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Individual retinal cell types exhibit semi-regular spatial patterns called retinal
mosaics. Retinal ganglion cells (RGCs) and starburst amacrine cells (SACs)
are known to exhibit such layouts. Mechanisms responsible for the formation
of mosaics are not well understood but follow three main principles: (i) homo-
typic cells prevent nearby cells from adopting the same type, (ii) cell tangential
migration and (iii) cell death. Alongside experiments in mouse, we use BioDy-
naMo, an agent-based simulation framework, to build a detailed and
mechanistic model of mosaic formation. We investigate the implications of
the three theories for RGC’s mosaic formation. We report that the cell migration
mechanism yields the most regular mosaics. In addition, we propose that low-
density RGC type mosaics exhibit on average low regularities, and thus we
question the relevance of regular spacing as a criterion for a group of RGCs
to form a RGC type. We investigate SAC mosaics formation and interactions
between the ganglion cell layer (GCL) and inner nuclear layer (INL) popu-
lations. We propose that homotypic interactions between the GCL and INL
populations during mosaics creation are required to reproduce the observed
SAC mosaics’ characteristics. This suggests that the GCL and INL populations
of SACs might not be independent during retinal development.
1. Introduction
The mammalian retina, including mouse (as used in this work), is composed of
six main types of neuronal cells, namely cones, rods, horizontal, bipolar, ama-
crine and ganglion cells. These can be sub-divided into many different
anatomical and functional subtypes, forming a complexly organized structure.
Notably, individual cell types exhibit semi-regular spatial patterns called
mosaics. Regular spacing between homotypic cells enable homogeneous pro-
cessing of the light signals, leaving no perceptual holes within our visual
field. Sub-groups of retinal ganglion cells (RGCs) and starburst amacrine cells
(SACs) are known to form regular mosaics (figure 1), and both cell types are
widely used to study mosaic organization. SACs are divided into two popu-
lations, located in the inner nuclear layer (INL) and in the ganglion cell layer
(GCL). Each population forms a mosaic [1,2].

RGCs, located in the GCL, are the output cells of the retina, sending all
visual information processed in the retina to the visual areas of the brain.
There are many ways RGCs can be classified into sub-groups. One approach
is to classify them into three functional and morphological groups depending
on the sub-layer their dendrites laminate into in the inner plexiform layer, form-
ing the On, Off and On-Off groups. In mouse, RGCs can however be divided
into more than 40 types [3–6], each having different functional and anatomical
characteristics. The number of RGCs sub-group varies between species, and for
a different species, the density of these sub-groups is also known to greatly
differ, varying from less than 50 cells mm−2 to more than 300 cells mm−2 [5].
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(a)

Figure 1. SAC mosaic in the INL level, obtained by a ChAT immunostaining in
a P9 pup retina.
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It has been proposed that a group of RGCs has to fulfil four
criteria in order to be considered a RGC type [5]: (i) morpho-
logical homogeneity (dendritic tree shape); (ii) identical
physiological properties (electrophysiological response to
light); (iii) similar gene expression (molecular signature);
and (iv) regular spacing (mosaic). Thus, being organized in
mosaics could represent an important feature of each RGC
type. Even if the total number of RGC types is estimated to
more than 40, only 19 have been fully characterized (cellular
density, morphology, molecular signature and functions) [5].
Other RGC types have been only partially characterized.
While RGCs dendritic arbours are also known to form
mosaics through homotypic self-avoidance [4,7,8], our work
will only focus on cell bodies.

RGCs are the only cell class notably more numerous in the
immature retina than in the adult retina. Indeed, around 60%
of newly born RGCs undergo programmed cell death (CD)
(apoptosis) during the perinatal period [9]. Much remains to
be discovered about the impact of RGC apoptosis on the matu-
ration of retinal circuitry and visual pathways, even if studies
already suggest that apoptosis could be implicated in the
development of some RGCs connectivity [10].

Despite being an important feature of retinal organization,
retinal mosaic’ formation is not fully understood yet. In
particular, three mechanisms are believed to potentially take
part in their development: cell fate (CF) determination, pro-
grammed CD and tangential cellular migration (CM) [4,11].

