIs in the two neuroblastoma lines to DEA. We 

discovered that NMP affected interactions between 44 kinase groups and 90 proteins 

(Figures 3B and S4), indicating that neuroblastoma cell plasticity caused widespread 

changes in PPI network topology. The largest rearrangements affected CK2, myosin 

light-chain kinase (MYLK), and cyclin-dependent kinase (CDK) networks (Table S4). 

Unlike alterations in kinase abundance, changes in interactor abundance only weakly 

correlated with changes in mRNA expression between the two lines (CCLE data, R2 = 

0.18, Figure S5A), suggesting that changes in kinase PPI networks were caused by post-

translational events. For instance, 20 CK2 interactors significantly differed in abundance, 

half of them showing higher expression in SK-N-SH than SH-SY5Y cells, and vice versa, 

suggesting that CK2 integrated with distinct pathways in a NMP-dependent manner (Figure 

3C). Pathway enrichment analysis using STRING 11.538 showed that CK2 preferentially 

integrated into Polycomb repressive complex (PRC1)-like chromatin remodeling complexes 

in noradrenergic SH-SY5Y cells, while binding more to components of the eukaryotic 

translation initiation factor 3 (eIF-3) complex in SK-N-SH cells. Notably, the PRC1-like 

complex also contained the autism susceptibility candidate AUTS2 that together with CK2 

has been shown to alleviate transcriptional repression and promote expression of neuronal 
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genes, suggesting that CK2 promotes the neuroblastoma cell NMP program.39 To validate 

that kiCCA accurately quantified CK2 interactome rewiring and pathway integration, we 

used CK2α- and CK2β-targeted antibodies and Co-IP/MS to quantify abundance changes in 

CK2 interaction partners between SK-N-SH and SH-SY5Y cells (Figure 3D). This analysis 

showed that 15 CK2 interactions significantly differed in abundance in both kiCCA and 

Co-IP/MS, including the NMP-associated CK2-AUTS2 interaction, and that MS intensity 

ratios between the two analyses were tightly correlated (Pearson’s r = 0.74). Together, 

our results showed that kiCCA accurately quantifies plasticity-associated changes in kinase 

interactomes and their involvement in specific cellular pathways, and that CK2 can switch 

roles between regulating chromatin structure and translation in neuroblastoma cell NMP.

kiCCA quantifies dynamic changes in kinase interactomes induced by acute signaling 
events

We next asked if kiCCA can also quantify rapid and transient changes in kinase PPI 

networks caused by acute signaling events like growth factor stimulation. We stimulated 

HeLa cells with 50 ng/mL EGF for 15 min, analyzed cell lysates with kiCCA, and identified 

163 high confidence kinase PPIs (Table S3). To learn which of these PPIs were EGF-

responsive, we performed DEA of our kiCCA data from unstimulated and EGF-stimulated 

HeLa cells, identifying 57 high-confidence interactions of 33 kinase groups that significantly 

changed in abundance (Student’s t-test, BH-FDR < 0.05, n = 22, Figure 3E and S5B). 

Members of the EGFR interactome including the signaling adapters GRB2 and SHC1, and 

the E3 ubiquitin ligases CBL and CBLB, increased in abundance up to ~110-fold (Figures 

3E, 3F, and S5B, Table S4). These results suggested that kiCCA can map acute changes in 

kinase PPI networks, yet the overall number of EGF-sensitive PPIs appeared low given that 

EGFR signaling can affect the phosphorylation states of at least 120 other kinases.32,40

Reasoning that kiCCA, like other AP-MS approaches, may miss transient and low affinity 

PPIs, we repeated the experiment using formaldehyde-mediated protein crosslinking to 

stabilize kinase signaling complexes (STAR Methods). kiCCA with protein crosslinking 

identified 127 EGF-responsive high confidence PPIs involving 32 additional kinase groups, 

more than doubling our coverage of EGF-responsive kinase interactions (Figures 3E and 

S5B). These PPIs included additional EGFR interactions, e.g., with the GTP-activating 

proteins SOS1 and VAV3, and the phosphatidylinositol 3-kinase regulatory subunit PIK3R2, 

as well as PPIs of several other kinases in the EGFR pathway, including mitogen-activated 

protein kinases (MAPKs) and the ribosomal S6 kinases (Figures 3E, 3F, and S5B, Table 

S3). These results indicated that crosslinking greatly expands kiCCA’s ability to detect 

transient and weak kinase PPIs. To see if kinase interactome changes were indeed tied 

to phosphorylation changes triggered by EGFR signaling, we compared kinases with PPI 

abundance changes to kinases that we previously found differentially phosphorylated upon 

EGF treatment.32 This revealed co-regulation of PPI and phosphorylation changes in 44 

of 65 kinase groups (Figure 3E, hypergeometric test, p = 1.8E-6), confirming that PPI 

rewiring was signal-dependent and validating kiCCA’s accuracy for quantifying acute kinase 

interactome changes.
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kiCCA PPIs are indicators of kinase functional states and pathway integration

We next asked if changes in kinase interactomes could indicate kinases in distinct functional 

states. Kinase phosphorylation sites with known regulatory roles41 were associated with 

kiCCA PPIs known to affect kinase function; for example, tyrosine phosphorylation of the 

EGFR recruited its known signaling partners to activate ERK and PI3K-AKT signaling, 

T-loop S164 and T170 phosphorylation and activation of CDK7 correlated with recruited 

components of the CDK activating kinase complex, and activating T390 phosphorylation 

of GSK3B coincided with binding of AXIN1 and the β-catenin destruction complex; in 

contrast, inhibitory phosphorylation of S9 on GSK3B was accompanied by binding of 

its inhibitor GSKIP (Figure 3F); this confirms that kiCCA PPIs can serve as proxies for 

phosphorylation events that affect kinase functional states. We also observed changes in 

PPIs for kinases that are not regulated by phosphorylation, but rather by binding to second 

messengers or regulatory subunits, such as cAMP-activated protein kinase A (PKA) that 

bound more of its regulatory subunit following EGF treatment, indicating inactivation. 

PKA also switched interactions between the A-kinase anchoring proteins AKAP9 and 

AKAP7 and AKAP11, indicating cellular re-localization. Similarly, the NF-κB activating 

kinase B (TBK1) dissociated from the signaling scaffold TANK, marking inactivation 

(Figure 3F). kiCCA PPIs are, therefore, also proxies for phosphorylation-independent 

signaling events affecting kinase activity and subcellular localization. Searching the 1,154 

high confidence kiCCA PPIs from our interactome knowledgebase in the BioGRID34 and 

UniProt42 databases and associated primary literature, we identified 140 interactions of 85 

diverse kinase groups that can affect kinase activation state and/or cellular localization; we 

hereafter refer to these as functional marker PPIs (fmPPIs) (Figure S6A, Table S3).

Next, to explore if kiCCA PPIs can also indicate the activity of specific cellular pathways, 

we studied the pathway membership of high confidence PPIs in our EGF-activated HeLa 

dataset. Analyzing EGF-sensitive kinase PPIs with STRING pathway enrichment analysis,38 

we found, in addition to the expected EGFR signaling complex, many kinase interactors 

participating in cellular processes and pathways distinct from canonical EGFR signaling, 

including G-protein coupled receptor (GPCR)/cAMP signaling, WNT/β-catenin signaling, 

NF-κB signaling, the cell cycle, and autophagy (Figure 3F, Table S4). Encouraged by 

these results, we mapped high confidence kiCCA interactors from our knowledgebase to 

32 distinct, disease relevant signaling pathways and cellular processes using gene ontology 

– biological process (GOBP) terms (Figure S6B and Table S3); hypothesizing that an 

interaction of a kinase with a specific non-kinase pathway member integrates the kinase into 

the corresponding pathway, we mapped 492 (72%) of kiCCA interactors, and the 169 kinase 

groups that interact with them, to at least one pathway or process term. Each of the 32 GO 

terms comprised on average 35 non-kinase interactors, representing an extensive resource 

for kinase pathway integration (Figure S6B and Table S3). Collectively, using fmPPIs and 

GOBP term mapping, our kiCCA knowledgebase determined kinase functional states and 

integrated kinases into cellular pathways through specific PPIs.
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kiCCA identifies kinase functional states and pathways underlying hepatocellular 
carcinoma therapy resistance

Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and 

the second most deadly malignancy worldwide.43 HCCs are highly resistant to therapy 

which is, in part, caused by cancer cell EMP.31,44 We previously showed that ~50% HCC 

CCLE cell lines are resistant to kinase inhibitors of clinically relevant HCC targets such 

as cell cycle kinases, PI3K/mTOR, and FGFRs, and that resistance was tightly linked 

to EMP.45 To demonstrate the utility of kiCCA in identifying disease mechanisms and 

drug targets, and to understand how HCC cell EMP rewires the kinome to promote 

therapy resistance, we compared kiCCA data from the archetypical epithelial-like and drug 

sensitive HuH-7 line to the mesenchymal-like and drug resistant SNU761 line (Figures 4A, 

S3B and Table S3). Applying DEA to the kinases quantified in the two HCC lines, we 

discovered that 170 kinases significantly differed in abundance (Student’s t-test, BH-FDR 

< 0.05, n = 22), and that the changes in the kinome showed a profile typical for HCC 

cell epithelial-mesenchymal transition (EMT), including ~1,200-fold increased abundance 

of AXL in SNU761 cells and increased expression of fibroblast growth factor receptor 

(FGFR) isoforms 2, 3, and 4, and various polarity and cell cycle-related kinases in HuH-7 

cells (Figure 4A). DEA of the 227 high confidence kiCCA PPIs identified in the two 

HCC lines showed that 127 PPIs significantly differed in abundance. Like our analysis 

of neuroblastoma lines (Figure 3B and S5A), abundance changes of kiCCA interactors 

correlated poorly with CCLE mRNA expression differences while kinase abundance 

changes were better correlated (Figure S6C), suggesting that EMP-associated kinome 

rewiring was driven by post-translational events. Mapped fmPPIs in the mesenchymal-like 

SNU761 line indicated elevated activation of the survival-promoting tyrosine kinases SRC, 

EGFR, and ACK1 (TNK2), the WNT pathway kinases GSK3A and B, and the NF-κB 

activating kinase CHUK. Surprisingly, SNU761 cells also showed elevated activation of 

numerous proliferation suppressor kinases, including the Hippo kinases STK3 and 4 (MST1 

and 2) and STK38 (NDR1), and the liver kinase B1 (LKB1 or STK11, Figure 4B). 