1.1. Cell fate determination
CF is a process by which a cell of a certain type will prevent
the emergence of same type cells in its vicinity [12]. After pas-
sing through an intrinsically determined state, retinal
progenitors are left in an undifferentiated state, but are now
only capable of giving rise to a limited subset of cell types.
The precise type the cells choose to differentiate into depends
on extrinsic signals [13]. These extrinsic signals can consist of
chemical cues such as trans-membrane proteins [14–16] and
may be delivered by an already differentiated retinal cell in
order to block neighbouring undifferentiated cells from dif-
ferentiating into the same cell type. Such a process has been
previously demonstrated to be implicated in the tiling of
the Drosophila photoreceptor R8, which prevents neighbour-
ing cells to differentiate into the R8 type [17]. Recent studies
in mouse also show evidences of a signalling cascade influen-
cing the developmental pathway of RGC type specification,
through a competitive mechanism requiring local signalling
[18] and that RGCs types are not defined after mitosis, but
acquired through fate restriction [19].
1.2. Programmed cell death
RGCs exhibit a very high rate of programmed death (60–70%
of the initial population [20]) during normal development.
The CD mechanism is believed to be implicated in the selec-
tion of relevant cells in order to build a functional retina.
Following this principle, cellular death has been proposed
to be a consequence of RGCs not being able to establish cor-
rect axonal connections in the lateral geniculate nucleus in the
thalamus [21]. RGC CD has also been shown to depend on
neighbouring cells’ electrical activity [22,23]. Creating either
spatial or functional competition between homotypic cells
could lead to the formation or refinement of mosaics. Due
to major differences in death rate, the importance of pro-
grammed CD upon mosaic formation seems however to
vary between cell classes, and even between sub-groups
within the same cell class. CD has been proposed to contrib-
ute to mosaic formation for several cell groups in the retina,
including amacrine cells [8,24] and at least one RGC type [23].
1.3. Cellular migration
All retinal cells undergo migration during retinal development,
both vertical (from one layer to another) and tangential (within
the same layer). Cells can move between 20 µm and 100 µm
tangentially from their initial location [25,26]. This has been
demonstrated for SACs mosaic formation, where homotypic
cells move tangentially away from each other [27]. CM is
believed to be key mechanism in mosaic formation [8]. Mechan-
isms responsible for this migration are not fully understood,
even if chemical cues seem to play a key role, such as in the
case of SACs [1]. Diffusible signals or contact-mediated inter-
actions between homotypic cells may be responsible for
mosaic formation [28]. Dendritic contact-mediated interactions
have been shown to play a role in tangential migration
[1,29,30]. However, these dendritic interactions may not be
necessary for all mosaic formation as mosaics appear, partially
or completely, before extensive dendritic growth [28,31] and
thus without contact-mediated interactions. Thus, cell–cell inter-
actions seem to play an important role for tangential migration.

Of course, it is likely that the formation of mosaic patterns
is due to the combinations of all three mechanisms [31]. Pre-
vious mathematical simulations of retinal mosaic formation
have been conducted [11,22]. These studies investigate the
involvement of the CF, CD and CM mechanisms, suggesting
a central role for the CM mechanism. They show that regular
mosaics can arise solely from interactions between cells,
using CD and CM mechanisms, and that the latter yields
the most regular mosaics. They also show that CF is the
least effective mechanism to create regular mosaics but
improves the effect of CD if CF and CD are modelled sequen-
tially. However, these studies are highly abstract and do not
mechanistically model retinal mosaic formation, thus limiting
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their biological interpretation. No mechanistic model of
mosaic formation currently exists.

Agent-based (AB) modelling is a type of computational
modelling in which each simulation object is an autonomous
agent. Despite the absence of any global supervisor, highly
complex structures can emerge from local interactions of
agents that self-organize [32,33]. This approach is particularly
relevant to model biological phenomena where cells exhibit
this characteristic as well and allows the construction of
mechanistic and realistic models of retinal mosaic formation.

The impact and implications of all mechanisms involved in
mosaic formation (CF, CD and CM) are not fully understood,
and much remains to be done in order to establish the detailed
mechanisms governing mosaic formation. In this work, we
analyse mechanisms underlying retinal mosaics self-organiz-
ation using AB computational modelling. In particular, the
biological requirements and the effect of individual mechan-
isms generating these cellular patterns are investigated. We
also acquired experimental data to inform our computational
modelling and validate the results of our simulations.
2. Methods
2.1. Experimental work

2.1.1. Immunohistochemistry

Retinal wholemounts were prepared from mouse pups aged
P2–P11, flattened on nitrocellulose membrane filters and
fixed for 45 min in 4% paraformaldehyde. Retinas were
then incubated in blocking solution—5% of secondary anti-
body host species serum with 0.5% Triton X-100 in 0.1 M
phosphate buffer solution (PBS)—for 1 h.

Retinas were incubated with 0.5% Triton X-100 with
RBPMS (1 : 500) and ChAT (1 : 500) in PBS for 3 days at 4°C,
then washed with PBS and incubated with 0.5% Triton X-
100 with donkey anti-rabbit Alexa 568 (1 : 500) and donkey
anti-goat Dylight 488 (1 : 500) in PBS for 1 day at 4°C. Finally,
retinas were washed with PBS and embedded with Opti-
Clear. Primary antibodies used were ChAT (AB144P, goat
polyclonal, Merck Millipore) for SACs staining and RBPMS
(1830-RBPMS, rabbit polyclonal, Phosphosolutions) for
RGCs staining. Secondary antibodies used were Donkey
anti-rabbit Alexa 568 (A10042, Invitrogen) and Donkey anti-
goat Dylight 488 (SA5-10086, ThermoFisher Scientific).

Zeiss AxioImager with Apotome processing and Zeiss
LSM 800 confocal microscope were used to image the retinas.
Stitching of adjacent areas was achieved to image the whole
retinal surface at high-resolution. Images at 40× magnifi-
cation were acquired in mid-peripheral regions to perform
cell count and mosaic regularity measures.