These results suggest that mesenchymal-like HCC cells evade therapies by simultaneously 

activating kinases that promote survival along with kinases that blunt proliferation and the 

cell cycle, thereby evading drugs that preferentially kill rapidly proliferating cells.

Next, to systematically understand how EMP affects kinase-mediated pathways, we 

analyzed GOBP terms for kiCCA PPIs differing in abundance between the HuH7 and 

SNU761 lines (Figure S6D). Translation and chromatin remodeling pathways related 

to cell proliferation were enriched in HuH-7 cells, with mainly CK2 integrating into 

these pathways. In contrast, SNU761 cells were enriched in endocytosis and vesicle 

trafficking pathways involving the adapter-associated kinase 1 (AAK1) and the BMP-2-

inducible protein kinase (BMP2K), as well as developmental pathways like GSK3A and 

B inactivation-driven canonical WNT/β-catenin signaling, and EGFR and SRC signaling 

(Figures 4C and S6D). To validate these findings, we applied gene set enrichment analysis 

(GSEA) with GOBP terms46,47 (STAR Methods) to our kiCCA data from the HuH7 and 

SNU761 lines, and our published kinobead/LC-MS profiling data from seven epithelial-like 

and ten mesenchymal-like HCC lines (Figure S6E and Table S4). We confirmed that 

endocytosis, vesicle trafficking, survival, and EMP-related pathways were highly enriched 
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in mesenchymal-like HCC cells. Components of the endocytosis and vesicle trafficking 

machinery have been previously linked to HCC progression,48,49 and to cancer cell 

EMP in pancreatic ductal adenocarcinoma cells,50–52 but whether aberrant endocytosis 

and vesicle trafficking promotes HCC cell EMP remains unclear. Hypothesizing that 

dysregulated AAK1/BMP2K interaction networks can promote cancer cell plasticity, we 

examined abundance changes of AAK1/BMP2K PPIs (Figure 4D) in our kiCCA data 

from HuH-7 and SNU761 HCC models, SK-N-SH and SH-SY5Y models, and our 17 

HCC cell line panel.45 Abundance of the Ral GTPase effectors and endocytic adapters 

RalBP1-associated Eps domain-containing protein 1 and 2 (REPS1 and 2) were consistently 

increased in mesenchymal-like cells (up to 16-fold, Figure 4E) and the scaffolding protein 

and known REPS1 and 2 interactor RalA-binding protein 1 (RALBP1, Figure 4D) also 

showed increased abundance in mesenchymal-like cells, albeit with lower ratios (Figure 

4E), suggesting that the AAK1/BMP2K interaction network may be important for acquiring 

plasticity.

An endocytic AAK1 interaction network promotes HCC cell EMP and therapy resistance

We next sought to clarify if the AAK1/BMP2K PPI network can drive HCC cell EMP 

and therapy resistance or merely acts as a bystander. AAK1 has been shown to function 

in clathrin-mediated endocytosis53 and canonical Notch and Wnt signaling that can both 

contribute to cancer cell EMP,54,55 whereas the function of BMP2K is poorly understood. 

REPS1 and 2 regulate receptor tyrosine kinase endocytosis and recycling downstream of 

Ras-related proteins RALA and B,56 cell migration, and NF-κB pathway activation.57,58 

Likewise, RALBP1 acts in RALA- and B-mediated receptor endocytosis and serves as 

a GTPase activating protein (GAP) for CDC42 and RAC.59,60 First, to see if RALBP1, 

REPS1 and 2 interact with AAK1 or BMP2K, we performed a kinobead soluble competition 

experiment in FOCUS cell lysate using the selective AAK1 inhibitor LP-935509 (Figure 5A, 

Table S4),61 revealing that REPS1 and 2, RALBP1, and the four subunits of the adapter 

protein 2 (AP-2) complex were selectively competed along with AAK1; this was concordant 

with our kiCCA results from CYC116 competition in FOCUS cell lysates (Figure S7A) 

and strongly suggested that REPS1 and 2, and RALBP1 interacted with AAK1 rather than 

BMP2K. We further validated these results by Co-IP/MS using antibodies specific to AAK1, 

RALBP1, and REPS1 in FOCUS cell lysate (Figure S7B and Table S4), establishing AAK1 

as the central kinase of the PPI network.

To test if AAK1 network components promote HCC cell EMP and drug resistance, we 

stably expressed shRNAs targeting AAK1, RALBP1, REPS1 and REPS2 or a scrambled 

sequence in the mesenchymal-like FOCUS, SKHep1, SNU761, and SNU387 cell lines 

(STAR Methods). By qPCR and immunoblotting, we consistently achieved near-complete 

knockdown of RALBP1, REPS1 and REPS2, and reduced AAK1 expression by 2- to 

4-fold (Figure S8A, and S8B). Immunoblot analysis of different EMP markers in our RNAi 

lines showed reduced expression of the central EMP transcription factor ZEB1 in FOCUS, 

SNU387, and SNU761 cells, and revealed that RNAi also affected the expression of AXL, 

CD44, E-cadherin CDH1, and the transcriptional repressor Snail (SNAI1), albeit in a cell 

line-dependent manner (Figure 5B and S9); this suggested that the AAK1 complex can 

indeed promote EMP. Hypothesizing that the AAK1 network’s function in EMP may be 
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linked to its role in kinase receptor endocytosis and recycling, we profiled the kinome 

of RNAi lines using kinobead/LC-MS (Table S4). In addition to validating successful 

knockdown of AAK1 PPI network components (Figure S10A), this revealed that the known 

EMP driver kinases AXL and TGFBR2, as well as the EGFR, the ephrin receptor A2 

(EPHA2), and five additional members of the TGFβ receptor superfamily were consistently 

downregulated across three of the four HCC lines tested (Figure 5C, Table S4). Applying 

GSEA to our kinobead profiling data confirmed that AAK1 complex RNAi causes the 

downregulation of endocytosis-related pathways, HCC cell EMP related pathways like cell 

adhesion and WNT signaling, and survival signaling through protein kinase B and the 

mammalian target of rapamycin (mTOR) (Figure S10B and Table S4). In contrast, pathways 

related to insulin signaling, chromatin remodeling, and the cell cycle increased in response 

to RNAi, confirming transition to a more epithelial, hepatocyte-like state. Together, these 

results suggested that the AAK1-RALBP1-REPS1/2 network can promote HCC cell EMP 

and drug resistance by stabilizing specific kinase receptors that drive developmental and 

survival signaling.

To learn if the AAK1 complex could serve as a target to sensitize HCC cells to drug 

treatment, we conducted a screen for cell viability using ten kinase-targeted drugs and 

doxorubicin in scramble control versus AAK1 complex RNAi lines (Figure 5D and Table 

S4). RNAi lines, particularly SNU387 and SKHep1, showed up to 18-fold down-shifts in 

EC50s for inhibitors targeting the cell cycle checkpoint kinases CHEK1 (AZD7762 and 

CHIR-124), inhibitors that we found previously to be highly effective in killing rapidly 

proliferating, epithelial-like HCC cells compared to mesenchymal-like cells.45 To identify 

pathways mediating the RNAi-dependent increase in drug efficacy, we revisited our kinome 

profiling data of the most chemosensitized lines, SKHep1 and SNU387 (Figure 5E and 

Table S4). Cross-referencing fmPPIs in our interactome knowledgebase revealed that these 

cell lines activated cell cycle-related kinases and their signaling complexes specifically in 

response to AAK1 and REPS1 RNAi, which coincided with the greatest sensitization to 

CHEK1 inhibitors (Figure 5E). This also agreed with our GSEA of knockdown lines, as 

pathways related to cell cycle progression and DNA repair were upregulated with RNAi of 

the AAK1 network (Figure S10B and Table S4). Likewise, immunoblot analysis validated 

that AAK1 and REPS1 RNAi increased the expression of cell cycle-driving proteins 

(Figure 5F and Figure S11). These results indicated (1) that AAK1 and REPS1 act as 

proliferation suppressors in mesenchymal-like HCC cells,62 and (2) that AAK1 and REPS1 
RNAi-mediated activation of proliferation exposes a vulnerability of drug resistant HCC 

cells that can be targeted with cell cycle checkpoint kinase inhibitors.