2.1.2. Cell populations density

The average RGC and SAC density for each developmental day
was measured by performing a manual cell count from P2 to
P10 for RGCs and from P4 to P10 for SACs. By accounting
for the surface expansion observed during retinal development,
we estimated changes in populations through development.
The estimated total RGC and SAC populations for a given
retina are calculated by multiplying the averaged cell density
(obtained from 3 to 6 sample areas per retina) by its correspond-
ing retinal surface. These individual measurements are then
averaged for each developmental day to give an estimation of
the total population from P2 to P10. Cell population death
rate during development is then calculated.

2.1.3. Starburst amacrine cell mosaics

Positions of SACs in the GCL and INL are extracted in order to
calculate mosaic regularities of these two populations from P4
to P10. A measure of GCL and INL mosaics exclusion has also
been conducted. The calculated exclusion factor is based, for
two distinct populations, on a count of cells from the first
populations located within a determined distance (exclusion
diameter) from cells belonging of the second population. This
score is then normalized, to give an exclusion factor between
0 and 1. 1 denotes a perfect exclusion, meaning that all cells
of the first population are located at a distance greater than
the exclusion diameter from all cells of the second population.
By consequence, only exclusion factors calculated with an iden-
tical exclusion diameter can be compared. A unique exclusion
diameter of 32 µm has been chosen here, corresponding to
about three times the diameter of a SAC soma, and allowing
a good discrimination between our different mosaics.

2.2. Biodynamo
Simulations were conducted using the AB simulation frame-
work BioDynaMo [34].

Each simulation object in BioDynaMo possesses its own
characteristics, such as its three-dimensional geometry, mass
and position in space. Individual neurons are represented by
a sphere. Diffusion in three-dimensional of chemical substances
in the extracellular space is implemented, with the discrete cen-
tral difference method. This diffusion is supported by grids
representing substances concentration and gradients. Mechan-
ical forces are also considered between all simulation objects
such that they cannot overlap, but mechanically repulse each
other. Each simulation object can have a biology module attached
to it that describes its behaviour at each simulation time step,
such as substance secretion, CM or cell growth.

As an AB simulation framework, each simulation object is
independent, without a central organization unit that orches-
trates the behaviour of all simulation objects. Thus,
simulation objects only have access to their micro-environ-
ment, which consists of other objects and chemical
substances of the extracellular matrix in their proximity.

Several biology modules have been defined and used in
our simulations, in order to describe cells behaviour for
self-organization (CF, CD and CM), cell growth and chemical
substances secretion.

2.3. Simulations
Cells of 7 to 8 µmdiameterare randomlydistributed (uniformdis-
tribution) in a space of 1000 m×1000 µm×22 µm, creating a
multi-layer plane. Simulation space borders have been set to
1300 µm to avoid side effect from cells located to the edge. If CD
is simulated, the initial cell density is set to 8600 cells mm−2, in
order to reach the RGC density once the CD mechanism is
over—around 3000 cells mm−2 reported in literature [5] and
around 3500 cells mm−2 in our measures. If CD is not simulated,
the initial cell density is set to 3000 cells mm−2. No additional
cells are created during the simulation. As cell density decreases
due to CD (and as cell diameter increases up to 14 µm), the initial
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multi-layer collapses into a RGC monolayer, accordingly to our
in vitro observation. This collapse is not implemented depending
on physical pressure as it is the case in vivo, but by having cells
moving along the z-axis toward the centre of the RGC layer.
Time step is set such that 160 steps simulate 1 dayof development.
Mosaic formation simulations run for a maximum of 2240 steps,
corresponding to 14 days of development.

In our simulations, the global RGC population is sub-
divided into 43 types. Some have been precisely documented,
such as the On or On-Off direction-selective RGCs or the Off
J-RGCs, and their population densities and dendritic arbours
characteristics are known. However, these precisely docu-
mented RGC groups represent only 19 types and merely
about 60% of the total RGC population (approx. 1700 cells
mm−2 over approximately 3000 cells mm−2) [5]. RGC types
contributing to the remaining 40% of the population have
been estimated using results from Sanes & Masland [5],
Reese & Keeley [4] and Baden et al. [3]. These authors state
that numerous RGC types are still unknown, and these cells
are probably sparsely distributed across the retina. Thus, in
addition of the 19 precisely documented RGC types, we
implemented 24 RGC types of various but low densities,
for a total of 43 RGC types. This final number is also in
accordance with previous studies classifying RGCs into 42
types based on visually evoked responses [35]. All
implemented RGC types and their corresponding starting
and final densities are summarized in table 1.

Cells are created with no predefined types when simulat-
ing the CF mechanism. Otherwise, cells are created with a
type matching the theoretical initial density of each RGC type.

2.3.1. Substance secretion

Each RGC type secretes a specific chemical substance that dif-
fuses in the extracellular space, using grids of 2 µm3 voxels.
At each time step, the concentration value of each voxel is
updated according to the equation

uni;j;k þ 1 ¼ ðuni;j;k þ
nDt
Dx2

ðuniþ1;j;k � 2uni;j;k þ uni�1;j;kÞ

þ nDt
Dy2

ðuni;jþ1;k � 2uni;j;k þ uni;j�1;kÞ þ
nDt
Dz2

ðuni;j;kþ1 � 2uni;j;k þ uni;j;k�1ÞÞ � ð1� mÞ;

where uni,j,k þ 1 is the concentration value on grid point (i, j, k)
at time step n + 1, ν is the diffusion coefficient (2 in our simu-
lations), μ is the decay constant (0 in our simulations), Δt is
the duration of one time step, and Δx, Δy, Δz are the distances
between grid points in the x, y, z directions, respectively. The
secretion corresponds to an increase of substance concen-
tration by 1 at the cell centre position at each time step.
Each cell uses only its cell type chemical substance concen-
tration as a developmental cue for the three mosaic
formation mechanisms. Undifferentiated cells do not secrete
any substance. Simulations are initialized without any sub-
stance pre-existing in the extracellular space.

2.3.2. Retinal ganglion cell mosaic formation: cell fate

CF is implemented such that substances act as an inhibitor for
cell differentiation, preventing nearby undifferentiated cells
to adopt the same types. RGC cells can choose to differentiate
only into non-inhibited RGC types. If multiple types are not
inhibited, the selected type depends on a probability. When
implemented, CF is the first event to occur during simu-
lations and no other mechanism occurs concomitantly. CF
mechanism is over when all undifferentiated cells from the
initial pool have selected to become a specific cell type.

2.3.3. Retinal ganglion cell mosaic formation: cell death

The CD mechanism corresponds to the cells removing them-
selves from the simulation if their corresponding substance
concentration is higher than a defined threshold (table 1).
Thereby, the clusters of homotypic cells exhibit high death
rates and become sparser. If CF is implemented, CD is trig-
gered after completion of CF and continues until a steady
state is reached. This steady state is reached by P5–P6 and
is achieved without global controllers but depends on the
chosen concentration threshold triggering CD.

2.3.4. Retinal ganglion cell mosaic formation: cell migration

CM is implemented such that the homotypic substances act
as a repulsive factor. Thereby, cells exhibit short-distance
avoidance, moving tangentially against their substance gradi-
ent, distancing themselves from homotypic neighbours. CM
chemical concentration threshold is always set at a lower
value than the CD threshold (table 1) such that CM is trig-
gered before CD. We assume that CM is triggered after
completion of CF, at the same time as CD, and continues
either until a steady state or day 13 is reached.

Development conditions incorporating all combinations
of these three mechanisms have been investigated.

Pseudocode corresponding to these three biology modules
can be found in (figure 2), and schematic representations
can be found in electronic supplementary material, figure S1.

2.3.5. Parameter tuning

Tomodel realisticmechanisms of CD andCM, parameters have
been set to match experimental measures in the retina. The CD
parameter corresponds to the chemical cue concentration
threshold triggering the CD mechanism. For each population,
this threshold parameter is set such that the death rate steady
state matches the measured CD in vitro—between 60% and
65% of death rate [9,20]. For a specific population, the CD par-
ameter differs between simulations implementing CD alone or
in the case of a combination of CD and CM mechanisms.
Indeed, by migrating cells away from the most concentrated
chemical cue region, CM decreases the death rate. A lower CD
threshold must be used in order to replicate the observed
death rate of 60–65%. Likewise, if CF and CD are simulated
together this parameter differs, as CF increases the regular spa-
cing of a cell population compared to random distribution and
so close homotypic cells are less common.

The CM parameter corresponds to the chemical cue con-
centration triggering the CM mechanism. This threshold
parameter is set depending on the CD parameter, always
being lower such that CM is triggered before CD. This par-
ameter is also set such that interaction distance between
cells is restricted to local interactions and such that CM dis-
tance does not exceed in vivo measures (average migration
distance experimentally measured at around 20 µm [27],
and not exceeding 30 µm [31]).

As the mechanisms influence each other, parameters
vary depending on the implemented mechanisms. Table 1
summarizes the parameters used for RGC mosaics formation
mechanisms.



Table 1. Implemented RGC types and parameters used for different conditions. D: death mechanism only. FD: fate and death mechanisms. FDM: fate, death
and migration mechanisms. death: concentration threshold for death mechanism. Migration: concentration threshold for migration mechanism.