Systematic mapping of kinase PPIs in kinome profiling data from clinical tissue specimens

Mapping disease-associated interactome changes in pre-clinical animal models and clinical 

tissue specimens is a critical milestone in translating PPI network information into 

biomarkers and drug targets. Studies using kinobead/LC-MS profiling to characterize 

kinome aberrations in pre-clinical and clinical tissue specimens have transformed our 

understanding of disease mechanisms (Figure 6A);24,45,63–65 these studies contain valuable 

kinase interactome data that could greatly expand our understanding of in vivo disease 

biology, yet computational approaches to accurately interpret this information are lacking.
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To explore if our kiCCA interactome data can identify kinome PPIs in kinobead profiling 

data from clinical tissue specimens, we mapped high-confidence interactions in our 

knowledgebase to our previously published kinobead profiling dataset of four paired, clinical 

HCC and non-tumor liver (NTL) tissue samples (Figure 6A)45 and identified the interactions 

between 133 kinase groups and 275 non-kinase proteins (Table S4). Because the kiCCA 

knowledgebase aggregates kinome PPI information across a range of biological contexts and 

some proteins may have been observed to interact with more than one kinase, we applied 

our kiCCA score that considers both the kiCCA r-value and the frequency of identification 

across our 18-cancer line panel (STAR Methods), to determine the 275 most likely kinase 

PPIs; 199 of these interactions integrated 75 kinase groups into specific signaling pathways, 

and 39 fmPPIs specified the functional states of 24 kinase groups (Figure 6B and 6C and 

Table S4).

DEA between tumors and paired NTL tissues showed that 189 of these PPIs showed 

altered abundance, including several functional PPIs affecting kinases with important roles 

in HCC progression. For example, we found that the activating CDK12-CCNK interaction,66 

and the paxillin (PXN)-PTK2B interaction that directs kinase activity to focal adhesions 

were upregulated in all four tumor samples compared to NTL,67 whereas the activating 

interactions of AMPK (PRKAA1 and 2) with its regulatory subunits were consistently 

downregulated in all tumors.68 This provides evidence for the broad relevance of CDK12 

activity and focal adhesion signaling in HCC progression, and AMPK’s tumor suppressor 

function in HCC. We also identified functional PPIs specific to individual HCC cases; 

for instance, activating PPIs of the cell cycle kinases CDK1 and 7, and aurora kinase B 

(AURKB), and the NF-κB kinase TBK1 were enriched in tumor #4, inhibitory interactions 

of the WNT/β-catenin kinases GSK3A and B were enriched in tumor #3, and the activating 

interaction of the EMP and survival kinase AXL and GAS6 was specifically enriched in 

tumor #2 (Figure 6B). These results show that our interactome knowledgebase and kiCCA 

scoring can identify kinase activities in individual patient’s tumors, highlighting kiCCA’s 

utility for precision oncology.

To uncover in vivo mechanisms controlling HCC progression, we analyzed the pathways 

associated with differentially expressed kinase PPIs. This confirmed activation of the cell 

cycle in tumor #4, and upregulation of protein translation, developmental pathways, and 

apoptosis in most tumor samples compared to NTL tissue (Figure 6C), consistent with a 

cycle of proliferation and apoptosis in hepatocytes within the inflamed, cirrhotic liver that 

underlies most HCC cases.43 Strikingly, our pathway analysis revealed that endocytosis and 

vesicle transport pathways were highly active in tumors #2 and #4 compared to NTL, the 

same pathways that we found to be activated in mesenchymal-like and therapy resistant 

HCC lines. Specifically, REPS1 and REPS2 were significantly increased in abundance 

in two of four HCC tissues compared to NTL (Figure 6D). These results indicate that 

dysregulation of an endocytic AAK1 network may contribute to HCC EMP and therapy 

resistance in vivo, and that AAK1 and its interaction partners may serve as novel drug target 

candidates with high translational potential.
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DISCUSSION

We introduced kiCCA, a chemoproteomic approach that exploits kinase inhibitor 

polypharmacology for highly multiplexed interactome mapping of the kinome. kiCCA 

allows the high-throughput profiling of various cell states and model systems using native 

cell and tissue lysates, entirely avoiding the use of antibodies and the expression of 

genetically tagged bait proteins. We demonstrated that kiCCA is a powerful approach for 

cell signaling and cancer research as it: (1) broadly quantifies kinase interactome changes 

associated with cancer types, cellular phenotypes like neuroblastoma cell NMP and HCC 

cell EMP; and (2) prioritizes kinase complexes for mechanistic studies and drug target 

discovery, as demonstrated by our identification of an AAK1 complex promoting HCC 

cell EMP and therapy resistance. We also showed that kiCCA combined with protein 

crosslinking captured the rapid, kinome-wide rearrangement of transient and low affinity 

signaling complexes caused by acute hormone stimuli, highlighting that kiCCA presents a 

unique tool for cell signaling research. We applied our kinase interactome knowledgebase 

from 18 diverse cancer lines to identify kinase signaling complexes in kinobead profiling 

data of clinical tumor samples to gain novel insights into kinase-dependent PPI aberrations 

in patients’ tumors. While our kinome PPI knowledgebase provides the broadest range of 

kinome PPIs mapped to date, future kiCCA experiments will increase the diversity of cell 

and tissue types while additional bespoke kinome PPI databases can be developed from 

specific cell lines or tissues to match a particular biological context. Our general approach 

shows the value of PPI network information in studying dysregulated signaling in disease 

and provides a roadmap for obtaining similar kinobead-based PPI networks for clinical 

proteomics.

Collectively, we curated an extensive reference set of PPIs that can determine kinase 

functional states and kinase–pathway integration, thereby allowing us to interpret the 

biological significance of changes in kinase interactomes. Kinome PPI abundance 

information derived from biochemical enrichment by kinobeads or other kinome-centric 

chemoproteomic tools 69 provide quantitative proteomics data that is distinct and 

complementary to phosphoproteomics data. We expect that the combination of both kinome 

PPI and phosphorylation site data will provide a more specific and sensitive measurement of 

kinome activity that would be important for comparing signaling activity between different 

biological states.

We demonstrated that kiCCA interactome data can identify disease mechanisms and drug 

targets by characterizing an AAK1-mediated PPI network that links endocytosis and vesicle 

trafficking pathways to HCC cell EMP and therapy resistance. Knockdown of AAK1 and 

its interaction partners REPS1 and REPS2, and RALBP1 reduced HCC cell EMP marker 

expression and decreased drug resistance, showing that kiCCA can identify kinase target 

candidates as well as non-kinase target candidates like REPS1 whose RNAi is better 

tolerated than AAK1 RNAi, and strongly sensitizes mesenchymal-like cancer cells to 

targeted therapy. Therefore, inhibiting the AAK1-REPS1 interaction may be a promising 

strategy to minimize drug cytotoxicity and maximize cancer therapy responses.8
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The limitations of our kiCCA approach are the same as for any other AP-MS-based 

method, for instance, difficulties identifying weak and transient PPIs, and the lack of sub-

cellular spatial resolution.17 Here, we demonstrated that kiCCA with protein crosslinking 

can increase the coverage of weak and transient PPIs. We speculate that subcellular 

fractionation, e.g., into cytosolic, membrane, and nuclear fractions, followed by kiCCA 

could further resolve the localization of kinase signaling complexes and reduce sample 

complexity to increase the number of identifiable signaling and transcription factor 

complexes. The throughput of kiCCA can be further increased iteratively by using smaller 

sets of KIPs and isobaric TMT labeling for analysis of entire interactomes in single LC-MS 

runs.

In summary, we presented a unique and powerful approach for studying kinase interactome 

dynamics in virtually any model system that can be broadly implemented in biomedical 

labs. We collated our kinase interactome data into a knowledgebase that is easily accessible 

through our supplementary tables (Tables S3) and an interactive Shiny web application 

(https://quantbiology.org/kiCCA), serving as an important resource for cancer and cell 

signaling researchers.

Limitations of the Study

kiCCA enables high-throughput kinome interactomics, however, it currently cannot identify 

kinase-kinase interactions or determine multiple kinase interactions of a protein in the 

same sample, therefore missing potentially important signaling events. Future iterations 

of kiCCA will integrate the kinase binding affinities of KIPs with kinobead competition-

binding profiles to distinguish direct probe binding from kinase-kinase co-competition, 

and will utilize improved computational algorithms like network propagation methods70 

to identify multiple kinase interactors of co-precipitating proteins. kiCCA with protein 

crosslinking identified numerous weak and transient PPIs, yet kiCCA still requires cell lysis, 

which dilutes cellular contents ~100-fold, and causes the dissociation of protein complexes. 

Future iterations of kiCCA will utilize soluble kinome affinity probes to capture kinase 

interactomes in situ. Studying how dysregulated AAK1 PPI network promoted HCC cell 

EMP and therapy resistance, we showed that RNAi of network components affected the 

stability of multiple EMP-associated receptor kinases, however, if this is caused by altered 

transcription or recycling and degradation of receptors, and if the effect can be exploited 

for pharmacological intervention will have to be clarified in future studies. Finally, the 

application of the kiCCA knowledgebase in a new tissue or disease model may not be 

accurate if there is a new cell/tissue-specific set of kinome PPIs that are not previously 

captured in the knowledgebase; in such situations, it may be necessary to generate a new 

model-specific kiCCA database.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Shao-En Ong, Department of Pharmacology, University of Washington, 

Seattle, WA 98195, USA, shaoen@u.washington.edu
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Materials Availability

• This study did not generate new unique reagents.

Data and Code Availability

• MS .raw files, MaxQuant output files, and kiCCA correlation matrices generated 

by this study have been uploaded to the MassIVE repository of the University 

of San Diego under the acquisition number: MSV000088067. Original western 

blot images have been deposited at Mendeley Data and are publicly available 

as of the date of publication. A Shiny app for real time interrogation of the 

kinase interactomics data generated in this study can be accessed at https://

quantbiology.org/kiCCA.