cell type type name
start density
cells mm−2

final density
cells mm−2 D FD death FDM

0 on-off_dsgca 357 125 2.0367 2.0334 2.023 2.02

1 on-off_dsgcb 357 125 2.0367 2.0334 2.023 2.02

2 on-off_dsgcc 357 125 2.0367 2.0334 2.023 2.02

3 on-off_dsgcd 357 125 2.0367 2.0334 2.023 2.02

4 on-off_m3 57 20 1.9872 1.9855 1.9855 1.983

5 on-off_led 714 250 2.116 2.098 2.08 2.065

6 on-off_u 57 20 1.9872 1.9855 1.985 1.983

7 on-off_v 57 20 1.9872 1.9855 1.985 1.983

8 on-off_w 171 60 2.001 1.9978 1.996 1.994

9 on-off_x 143 50 1.9968 1.9945 1.994 1.9925

10 on-off_y 114 40 1.994 1.993 1.993 1.991

11 on-off_z 114 40 1.994 1.993 1.993 1.991

100 on_dsgca 114 40 1.994 1.993 1.993 1.991

101 on_dsgcb 114 40 1.994 1.993 1.993 1.991

102 on_dsgcc 114 40 1.994 1.993 1.993 1.991

103 on_aplha 114 40 1.994 1.993 1.993 1.991

104 on_m2 160 56 2 1.9953 1.994 1.992

105 on_m4 57 20 1.9872 1.9855 1.985 1.983

106 on_m5 57 20 1.9872 1.9855 1.985 1.983

107 on_o 428 150 2.05 2.0425 2.035 2.031

108 on_p 286 100 2.022 2.018 2.012 2.01

109 on_q 286 100 2.022 2.018 2.012 2.01

110 on_r 228 80 2.011 2.0082 2.004 2.002

111 on_s 171 60 2.001 1.9978 1.995 1.993

112 on_t 171 60 2.001 1.9978 1.995 1.993

113 on_u 143 50 1.9968 1.9945 1.994 1.9925

114 on_v 143 50 1.9968 1.9945 1.994 1.9925

115 on_w 97 34 1.993 1.9934 1.989 1.987

116 on_x 57 20 1.9872 1.9855 1.985 1.983

117 on_y 57 20 1.9872 1.9855 1.985 1.983

118 on_z 57 20 1.9872 1.9855 1.985 1.983

200 off_aplhaa 114 40 1.994 1.993 1.993 1.991

201 off_aplhab 114 40 1.994 1.993 1.993 1.991

202 off_m1 180 63 2.006 1.9979 1.998 1.996

203 off_j 571 200 2.078 2.065 2.058 2.049

204 off_mini_j 1000 350 2.179 2.155 2.134 2.098

205 off_midi_j 228 80 2.011 2.0082 2.004 2.002

206 off_u 57 20 1.9872 1.9855 1.985 1.983

207 off_v 57 20 1.9872 1.9855 1.985 1.983

208 off_w 171 60 2.001 1.9978 1.995 1.993

209 off_x 143 50 1.9968 1.9945 1.994 1.9925

210 off_y 114 40 1.994 1.993 1.993 1.991

211 off_z 106 37 1.9935 1.9928 1.989 1.988

royalsocietypublishing.org/journal/rsob
Open

Biol.13:220217

5



Figure 2. Pseudocode describing biology modules. A: CF. B: CD. C: CM.
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2.3.6. Starburst amacrine cell mosaic formation

The simulation of SAC mosaic formation is achieved using
the CM mechanism. Once mosaics are formed, the two popu-
lations (GLC and INL populations) migrate to their respective
layers, in the GCL and INL. This migration is achieved by
migrating cells along the z-axis depending on their cell type
(GCL or INL population). CM parameter has been set such
that the mosaics Regularity Index (RIs) match the measured
RIs in mouse SACs mosaics. Importantly, CM concentration
thresholds are identical for the GCL and INL populations.
2.4. Data analysis
TheRIwasused to assess the regularityof themosaics. It is com-
puted as the average value of the closest neighbour distribution
(distribution of the closest neighbour measured for each cell)
divided by its s.d. [36]. The RI offers a single score that can dis-
criminate regularity differences between mosaics of low
regularities. In addition, and as previously reported [4], the RI
offers a scale-invariant measure of mosaic regularity and thus
more direct evidence of any change in themosaic spatial organ-
ization during development. It is not only the absolute RI
value that carries information, but also its evolution across
development, related to the contribution of each mosaic devel-
opmental mechanism (CF, CD and CM). However, RI is
sensitive to a lowsampling rate, leading to significant variability
in RI scores for mosaics constituted of few cells. The RI of a
random distribution is between 1.8 and 2.

Comparisons between two RI values have been conducted
using Mann–Whitney U-test as Kolmogorov–Smirnov tests
have revealed non-normal distribution of RI values.
3. Results
3.1. Retinal ganglion cell mosaic development
Different steps of a simulation implementing the CF, CD and
CM mechanisms are illustrated by figure 3. Several simu-
lation conditions have been investigated, implementing
either a single mechanism (CF, CD or CM) or combinations
of mechanisms (CF-CD and CF-CD-CM). As the CD and
CM mechanisms require cells to be differentiated, CF is simu-
lated beforehand. If CF is not simulated, cells are created with
a defined type at their creation, accordingly to their type’s
theoretical density. All cells are differentiated at the end of
simulation day 1, and CD mechanism has reached a steady
state at the end of simulation day 6.

Toachieve realistic simulations, parameters tuning is crucial.
For this reason, parameters have been set tomatch experimental
measures in the retina, as described in the Methods.

3.1.1. Cell fate

We demonstrate here that a realistic AB implementation of
the CF can significantly increase the mosaic regularity com-
pared to a random distribution ( p < 0.001). Indeed, the
average RI values rapidly increase from random levels
(between 1.8 and 2) until reaching a value of 2.42 (± 0.09) at
the end of the CF mechanism (figure 4a). However, such RI
values are lower than the experimentally observed values
(greater than 3), and so cannot be considered as solely
responsible for the formation of regular mosaics. As shown
in figure 4b, if CF is the only simulated mechanism, no corre-
lation can be established between cell density and final RI
values (correlation coefficient of 0.308, p = 0.044). Thus,
mosaics of high cell density reach similar RI values as seen
in mosaics of low cell density, as illustrated by the blue and
orange lines in figure 4a.

3.1.2. Cell death

The CD is also able to significantly increase RI compared to a
random distribution (p < 0.001), alone or in combination with
the CF mechanism. The average RI value increases from
random (around 1.8) to 3.31 (± 0.33) at the end of CD
(figure 4c). This death rate amounts to around 65% when it
reaches a steady state at the end of the simulation. These death
rate dynamics are very similar to rates observed in vitro
(figure 5a). Moreover, and unlike for the case of the CFmechan-
ism, CD can generate mosaics of medium regularities (RI > 3).

Interestingly, and as shown by figure 5b, the death rate
measured in vitro and selected for our simulations (grey hori-
zontal dashed line) is not the one generating the highest
regularity. The highest scores of RI are achieved for death
rates between 5% and 30% of the RGC population, regardless
of the initial density of the considered population. After 30%
of CD, RI decreases until it reaches a random distribution
once around 90% of cell death is achieved. This is observed
under both high and low-density conditions and in simulations
with CD alone or in combination with CF. Interestingly, and in
contrast with the CFmechanism, we observe strong differences
betweenpopulations of high and low initial densities.As shown
in figure 5b, the high-density population can generate more
regular mosaics than the population of low density, both for
their maximum value (RI > 9 and RI > 5, respectively, when
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Figure 3. Time course and spatial structure of a simulation using CF, CD and CM mechanisms. (a,b) schematic course of a simulation in x,z and x,y orientation,
respectively. Undifferentiated cells are represented in blue and differentiated cells (RGC types) in yellow, indigo, grey and orange. For clarity purpose, only 4 out of
the 43 implemented types are represented. (c) Time lapse of mosaic formation using BioDynaMo. Stage 0: First step of the simulation. Stage 1: Simulation after the
end of CF mechanism, at day 1 (step 180). Average RI = 2.41 ± 0.1. Stage 2: Simulation after the end of CD mechanism, at day 6 (step 600). Average RI = 3.42 ±
0.31. Stage 3: Simulation at the end of the CM mechanism, at day 14 (step 2240). Average RI = 3.99 ± 0.36. Undifferentiated cells and represented in blue. On cells
are represented in green, Off cells in red and On-Off cells in purple. The On, Off and On-Off groups are not RGC types but groups of types and thus do not form
mosaics at the group level while each RGC type composing the group forms an individual mosaic. If CF mechanism is not simulated, simulations start at stage 1 with
a defined cell type attributed at cells creation, accordingly to their type’s theoretical density.
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cell death is below30%) and at 65%of cell death (RI = 4.49 ± 0.36
and RI = 3.61 ± 0.59, respectively). Therefore, a positive corre-
lation between cell density and the final regularity is observed
when the death rate is set to 65%.Mosaics of low density exhibit
low RI values, while those of cell density higher than 65 cells
mm−2 (vertical dashed line of figure 4d) exhibit a higher average
RI score of 3.35 (horizontal dashed line of figure 4d).

While no differences are observed in RI scores between
simulation of the CD mechanism and a combination of
the CF and CD mechanisms if all mosaics are considered
(3.31 ± 0.33 and 3.48 ± 0.44, respectively, p = 0.27), a positive
impact on dense mosaics’ regularity (for cell densities
higher than 125 cells mm−2) is to be noted. Thereby, RI
values in the case of CF and CD combination plateaus
around 4.1 instead of 3.6 if CD is the only implemented
mechanism. This result is in line with previous work report-
ing higher mosaic regularity using a combination of CF and
CD compared to using CF or CD alone [11].
3.1.3. Cell migration and combinations of mechanisms

A combination of all three mechanisms (CF, CD and CM) is
also able to generate mosaics significantly more regular
than random distributions ( p < 0.0001).

A first RI increase corresponding to the effect of CF is
observed (figure 4e). After theCDandCMmechanisms are trig-
gered (first dashed line), they give rise to a significant second
increase, until the RI value stagnates toward the end of CD
(simulation day 4 to 5.5 depending on the cell type). Finally, a
third RI increase is observed after CD completion (second
dashed line) due to the CM mechanism, leading to an average
RI score of 4.01 (± 0.75) at the endof the simulation.A significant
difference is observed between simulations implementing CF
and CD and simulations implementing CF, CD and CM (p <
0.0001). Unlike CF and CD mechanisms, this simulation con-
dition can generate highly regular mosaics (RI > 5), thanks to
tangential migration. Indeed, simulations implementing CM
alone—even if this case does not account for the observed
CD—generate mosaics of RI similar to simulations implement-
ing all three mechanisms (RI = 4.12 ± 0.97, p = 0.43), as well as
highly regular mosaic. Moreover, a strong correlation appears
between cell density and RI values (linear correlation magni-
tude r = 0.87, p < 0.001) as shown by figure 4f when all
mechanisms are implemented. Thereby, only RGC types exhi-
biting a cell density higher than 125 cells mm−2 can generate
mosaics with a RI value higher than 5. Thus, as illustrated by
the blue and orange lines in figure 4e, significant differences
emergebetweenmosaics ofhighand lowdensity.Nosignificant
differences are seen between simulations of CD and CM combi-
nation and simulations ofCF, CD andCMcombination. Final RI
values for each mechanism alone and in combinations are
illustrated in the electronic supplementary material, figure S2.
3.1.4. Migration distance