• This study did not generate new code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines and tissue culture conditions—C3A, SNU398, Hep3B2.1–7, U2-OS, 

SK-N-SH, SH-SY5Y, JeKo-1, HeLa, Jurkat, A-172, K562, and SNU449 cell lines were 

purchased from the American Type Culture Collection (ATCC). SNU761 and SNU886 were 

purchased from the Korean Cell Line Bank (KCLB). JHH6 and HuH-7 cells were purchased 

from the JRCB Cell Bank. FOCUS WT cells were obtained from the Laboratory of J. 

Wands, Brown University 72. FOCUS AXL RNAi cells were obtained from Dr. Taranjit 

Gujral of the Fred Hutchinson Cancer Research Institute, Seattle. All cells were grown 

at 37°C under 5% CO2, 95% ambient atmosphere. Fifteen cryo-frozen cell stocks were 

generated from the original vial from the cell bank or from the collaborator’s lab (passage 

3). Experiments were performed with cells at <10 passages from the original vial. All 

cell media used were supplemented with 100x penicillin-streptomycin-glutamine (Thermo 

Fisher Scientific, Waltham, MA). FOCUS and HuH-7 cells were grown in Dulbecco’s 

minimum essential medium (DMEM) supplemented with 10% FBS (VWR Life Science, 

Seradigm). C3A, SNU398, Hep3B2.1–7, U2-OS, SK-N-SH, SH-SY5Y, JeKo-1, HeLa, 

Jurkat, A-172, K562, and SNU449 lines were grown in the ATCC-recommended medium. 

JHH6 cells were grown in William’s E medium, and SNU761 and SNU886 lines in RPMI 

1640 medium all supplemented with 10% FBS. Cells were harvested when reaching 90% 

confluency or a density of 1×106 cells/ml.

METHOD DETAILS

RNAi knockdown experiments—Three shRNA sequences each targeting AAK1, 

RALBP1, REPS1, and REPS2 mRNAs were obtained from The RNAi Consortium 

(TRC) of the Broad Institute web portal (https://www.broadinstitute.org/rnai-consortium/

rnai-consortium-shrna-library, ID Numbers: TRCN0000001943, TRCN0000199939, 

TRCN0000082348, TRCN0000053363, TRCN0000423162, TRCN0000436095, 

TRCN0000423057, TRCN0000428939, TRCN0000056210, TRCN0000305689, 

TRCN0000047918, TRCN0000047920) and cloned into the lentiviral pLKO.1 vector 
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(Plasmid#10878, Dr. David Root’s Lab, Addgene, Watertown, MA) as previously 

described.78 Lentiviral particles were produced from individual pLKO.1 vectors, 

the pMD2.G plasmid (envelope, plasmid #12259, Didier Trono, Addgene), and the 

pCMVR8.74 plasmid (packaging, plasmid #22036, Didier Trono, Addgene) according to the 

manufacturer’s instructions (Addgene). Virus particle-containing cell culture supernatants 

were sterile filtered over 0.22 μM PES syringe filters (Millex-GP, Sigma Millipore, 

Burlington, MA), mixed 1:1 with fresh growth medium, 8 μg/mL final polybrene was 

added and the mixture added to target cells (70–80% confluency). Cells were incubated 

for 24h, the medium exchanged, and stable cell lines selected using puromycin (FOCUS: 

4 μg/mL; SNU387 and SKHep1: 6 μg/mL; SNU761: 8 μg/mL) for 7–14 days. Puromycin-

resistant cells were maintained in growth medium containing half of the selection 

concentration of puromycin. Target knockdown was validated using qPCR, immunoblotting, 

and kinobead/LC-MS profiling, and the stable cell lines with the highest knockdown among 

the three shRNAs used for each target were chosen to perform all downstream experiments.

Immunoblot analysis and antibodies—Antibodies used for immunoblotting were anti-

E-cadherin (24E10, Cell Signaling Technology, CST, Cat # 3195), anti-AXL (C89E7, CST, 

Cat # 8661), anti-Snail (C15D3, CST, Cat # 3879), anti-ZEB1 (E2G6Y, CST, Cat # 70512), 

anti-CD44 (E7K2Y, CST, Cat # 37259), anti-GAPDH HRP conjugate (D16H11, CST, Cat 

# 8884), anti-AAK1 (E8M3P, CST, Cat # 61527), anti-RALBP1 (D87H8, CST, Cat # 

5739), anti-REPS1 (D6F4, CST, Cat # 6404), anti-CDK4 (D9G3E, CST Cat # 12790), 

anti-CDK6 (DCS83, CST, Cat # 3136), anti-CDK2 (78B2, CST, Cat # 2546), anti-Cyclin 

D1 (92G2, CST, Cat # 2978), and anti-Cyclin D3 (DCS22, CST, Cat # 2936). Cell lysis 

and immunoblotting experiments were performed using standard procedures. Briefly, cells 

were rinsed twice with ice-cold phosphate buffered saline (PBS), lysed in modified RIPA 

buffer V1 (50 mM Tris-HCl, 150 mM NaCl, 1% NP-40 (v/v), 0.25% Na-deoxycholate 

(w/v), 1 mM EDTA, 10 mM NaF, 5% glycerol (v/v), pH 7.8) supplemented with HALT 

protease inhibitor (100x, Thermo Fisher Scientific, Waltham, MA), and lysates clarified by 

centrifugation at 21,000 rcf for 20 minutes at 4°C. Protein concentration was quantified 

using the Piece 660 nm Protein Assay Reagent (Pierce, Rockford, IL). Lysates were 

mixed with NuPAGE LDS Sample Buffer (4X, Thermo Fisher Scientific) containing 50 

mM DTT and heated for 5 min at 95°C. 20 μg of protein was separated on Bolt 4–12% 

Bis-Tris Protein Gels (Thermo Fisher Scientific) and electro-transferred onto nitrocellulose 

membranes. The buffer used for blocking and antibody incubation was 5% BSA in TBS-T 

(50 mM NaCl, 150 mM Tris-HCl, 1% Tween-20, pH = 7.8). Membranes were incubated 

with goat anti-rabbit HRP conjugate, and bands visualized using the Clarity Western ECL 

Substrate (Bio-Rad, Hercules, CA) and the Fluor Chem E imaging system (Protein Simple, 

San Jose, CA).

Quantitative Real-Time PCR (qPCR) Analysis of mRNA Expression—shRNA-

mediated knockdown was validated by quantifying the target’s mRNA expression levels 

using quantitative real-time PCR (qPCR). Briefly, cells were cultured on 35 mm dishes 

until reaching 80–90% confluency and total mRNA was isolated using the TRIzol reagent 

according to manufacturer’s instructions (Thermo Fisher Scientific). mRNA quality was 

controlled by running 1% agarose gels and assessing the presence of sharp, clear 28S and 
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18S rRNA bands. 0.5 μg of total RNA was used to generate first-strand cDNA using the 

Protoscript II First Strand cDNA Synthesis Kit (New England Biolabs, Ipswich, MA). The 

resulting cDNA was subjected to qPCR using human gene-specific primers for AAK1, 

RALBP1, REPS1, and REPS2, and two housekeeping genes, i.e., PSMB2 and RAB7A. 

The qPCR reaction was performed using QuantStudio 5 Real-Time PCR System (Applied 

Biosystems, Thermo Fisher Scientific) using the following program:

Step Temp (°C) Time (mm.ss) Cycles

Hold (Enzyme Active) 50, 95 02:00, 10:00 1

PCR (Denature, Anneal, Extend) 95, 50, 60 00:15, 00:15, 01:00 50

Dissociation/Melting Curve 95, 60, 95 00:15, 01:00, 00:15 5

The mRNA levels of each gene were normalized relative to the mean levels of the two 

housekeeping genes and compared with the data obtained from cell lines carrying a stably 

incorporated scramble shRNA using the 2-ΔΔCt method. According to this method, the 

normalized level of a mRNA, X, is determined using Equation (1):

X = 2−Ct GOI /2−Ct CTL
(1)

where Ct is the threshold cycle (the number of the cycle at which an increase in reporter 

fluorescence above a baseline signal is detected), GOI refers to the gene of interest, and CTL 

refers to a control housekeeping gene. This method assumes that Ct is inversely proportional 

to the initial concentration of mRNA and that the amount of product doubles with every 

cycle.

Inhibitor treatment of RNAi and scramble lines for the growth inhibition assay
—1800 cells/well were seeded onto white flat bottom half area 96-well plates (Greiner Bio-

One, Kremsmünster, AT) in 50 μl of growth medium and allowed to attach in an incubator 

for 24 h. Then the drugs in DMSO and/or DMSO vehicle controls as 11X solutions in 

growth medium were added to a total volume of 55 μl and 0.1% DMSO final. The cells were 

grown in an incubator for another 72 h. Then, 55 μl of CellTiter-Glo 2.0 (Promega, Madison, 

WI) reagent/well were added according to the manufacturer’s instructions and luminescence 

was quantified with a SpectraMax 190 plate reader (Molecular Devices, San Jose, CA). 