When all three mechanisms are implemented, surviving
cells migrate tangentially with an average distance of
8.72 µm (± 0.11, n = 8), which is in accordance with in vivo
measurements reporting migration distance below 30 µm
[31]. Important disparities in migration distance between
cells are to be noted, as shown in figure 6a, with an average
migration distance s.d. of 9.44 (± 0.18). No correlation
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between final RI and migration distance can be seen. Like-
wise, no correlation appears between final density and
migration distance if the whole population is considered.
However, if only populations with a final density higher
than 100 cells mm−2 are considered, a correlation can be
observed (correlation coefficient r = 0.92, p < 0.01; figure 6b
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red line). Hence, the denser the cell type the larger the
distance cells migrate.

3.2. Starburst amacrine cell mosaic development
The SAC population is divided between two different cellu-
lar layers, the GCL and the INL, forming two separate
populations (figure 7). Our in vitro results reveal no signifi-
cant differences in the GCL and INL populations densities
from P4 to P10 ( p = 0.27 and p = 0.32, respectively;
figure 8a). These two SAC populations exhibit regular pat-
tern organization, and no significant difference over time
of their RI is measured from P4 to P10, as shown by
figure 8b. GCL and INL SAC mosaics are reported to be
independent, in line with experimental data showing that
SAC populations in the GCL and the INL only moderately
overlap [1,2,37]. A measure of these populations’ exclusion
has then been conducted, showing no significant difference
from P4 to P10, as shown by figure 8c. This suggests that the
INL and GCL SAC populations have already formed their
mosaics from P4 (shortly after GCL and INL separation)
and do not exhibit further significant CM once SACs have
migrated to their respective cellular layer. For this reason,
SAC mosaics formation is implemented before GCL/INL
separation in our simulations.

Two different developmental conditions have been simu-
lated, using either one common or two separated chemical
substances for mosaics formation (one for GCL population,
one for INL population). To assess if the GCL and INL
mosaics overlap or exclude each other, we calculate an exclu-
sion factor, as described in the Methods.

Interestingly, by using an identical concentration
threshold triggering CM for SAC in the GCL and INL, the
GCL SAC population exhibits less regular mosaics than the
INL population at the end of the simulation. This is observed
in both developmental conditions, using either one common
or two separate chemical substances for mosaic formation (RI
of 3.57 ± 0.12 and 4.11 ± 0.12, respectively, when one sub-
stance is used, RI of 3.36 ± 0.07 and 4.37 ± 0.15, respectively,
when two substances are used, n = 8 for each group, p <
0.0001). This mosaic regularity disparity is in accordance
with observations in mouse (figure 8b) where the INL
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Figure 7. ChAT immunostaining on a P9 pup retina. (a) GCL level. (b) INL level. (c) Overlap of GCL (red) and INL (green) levels. GCL and INL level images are taken
at the same x,y position, but at different depth focus. Regular SACs positioning can be observed in each cellular layer. Only few cells overlap between GCL and INL
levels.
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population has been reported to be more regular than in the
GCL population. In our simulations, this disparity can be
explained by the cell density difference between these two
layers. Indeed, and as previously demonstrated in our simu-
lations, the denser a cell population is, the more regular its
mosaic can be. Hence, our model provides a mechanistic
explanation for this observed difference in RIs between the
two SAC populations.

No significant differences are observed when the average
closest cell of the other population is considered. This is the
case when comparing the one cue and two cues simulation
conditions, where the average closest cell distances are
242.3 µm (± 120.1) and 235.1 µm (± 104.8), respectively, ( p =
0.15 with a Mann–Whitney U-test). Similarly, no differences
are observed between the two simulation conditions and
the average closest cell measured in vitro (average of
235.6 µm ± 99.1, p = 0.13 and p = 0.45, respectively, with
Mann–Whitney U-tests).

However, we find that an important difference emerges
between the two conditions concerning the exclusion factor
of the two SACs populations: if one common developmental
cue is used, GCL and INL mosaics exclude each other with a
calculated exclusion factor of 0.71 (± 0.01, n = 8), similar to
what has been measured in vitro (0.74 ± 0.09, n = 5;
figure 7). This indicates that the GCL and INL populations’
mosaics tend not to overlap, and so are not fully independent
of each other. However, if two distinct developmental cues
are used, the exclusion factor is lower, at 0.31 (± 0.1, n = 8),
denoting independent mosaics that tend to overlap. In this
second condition, the measured exclusion factor is signifi-
cantly lower than the one observed in mouse ( p < 0.0001,
n = 8 and 5, respectively). Thus, only the first condition can
reproduce the results observed in vitro.
4. Discussion
Using biological data from our in vitro experiments and from
the literature, we built realistic simulations of retinal cell self-
organization. The number of RGCs types incorporated in our
simulations is based on evidence from the literature [3–5].
However, the literature is incomplete regarding precise infor-
mation about characteristics of RGC types, especially for low-
density RGCs. To define all the types of RGCs and the
number of types to use in our simulations according to our
current understanding of retinal cellular organization and
function, we had to infer missing information from the litera-
ture. Sanes & Masland [5] speculated that known RGC types
represent only about 60% of the total RGC population, corre-
sponding to around 1740 cells mm−2 from the total
3000 cells mm−2 observed in the mouse retina. In addition,
it is important to note that from these known RGC
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populations, only 12.4% are On type. As On, Off and On-Off
are equally numerous (30% to 35% each), a great number of
On cells still needs to be discovered in order to reach the
theoretical percentage of On RGC in the total RGC popu-
lation. Thus, we can hypothesize that: (i) Several high-
density On types have not yet been discovered. (ii) There
are more On types than Off or On-Off types.