The drugs AZD7762 (CHEK1 inhibitor, Selleckchem, Houston, TX), CHIR-124 (CHEK1 

inhibitor, ApexBio, Houston, TX), Selumetinib (MEK1/2 inhibitor, Selleckchem), Dasatinib 

(SRC inhibitor, Selleckchem), Lenvatinib (FGFR inhibitor, Selleckchem), Sorafenib and 

Regorafenib (BRAF inhibitors, Selleckchem), Cabozantinib (AXL and MET inhibitor, 

Selleckchem), and Doxorubicin (Cytotoxic/TopII inhibitor, Selleckchem) were applied 

at 8 different concentrations between 10 μM and 4.6 nM (3-fold dilution steps). The 

drugs Dinaciclib (CDK inhibitor, Selleckchem) and Volasertib (PLK1/BRD2 inhibitor, 

Selleckchem) were applied at 8 different concentrations between 1 μM and 0.46 nM (3-fold 

dilution steps). Experiments were performed in four biological replicates. Growth inhibition 

curves were fitted using the GraphPad Prism software package (V5.0a) with a least-squares 

nonlinear regression model for curve fitting (One site - Fit logIC50 function).
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Preparation of optimized kinobead mixture—The seven used kinobead affinity 

reagents were either synthesized in house or custom synthesized through Bellen Chemistry 

(Beijing, China), and kinobeads were prepared as previously described 23,32,79. For optimal 

coverage of the human kinome an optimized mixture of the seven kinobead reagents was 

prepared as previously described.32 Briefly, 1 ml of reagent 1, 0.5 ml of reagents 2, 3 and 7, 

respectively, and 0.25 ml of reagents 4, 5 and 6, respectively, were mixed to yield 3.25 ml of 

the complete kinobead mixture. All reagents were a 50% slurry in 20% aq. ethanol.

Kinase affinity enrichment, KI competition and on-bead digestion—Kinase 

affinity enrichment, KI competition, and on-bead digestion was performed as previously 

described.23,30,71 Briefly, to 150 μL of cell lysate (5 mg protein per mL) in modified RIPA 

buffer V1 (50 mM Tris-HCl, 150 mM NaCl, 1% NP-40 (v/v), 0.25% Na-deoxycholate 

(w/v), 1 mM EDTA, 10 mM NaF, 5% glycerol (v/v), pH 7.8) containing HALT protease 

inhibitor cocktail (100x, Thermo Fisher Scientific, Waltham, MA) and phosphatase inhibitor 

cocktail II and III (100x, Sigma-Aldrich, St Louis, MO) 1.5 μL DMSO (vehicle control) 

or the corresponding inhibitor solution in DMSO (competition) were added to a final 

concentration 1% DMSO. The lysate was vortexed at intermediate speed intermittently 

every 5 min for 20 min while being kept on ice. Meanwhile, 40 μl of a 50% slurry of 

the in-house-made, optimized kinobead mixture in 20% aq. ethanol were prepared for each 

pulldown experiment. The beads were washed twice with 400 μl modified RIPA buffer 

and lysates containing DMSO, or inhibitor were added. The mixture was incubated on 

a tube rotator for 3h at 4°C and then the beads were pelleted rapidly at 2000 Xg on a 

benchtop centrifuge (5s). After removal of the supernatant, the beads were rapidly washed 

twice with 400 μl of ice-cold mod. RIPA buffer and three times with 400 μl ice-cold 

tris-buffered saline (TBS, 50 mM tris, 150 mM NaCl, pH 7.8) to remove detergents. 100 

μl of freshly prepared denaturing buffer (8M urea, 100 mM Tris, pH 8.5) containing 5 

mM tris(2-carboxyethyl)phosphine hydrochloride (TCEP*HCl) and 10 mM chloroacetamide 

(CAM), were added and the slurry agitated on a thermomixer at 37°C and 1400 rpm for 

30 min. The mixture was diluted 2-fold with 100 mM triethylamine bicarbonate (TEAB), 

the pH adjusted to 8–9 by addition 1 N aq. NaOH; 2 μg LysC were added, and the mixture 

agitated on a thermomixer at 1400 rpm at 37°C for 2 h. Then, the mixture was diluted 

another 2-fold with 100 mM TEAB, 2 μg MS-grade trypsin (Thermo Fisher Scientific, 

Waltham, MA) were added, and the mixture agitated on a thermomixer at 1400 rpm at 

37°C overnight. Then, 6 μL of formic acid (FA) were added (1.5% FA final) to adjust 

to pH 3 and peptides were extracted and desalted using C18 StageTips according to the 

published protocol.80 For kinobead/LC-MS profiling of RNAi cell lines the same protocol 

was applied except that the lysates were not preincubated with DMSO or inhibitor. The 

following kinase inhibitors were used as KIPs for competition experiments at the given final 

concentrations: GSK-690693 (10 μM, MedChemExpress, MCE, Monmouth Junction, NJ), 

Miliciclib (10 μM, MCE), Rebastinib (10 μM, MCE), AT9283 (10 μM, MCE), TAK-901 

(10 μM, MCE), RGB-286638 (10 μM, MCE), Flavopiridol*HCl (10 μM, MCE), PF-562271 

besylate (10 μM, MCE), Dabrafenib mesylate (10 μM, MCE), OTSSP167*HCl (10 μM, 

MCE), CYC-116 (10 μM, MCE), Silmitasertib (10 μM, MCE), SB1317 (10 μM, MCE), 

XL228 (10 μM, MCE), Sapanisertib (10 μM, MCE), PF-3758309 (10 μM, ApexBio), 

Staurosporine (replacing the structurally closely related K-252a, 1 μM, LC Labs, Woburn, 
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MA), AZD-7762 (10 μM Selleckchem), Bosutinib (10 μM, Selleckchem), Dasatinib (10 μM, 

Selleckchem), LP-935509 (1 μM, MCE), and Linsitinib (10 μM, ApexBio).

Kinobead/LC-MS competition with the 21 KIPs and formaldehyde-mediated 
protein crosslinking—Kinobead competition with formaldehyde-mediated protein 

crosslinking was performed as described in ‘Kinase affinity enrichment, KI competition, 

and on-bead digestion’ above with the following modifications. To 150 μL of cell lysate (5 

mg protein per mL) in modified RIPA buffer V2 (50 mM HEPES, 150 mM NaCl, 1% NP-40 

(v/v), 0.25% Na-deoxycholate (w/v), 1 mM EDTA, 10 mM NaF, 5% glycerol (v/v), pH 

7.8) containing HALT protease inhibitor cocktail (100x, Thermo Fisher Scientific, Waltham, 

MA) and phosphatase inhibitor cocktail II and III (100x, Sigma-Aldrich, St Louis, MO) 1.5 

μL DMSO (vehicle control) or the corresponding inhibitor solution in DMSO (competition) 

were added to a final concentration 1% DMSO. The lysate was vortexed at intermediate 

speed intermittently every 5 min for 20 min while being kept on ice. The mixture was added 

to the kinobeads and incubated on a tube rotator for 3h at 4°C and then 4 μL of 37 wt% 

aq. Formaldehyde solution was added (1% concentration final). The mixture was incubated 

on a tube rotator for an additional 30 min at 4°C and then the beads were pelleted rapidly 

at 2000 rpm on a benchtop centrifuge (5s). After removal of the supernatant, the beads 

were rapidly washed twice with 400 μl of ice-cold mod. RIPA buffer V2 and three times 

with 400 μl ice-cold HEPES-buffered saline (HBS, 50 mM HEPES, 150 mM NaCl, pH 7.8) 

to remove detergents. 100 μl of the denaturing buffer (6M Gdn*HCl, 100 mM Tris-HCl, 

pH 8.5) containing 5 mM tris(2-carboxyethyl)phosphine hydrochloride (TCEP*HCl) and 

10 mM chloroacetamide (CAM), were added and the slurry agitated on a thermomixer at 

70°C and 1400 rpm for 30 min to reverse crosslinking. The mixture was then subjected to 

the same digestion protocol and downstream handling as described above “Kinase affinity 

enrichment, KI competition, and on-bead digestion”.

Co-immunoprecipitation/MS (Co-IP/MS) analyses of AAK1 and CK2 PPI 
networks—200 μl of the corresponding cell lysate in modified RIPA buffer V1 (5 mg/mL 

protein) containing protease and phosphatase inhibitors (see ‘Kinase affinity enrichment, 

KI competition and on-bead digestion’) were incubated with antibodies against AAK1, 

RALBP1, or REPS1 (FOCUS cell lysate, see ‘Immunoblot analysis and antibodies’), CK2α 
or CK2β (U2-OS cell lysate, Novus Biologicals, CK2α Ab: polyclonal, # NB100–378, 

CK2β Ab: polyclonal, #NBP1–06515) or GFP (control, clone D5.1, CST, Cat # 2956) at 

the manufacturer’s recommended concentrations, respectively, and agitated overnight on a 

tube rotator at 4°C. The next day, Pierce Protein A Agarose (Thermo Fisher Scientific) 

was washed twice with ice-cold modified RIPA buffer V1 and 40 μL aliquots of a 50% 

bead slurry were added to each lysate/antibody mixture. The slurry was agitated for 3h 

on a tube rotator at 4°C, the supernatant was aspirated, and then the beads were washed 

twice with ice-cold modified RIPA buffer V1 and three times with TBS. Proteins were 

reduced, alkylated, and eluted by adding 100 μL denaturing buffer (8M urea, 5mM TCEP, 

10mM CAM, 100 mM Tris pH 7.8) to beads and agitating them on a thermomixer at 1,400 

rpm for 30 min at 37°C. The supernatant containing the protein was transferred to a new 

tube and diluted two-fold with 100 mM TEAB, and the pH was adjusted to 8.5 using 1N 

NaOH solution. 2 μg of Lys-C (Wako Chemicals) were added, and samples agitated on a 
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thermo mixer at 1,400 rpm for 2 h at 37°C. Then, samples were diluted another two-fold 

with 100 mM TEAB and 2 μg of MS-grade trypsin (Thermo Fisher Scientific) were added. 

The mixture was agitated on a thermomixer at 1,400 rpm overnight at 37°C. The resulting 

peptide solution was acidified with formic acid to achieve pH <3 (1.5% FA final) and 

desalted using C18 StageTips according to the published protocol.80 Co-IP/MS experiments 

were performed in three biological replicates per antibody.

nanoLC-MS/MS analyses—LC-MS analyses were performed as described previously 

with the following minor modifications.23,32 Peptide samples were separated on an EASY-

nLC 1200 System (Thermo Fisher Scientific) using 20 cm long fused silica capillary 

columns (100 μm ID, laser pulled in-house with Sutter P-2000, Novato CA) packed with 

3 μm 120 Å reversed phase C18 beads (Dr. Maisch, Ammerbuch, DE). The LC gradient was 

120 min long with 5–35% B at 300 nL/min. LC solvent A was 0.1% (v/v) aq. acetic acid and 

LC solvent B was 20% 0.1% (v/v) acetic acid, 80% acetonitrile. MS data was collected with 

a Thermo Fisher Scientific Orbitrap Fusion Lumos. Data-dependent analysis was applied 

using Top15 selection with CID fragmentation.

Computation of MS raw files—Data .raw files were analyzed by MaxQuant/

Andromeda73 version 1.5.2.8 using protein, peptide and site FDRs of 0.01 and a score 

minimum of 40 for modified peptides, 0 for unmodified peptides; delta score minimum of 

17 for modified peptides, 0 for unmodified peptides. MS/MS spectra were searched against 

the UniProt human database (updated July 22nd, 2015). MaxQuant search parameters: 

Variable modifications included Oxidation (M) and Phospho (S/T/Y). Carbamidomethyl (C) 

was a fixed modification. Max. missed cleavages was 2, enzyme was Trypsin/P and max. 

charge was 7. The MaxQuant “match between runs” feature was enabled. The initial search 

tolerance for FTMS scans was 20 ppm and 0.5 Da for ITMS MS/MS scans.

QUANTIFICATION AND STATISTICAL ANALYSIS

MaxQuant output data processing—MaxQuant output files were processed, 

statistically analyzed and clustered using the Perseus software package v1.5.6.0.74 

Human gene ontology (GO) terms (GOBP, GOCC and GOMF) were loaded from the 

‘mainAnnot.homo_sapiens.txt’ file downloaded on 02.03.2020. Expression columns (protein 

and phosphopeptide intensities) were log2 transformed and normalized by subtracting the 

median log2 expression value from each expression value of the corresponding data column. 

Potential contaminants, reverse hits and proteins only identified by site were removed. 

Reproducibility between LC-MS/MS experiments was analyzed by column correlation 

(Pearson’s r) and replicates with a variation of r > 0.25 compared to the mean r-values of 

all replicates of the same experiment (cell line or knockdown experiment) were considered 

outliers and excluded from the analyses. Data imputation was performed in Perseus using a 

modeled distribution of MS intensity values downshifted by 1.8 and having a width of 0.2.

Kinobead competition correlation analysis (kiCCA)—For each cell line and 

condition tested, 21 KIP competition experiments and one DMSO control experiment 

were performed in biological duplicate, resulting in 44 kinobead pulldown and LC-MS 

experiments per condition/cell line. We called a kinase or non-kinase protein competed if it 
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showed a log2 MS intensity ratio of ≥ 0.75 and passed a two-sample t-test p < 0.1 with at 

least one of the 21 KIs used, i.e., comparing the two DMSO control experiments and two 

corresponding KI competition experiments. We then correlated MS intensity values of all 

competed kinases and co-competed non-kinase proteins using Pearson moment correlation 

(n = 44). Then, kinases that showed similar competition behavior were combined into 

groups (see “Determining kinase groups with similar KIP binding profiles” and Table S2), 

and the maximum r-value of members retained for that group. Next, we removed kinase 

groups that showed very large numbers of PPIs with high positive r-values, which was 

caused by systemic shifts in MS intensity for certain non-kinase proteins between biological 

replicates. These kinases show a systematic upshift in PPI r-values that can be recognized 

by an unusually high median and 3rd quartile (Q3) value for the kiCCA r-value distribution. 

Accordingly, we calculated the Q3 for each kinase group, determined high, positive outliers 

of Q3 values using box plots (outlier = 1.5*IQR), and removed kinase groups that appeared 

as outliers from downstream analysis. Finally, the kinase group which showed the highest 

r-value for each non-kinase protein was determined, representing the most probably kinase 

group–protein interaction among all possible interaction for each cell line or condition.

Differential Expression Analysis (DEA)—To identify differentially expressed 

proteomic features between cell lines, tissues, and treatment conditions, we applied either 

a two-sample t-test or a student’s t-test against the null hypothesis, applying Benjamini-

Hochberg correction for multiple hypothesis testing (FDR < 0.05, discovery mode in 

kinobead profiling and kiCCA data), or we applied a simple p < 0.05 (validation mode 

in kinobead and Co-IP/MS data). Briefly, for two sample t-testing of protein MS intensity 

differences in kinobead profiling data, we calculated the differences of the mean log2 MS 

intensities in each population (n = 5 or 6, log2 MS intensity ratio) and tested for significant 

differences between the two populations. For Student’s t-testing of differential protein 

expression between the kiCCA datasets of each cell line or condition, we first calculated 

paired mean differences of log2 MS intensities for each kinome interactome probe (KIP) 

or DMSO control (n = 22), and then tested the population of ratio values against the null 

hypothesis, the mean log2 differences across the probe panel representing protein expression 

changes.

Determining kinase groups with similar KIP binding profiles—Like kiCCA 

correlation analysis, kinase MS Intensity values were correlated with one another for each 

cell line and condition tested to identify kinases with very similar KIP binding profiles. 

Thus, kinases that show an r-value > 0.9 in at least 7 of 21 tested cell line were combined 

into kinase groups, defining that the interactors of kinases in these groups cannot be 

distinguished using kiCCA. Examples are PRKAA1 and 2, AAK1 and BMPK, as well 

as STK24 and STK26 (see Table S2, Tab ‘Kinase Groups’)

Plotting STRING Interaction Networks—PPI network models were plotted using the 

STRING web application version 11.5 with the following settings: Edges were scaled 

with confidence, and only ‘physical subnetwork’ interactions were considered, i.e., only 

considering text mining, experiments, and databases.38
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KS-test analysis and Receiver Operating Characteristic (ROC) plots—Combined 

PPIs from BioGrid (v.4.4.200, July 25 2021)34, BioPlex13, and Buljan et. al. 202012 were 

used to populate the ‘known’ PPIs in our dataset and used as the binary classifier. The 

kiCCA Pearson’s r-value was used as the discrimination variable. KS plots were generated 

with the ‘ROCit’ package in R. ROC p-values were determined with the ‘verification’ 

package in R.

Kinome dendrograms—Kinome dendrograms were prepared using the KinMap web 

application (http://kinhub.org/kinmap/).77

Mapping high confidence kiCCA PPIs that determine kinase functional states
—High confidence kinase interaction partners identified by kiCCA were searched in the 

BioGRID34 and UniProt42 databases. PubMed IDs were retrieved for publications that 

previously described the effect of a PPI on kinase function, i.e., activation, inhibition, or a 

change in cellular localization. Kinase PPIs for which there was evidence from a closely 

related kinase only, for example the Src-family kinases SRC and FYN, were marked with 

‘By similarity’ (see Table S3).

Mapping high confidence kiCCA interactors to 32, disease relevant 
GOBP terms—The search strings presented in Table S2 were used to annotate 

pathway membership of the 684 high confidence kiCCA interactors in gene ontology-

biological process (GOBP) terms. Proteins were annotated using Perseus and the 

‘mainAnnot.homo_sapiens.txt’ file downloaded on 02.03.2020.

Calculating the kiCCA score—To determine the rank order of most likely kinase 

interactors of non-kinase proteins that can interact with several kinases in our kinase 

interactome knowledgebase, we introduced a kiCCA score for each kinase PPI that 

considers both the mean kiCCA r-value and the number of times the interaction was 

identified in the 21 cancer cell lines and cell states. The kiCCA score can be calculated 

according to the formula (2)

kiCCA Score = r/n ()2

Where r the mean kiCCA Pearson’s r-value across all samples and n is the number of cell 

lines and states tested (number of samples, in our case 21).

GSEA Analysis—For gene set enrichment analysis (GSEA), we used the ssGSEA2.0 

script in R together with the Gene Ontology: Biological Process (GOBP) gene set of 

the MSigDB database (‘c5.bp.v7.0.symbols’) according to the published protocol with the 

following minor modifications.46 To rank gene names, we calculated a compound score 

using the two sample t-test of Student’s t-test log2 MS intensity ratio multiplied by the 

-log10 p-value. The parameters used for GSEA were: sample.norm.type = “none”, weight = 

1, statistic = “area.under.RES”, output.score.type = “NES”, nperm = 1e3, min.overlap = 10, 

correl.type = “z.score”, par = T, spare.cores = 1, export.signat.gct = T, extended.output = T. 

To display GSEA results in the heatmap Figure S10B, we calculated an adjusted normalized 

enrichment score (NES), by multiplying the NES with the -log10 FDR.
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ADDITIONAL RESOURCES

An interactive web application of the kinome interactome data in Supplemental Table 3 is 

available: https://quantbiology.org/kiCCA

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of kinobead competition and correlation analysis (kiCCA), a 
chemoproteomic approach for rapid, sensitive, and highly multiplexed kinase protein-protein 
interaction (PPI) profiling.
(A) Kinome profiling with kinobead/LC-MS and kinase inhibitor (KI) soluble competition 

identifies co-precipitating kinase complexes.

(B) Workflow of our kiCCA analysis using 21 kinase interactome probes (KIPs) to identify 

multiple kinase complexes in the same experiment.
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Figure 2. Selecting kinase interactome probes (KIPs), proof-of-concept in HeLa lysate, and 
kiCCA profiling of a diverse 18-cancer line panel.
(A) Unsupervised hierarchical clustering of kinase inhibitors (KIs) by their kinome 

selectivity profiles identifies 21 complementary KIPs.

(B) kiCCA accurately identified previously reported PPIs in HeLa cells with high, 

positive Pearson’s r-values. Violin plot of r-value distributions for previously reported and 

independently validated (left), reported but unvalidated (center), and unreported kinase PPIs 

(right).
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(C) kiCCA identified kinase PPI networks across the human kinome. Shown are previously 

reported, independently validated PPI networks of 37 kinase groups identified using kiCCA 

in unstimulated HeLa cell lysates. Network models created with STRING 11.5.38

(D) Kolmogorov-Smirnov (KS) tests of kiCCA data from each of the 18 cancer lines showed 

that r > 0.6 identified most previously reported PPIs.

(E) kiCCA in 18 diverse cancer cell lines identified 1,154 high confidence kinase 

interactions between 684 proteins and 238 kinase groups.

(F) Co-immunoprecipitation/MS (Co-IP/MS) experiments with casein kinase 2 catalytic and 

regulatory subunits (CK2α and β) antibodies validated a CK2 PPI network identified by 

kiCCA in U2-OS cells (two sample t-test, p < 0.05, n = 3), demonstrating kiCCA’s high 

accuracy.

See also Figure S3 and Table S3
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Figure 3. kiCCA quantifies kinome interactome changes caused by cancer cell plasticity and 
acute signaling events.
(A) Differential expression analysis (DEA) of kiCCA data revealed that the neuroblastoma 

lines SK-N-SH and SH-SY5Y have kinome profiles indicative of mesenchymal-

noradrenergic plasticity (NMP, Student’s t-test, Benjamini-Hochberg (BH)-FDR < 0.05, n 

= 22). Kinases marking the noradrenergic and mesenchymal phenotype are highlighted.
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(B) Kinases with altered PPI abundance between the SK-N-SH and SH-SY5Y 

neuroblastoma lines (n = 44 kinase groups, DEA statistics see (A)). Circle size scales with 

the number of kinase-binding partners that change in abundance.

(C) DEA of high confidence kiCCA interactions reveals that 20 members of a CK2 

interaction network showed an altered abundance between neuroblastoma lines (statistics see 

(A)). Pathway enrichment analysis with STRING 11.538 showed that differentially abundant 

CK2 interactors in either cell line participated in distinct signaling pathways.

(D) Co-IP/MS experiments in the SK-N-SH and SH-SY5Y neuroblastoma lines using 

specific CK2α/β antibodies confirmed altered abundance of CK2 interaction partners as 

determined by kiCCA.

(E) Overview of kiCCA of EGF-stimulated HeLa cells and annotated kinases with altered 

PPI abundance upon EGF treatment (n = 63 kinase groups, for DEA statistics see 

(A)). Kinases with co-regulated changes in phosphorylation and PPIs are highlighted in 

red. Kinases marked with an asterisk (*) have PPI changes only detected with protein 

crosslinking.

(F) kiCCA of EGF-stimulated HeLa cells revealed that abundance changes of PPIs 

correlated with changes in kinase functional states, connecting the EGFR to several non-

canonical EGFR-signaling pathways. Network models were created using STRING 11.5.38

See also Figure S4.
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Figure 4. kiCCA analysis of hepatocellular carcinoma (HCC) lines identifies changes in kinase 
functional states and pathways correlating with plasticity and drug resistance
(A) Epithelial-mesenchymal plasticity (EMP) promotes HCC progression, metastatic spread, 

and therapy resistance. kiCCA DEA data revealed extensive kinome expression changes 

between epithelial-like HuH-7 cells and mesenchymal-like SNU761 cells in HCC cell EMP 

(Student’s t-test, BH-FDR < 0.05, n = 22)

(B) kiCCA and DEA analysis of the HCC cell EMP models SNU761 and HuH-7 mapped 

127 kinase PPIs that significantly differed in abundance. Cross-referencing our curated set 

of fmPPIs revealed that kinases involved in cell survival and proliferation suppression are 

broadly activated in the mesenchymal-like SNU761 line (for DEA statistics see (A))
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(C) Gene ontology-biological process (GOBP) term analysis of kiCCA interactors identifies 

cellular pathways and processes associated with HCC cell EMP, integrating specific 

kinases into EMP pathways through their PPIs. GOBP term enrichment was determined 

by hypergeometric test (p < 0.1).

(D) kiCCA quantifies an extensive AAK1/BMP2K interaction network involved in 

endocytosis and vesicle trafficking across the 18-cancer cell line panel (Created using 

STRING 11.538).

(E) Members of the AAK1/BMP2K PPI network were broadly associated with cancer cell 

plasticity in the SNU761 and HuH-7 HCC lines and SK-N-SH and SH-SY5Y neuroblastoma 

lines (for DEA statistics see (A)), and in the larger 17-member HCC line panel (two sample 

t-test mesenchymal vs epithelial, BH-FDR < 0.05).45

See also Table S3 and S4
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Figure 5. An AAK1 interaction network promotes EMP and therapy resistance in HCC and 
exhibits characteristics of a proliferation suppressor.
(A) Kinobead/LC-MS soluble competition experiments using 1 μM of the selective AAK1 

inhibitor LB-935509 show that the PPI network is centered on AAK1, not BMP2K.

(B) Immunoblotting of EMP markers in SNU387 and FOCUS AAK1 network RNAi lines 

indicated alterations in EMP state.
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(C) Heatmap showing EMP-associated receptor kinases that change in abundance in 

response to AAK1 PPI network RNAi in mesenchymal-like HCC cells. Kinase abundance 

differences were determined by kinobead/LC-MS profiling.

(D) Drug screen results demonstrating that AAK1 network RNAi lines are up to 18-fold 

more sensitive to the cell cycle checkpoint kinase (CHEK1) inhibitors AZD-7762 and 

CHIR-124.

(E) Kinobead/LC-MS profiling of SKHep1 and SNU387 lines shows that AAK1 and REPS1 

RNAi causes upregulation of cell cycle-related kinases and their activating PPIs specifically 

in lines with increased sensitivity to CHEK1 inhibitors.

(F) Immunoblotting confirmed activation of the cell cycle specifically in AAK1 and REPS1 

RNAi lines, suggesting that they act as proliferation suppressors in mesenchymal-like cells.

See also Figure S9 and Table S4.
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Figure 6. Applying our kiCCA interactome knowledgebase to map kinase PPIs in kinome-centric 
chemoproteomic datasets from clinical and pre-clinical tissues.
(A) Workflow for interpreting in vivo kinome profiling data from clinical specimens using 

our kiCCA knowledgebase.

(B) Integrating our kiCCA knowledgebase with kinobead profiling data from four, paired 

HCC patients’ tumor and non-tumor liver (NTL) samples revealed differential abundance 

of kinase PPIs, and thus aberrations in kinase functional states in vivo (two sample t-test, 

BH-FDR = 0.05, n = 5 or 6).

(C) Pathway mapping of kinase PPIs altered between HCC patients’ tumors and paired NTL 

tissues revealed dysregulation of cellular pathways (for statistics, see (B)). Each datapoint 

is the log2 MS intensity tumor/NTL ratio of a kiCCA interactor with significantly different 

abundance in at least one HCC case; all interactions were then compared across all HCC 

cases.
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(D) DEA of the AAK1-mediated PPI network between HCC tumor and NTL tissues 

revealed frequent upregulation in tumors, suggesting important roles in HCC progression 

and drug resistance in vivo (for statistics, see (B)).

See also Table S3
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Snail (C15D3) Cell Signaling Technology Cat# 3879, RRID: AB_2255011

E-Cadherin (24E10) Rabbit mAb Cell Signaling Technology Cat# 3195, RRID: AB_2291471

ZEB1 (E2G6Y) Cell Signaling Technology Cat# 70512

CD44 (E7K2Y) Cell Signaling Technology Cat# 37259, RRID: AB_2750879

GAPDH (D16H11, HRP conjugate) Cell Signaling Technology Cat# 8884, RRID: AB_11129865

AAK1 (E8M3P) Cell Signaling Technology Cat# 61527

RALBP1 (D87H8) Cell Signaling Technology Cat# 5739, RRID: AB_10697484

Axl (C89E7) Rabbit mAb Cell Signaling Technology Cat# 8661, RRID: AB_11217435

REPS1 (D6F4) Cell Signaling Technology Cat# 6404, RRID: AB_11220228

CDK4 (D9G3E) Cell Signaling Technology Cat# 12790, RRID: AB_2631166

CDK6 (DCS83) Cell Signaling Technology Cat# 3136, RRID: AB_2229289

CDK2 (78B2) Cell Signaling Technology Cat# 2546, RRID: AB_2276129

Cyclin D1 (92G2) Cell Signaling Technology Cat# 2978, RRID: AB_2259616

Cyclin D3 (DCS22) Cell Signaling Technology Cat# 2936, RRID: AB_2070801

GFP (D5.1) Cell Signaling Technology Cat# 2956, RRID: AB_1196615

CK2α (polyclonal) Novus Biologicals Cat# NB100-378, RRID: AB_2230121

CK2β (polyclonal) Novus Biologicals Cat# NBP1-06515, RRID: AB_1582302

Bacterial and Virus Strains

Biological Samples

Chemicals, Peptides, and Recombinant Proteins

Kinobead affinity capture reagents Laboratory of Dustin J. Maly, University of 
Washington71

Compounds #1, 2, 3, 4, 5, 6 and 7

AZD7762 Selleckchem Cat#: S1532, CAS#: 860352-01-8

CHIR-124 APExBIO Cat#: A8394, CAS#: 405168-58-3

GSK-690693 MedChemExpress Cat#: HY-10249, CAS#: 937174-76-0

Milciclib MedChemExpress Cat#: HY-10424, CAS#: 802539-81-7

Rebastinib MedChemExpress Cat#: HY-13024, CAS#: 1020172-07-9

AT9283 MedChemExpress Cat#: HY-50514, CAS#: 896466-04-9

TAK-901 MedChemExpress Cat#: HY-12201, CAS#: 934541-31-8

RGB-286638 MedChemExpress Cat#: HY-15504, CAS#: 784210-87-3

Flavopiridol*HCl MedChemExpress Cat#: HY-10006, CAS#: 131740-09-5

PF-562271 besylate MedChemExpress Cat#: HY-10458, CAS#: 939791-38-5

Dabrafenib mesylate MedChemExpress Cat#: HY-14660A, CAS#: 1195768-06-9

OTSSP167*HCl MedChemExpress Cat#: HY-15512A, CAS#: 1431698-10-0

CYC-116 MedChemExpress Cat#: HY-10558, CAS#: 693228-63-6

Silmitasertib MedChemExpress Cat#: HY-50855, CAS#: 1009820-21-6
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REAGENT or RESOURCE SOURCE IDENTIFIER

SB1317 MedChemExpress Cat#: HY-15166, CAS#: 937270-47-8

XL228 MedChemExpress Cat#: HY-15749, CAS#: 898280-07-4

Sapanisertib MedChemExpress Cat#: HY-13328, CAS#: 1224844-38-5

PF-3758309 APExBIO Cat#: A3716, CAS#: 898044-15-0

Staurosporine LC-Labs Cat#: S-9300, CAS#: 62996-74-1

Bosutinib Selleckchem Cat#: S1014, CAS#: 380843-75-4

Dasatinib Selleckchem Cat#: S1021, CAS#: 302962-49-8

Linsitinib APExBIO Cat#: A8334, CAS#: 867160-71-2

LP-935509 MedChemExpress Cat#: HY-117626, CAS#: 1454555-29-3

Selumetinib (AZD6244) Selleckchem Cat#: S1008, CAS#: 606143-52-6

Lenvatinib Selleckchem Cat#: S1164, CAS#: 417716-92-8

Sorafenib Selleckchem Cat#: S7397, CAS#: 284461-73-0

Regorafenib Selleckchem Cat#: S1178, CAS#: 755037-03-7

Cabozantinib Selleckchem Cat#: S1119, CAS#: 849217-68-1

Dinaciclib Selleckchem Cat#: S2768, CAS#: 779353-01-4

Volasertib (BI 6727) Selleckchem Cat#: S2235, CAS#: 755038-65-4

Doxorubicin Selleckchem Cat#: E2516, CAS#: 23214-92-8

Seradigm Fetal Bovine Serum (FBS) VWR Life Science Cat#: 97068-085

Lysyl Endopeptidase, Mass Spectrometry Grade 
(Lys-C)

Wako Cat#: 125-05061

Pierce Trypsin Protease, MS Grade Thermo Fisher Scientific Cat#: 90058

HALT Protease Inhibitor Thermo Fisher Scientific Cat#: 78430

NuPAGE LDS Sample Buffer Thermo Fisher Scientific Cat#: NP0007

Bolt 4-12% Bis-Tris Protein Gels Thermo Fisher Scientific Cat#: NW04120BOX and NW04127BOX

TRIzol Reagent Thermo Fisher Scientific Cat#: 15596026

Phosphatase Inhibitor Cocktail 2 Sigma-Aldrich Cat#: P5726-5ML

Phosphatase Inhibitor Cocktail 3 Sigma-Aldrich Cat#: P0044-5ML

Pierce Protein A Agarose Thermo Fisher Scientific Cat#: 20333

ReproSil-Pur 120 C18-AQ, 3 µm Dr. Maisch Cat#: r13.aq.

Critical Commercial Assays

Pierce 660 nm Protein Assay Reagent Thermo Fisher Scientific Cat#: 22660

RNeasy Mini Kit Quiagen Cat#: 74104

CellTiter-Glo 2.0 Assay Promega Cat#: G9241

Clarity Western ECL Substrate Bio-Rad Cat#: 1705060

Protoscript II First Strand cDNA Synthesis Kit New England Biolabs Cat#: E6560L

Deposited Data

All MS raw files and MaxQuant output files MassIVE Repository of the University of 
California, San Diego

Acquisition#: MSV000088067

Experimental Models: Cell Lines

Human: SNU449, <10 Passages ATCC Cat#: CRL-2234
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REAGENT or RESOURCE SOURCE IDENTIFIER

Human: HuH-7, <10 Passages JRCB Cell Bank Cat#: JCRB0403

Human: FOCUS AXL RNAi, <10 Passages Laboratory of Taranjit Gujral, Fred 
Hutchinson Cancer Center, Seattle, WA31

N/A

Human: FOCUS, <10 Passages Laboratory of J. Wands, Brown 
University72

N/A

Human: C3A, <10 Passages ATCC Cat#: CRL-10741

Human: SNU398, <10 Passages ATCC Cat#: CRL-2233

Human: Hep3B2.1-7, <10 Passages ATCC Cat#: HB-8064

Human: A-172, <10 Passages ATCC Cat#: CRL-1620

Human: SNU761, <10 Passages Korean Cell Line Bank (KCLB) Cat#: 00761

Human: SNU886, <10 Passages Korean Cell Line Bank (KCLB) Cat#: 00886

Human: HeLa, <10 Passages ATCC Cat#: CRM-CCL-2

Human: JHH6, <10 Passages JRCB Cell Bank Cat#: JCRB1030

Human: SH-SY5Y, <10 Passages ATCC Cat#: CRL-2266

Human: U-2 OS, <10 Passages ATCC Cat#: HTB-96

Human: SK-N-SH, <10 Passages ATCC Cat#: HTB-11

Human: JeKo-1, <10 Passages ATCC Cat#: CRL-3006

Human: Jurkat, <10 Passages ATCC Cat#: PTS-TIB-152

Human: K562, <10 Passages ATCC Cat#: CCL-243

Human: SKHep1, <10 Passages ATCC Cat#: HTB-52

Human: SNU387, <10 Passages ATCC Cat#: CRL-2237

Experimental Models: Organisms/Strains

Oligonucleotides

AAK1 shRNA#1 The RNAi Consortium (TRC) TRCN0000001943

AAK1 shRNA#2 The RNAi Consortium (TRC) Cat#: TRCN0000199939

AAK1 shRNA#3 The RNAi Consortium (TRC) Cat#: TRCN0000082348

REPS1 shRNA#1 The RNAi Consortium (TRC) Cat#: TRCN0000053363

REPS1 shRNA#2 The RNAi Consortium (TRC) Cat#: TRCN0000423162

REPS1 shRNA#3 The RNAi Consortium (TRC) Cat#: TRCN0000436095

REP2 shRNA#1 The RNAi Consortium (TRC) Cat#: TRCN0000423057

REP2 shRNA#2 The RNAi Consortium (TRC) Cat#: TRCN0000428939

REP2 shRNA#3 The RNAi Consortium (TRC) Cat#: TRCN0000056210

RALBP1 shRNA#1 The RNAi Consortium (TRC) Cat#: TRCN0000305689

RALBP1 shRNA#2 The RNAi Consortium (TRC) Cat#: TRCN0000047918

RALBP1 shRNA#3 The RNAi Consortium (TRC) Cat#: TRCN0000047920

Recombinant DNA

Lentiviral pLKO.1 Vector Plasmid Addgene Cat#: 10878

pMD2.G Lentiviral Envelope Plasmid Addgene Cat#: 12259

pCMVR8.74 Lentiviral Packaging Plasmid Addgene Cat#: 22036

Software and Algorithms
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REAGENT or RESOURCE SOURCE IDENTIFIER

MaxQuant/Andromeda, v1.5.2.8 https://www.biochem.mpg.de/5111795/
maxquant

Cox, J. et al.73

Perseus, v1.5.6.0 https://www.biochem.mpg.de/5111810/
perseus

Tayanova, S. et al.74

R-package, gplots v3.0.1, gplots::heatmap.2 https://www.rdocumentation.org/packages/
gplots/versions/3.0.1

N/A

R-package, ssGSEA2.0 https://github.com/broadinstitute/
ssGSEA2.0

Krug, K. et al.46

GraphPad Prism, V7 https://www.graphpad.com/ N/A

STRING 11.5, PPI Networks and Enrichment 
Analysis

https://string-db.org/ Szklarczyk, D. et al.38

BioGRID https://thebiogrid.org/ Chatr-Aryamontri, A. et al.75

PhosphoSite Plus https://www.phosphosite.org/homeAction Hornbeck, P.V. et al.41

BioVenn http://www.biovenn.nl/ Hulsen, T. et al.76

KinMap http://kinhub.org/kinmap/ Eid, S. et al.77

Other

Fluor Chem E Imager ProteinSimple/Bio-Techne Brand N/A

QuantStudio 5 Real-Time PCR System Applied Biosystems, Thermo Fisher 
Scientific

Cat#: A34322

SpectraMax 190 Multimode Plate Reader Molecular Devices N/A

P-2000 Laser Puller Sutter N/A

EASY-nLC 1200 System Thermo Fisher Scientific Cat#: LC140

Orbitrap Fusion Lumos Tribrid Mass Spectrometer Thermo Fisher Scientific Cat#: IQLAAEGAAPFADBMBHQ
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