The first hypothesis appears unlikely as RGCs are widely
studied, especially with the emergence of large-scale and
high-density MEA recordings [6], but also using morphologi-
cal and molecular characterizations. Thus, it is unlikely that
the existence of dense On RGC types (representing the
majority of the On population, and so being the most
common On type) has not been captured by at least one of
these techniques. The second hypothesis appears to be sup-
ported by experimental evidence because mice, similarly to
other nocturnal animals, have rod-dominated vision.
Indeed, rods are known to project their dendrites and to
establish synaptic connections only to On bipolar cells, that
in turn establish synaptic connections to On RGCs. In order
to extract as many features as possible from a visual scene
using mainly rod vision, a great diversity of specialized
RGCs can be justified. The hypothesis of a great diversity
of low-density On types is also in agreement with Sanes
& Masland [5], who speculate that around 30 low-density
RGC types exist and are yet to be discovered. Baden et al.
[3] also estimate the total number of RGC types to be over
40, supporting the hypothesis of numerous low-density
RGC types. As it is still possible that On types of mid density
has not been discovered, we chose to allow the possibility for
this hypothesis in our simulations, in addition to adding mul-
tiple low-density On RGCs.

One major basis of our simulations is the presence of
chemical cues supporting cellular self-organization mechan-
isms. Evidences of such chemical cues have been previously
reported [1,38,39].

4.1. Retinal ganglion cell mosaic formation
The impact of the CF mechanism on RGC mosaics’ regularity
is particularly difficult to study in vitro or in vivo as RGC pro-
genitor cells do not express RGC type-specific markers cells
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will differentiate into. Despite experimental studies on RGC
progenitors, no evidence has been found for RGC type-
specific progenitors [40]. Hence, RGC types are probably
not pre-determined early on and so are likely to depend on
extrinsic factors, such as the presence of chemical cues [13].
Thereby, it allows for the contribution of a mechanism such
as CF for RGC type differentiation and its potential impli-
cation in mosaic formation. One major conclusion from our
simulations is that regular mosaics cannot be explained
only through the CF mechanism. This suggests that RGC
types are unlikely to be defined by cell body mosaics. They
may instead be dictated by intrinsic factors (that remain to
be discovered), functional determination (dictated by the
input from other cells) or a combination of intrinsic factors
interacting with extrinsic factors.

In our simulations, the CD mechanism can create regular
mosaics (RI > 3.5) with a death rate of 65%. As this mechan-
ism is based on a locally diffused chemical substance,
homotypic cellular spacing (and therefore cell type initial
density) has an important impact on the CD mechanism.
For this reason, only populations with a high initial cell den-
sity exhibit regular mosaics. Importantly, our CD
implementation matches measured RGC death dynamics
during development, thus strengthening its plausibility.
However, CD serves additional purposes in the retinal matu-
ration process and is not only geared towards mosaic
creation. Indeed, some cell types which do exhibit mosaic
regularity do not undergo any significant levels of CD
(such as horizontal cells or photoreceptors). In addition, as
demonstrated here, the maximum positive impact of CD
upon RI is reached at death rate lower than 30%, below the
60–65% death rate observed in mouse. This implies that
even if CD can be involved in mosaic formation at early
stages, cell death at levels above 30% is likely to be driven
by other mechanisms and for other purposes than mosaic for-
mation. For instance, CD could be implicated in refining
retinal functional connectivity and activity. CD could also
have evolutionary advantage with regard to generating an
optimized neural architecture [41].

Finally, CM is the only mechanism able to explain the for-
mation of highly regular mosaics (RI > 5). These results are in
accordance with previous studies, demonstrating that
mosaics can be formed from local interactions between cells
[5]. Our simulations show that: (i) CM yields mosaics of
higher regularity than CD. (ii) CD yields more regular
mosaics than CF. (iii) A combination of the CF and CD mech-
anisms creates more regular mosaics than CF or CD alone,
which is in accordance with the literature [5,13].

Similarly to the CD mechanism, the efficacy of the CM
mechanism depends on cell density—as it is based on local
interactions. The shorter homotypic cellular distances are,
the more they can sense and repulse each other. Thereby, a
strong correlation emerges between RGC type populations
densities and the regularity of their mosaics. Therefore, we
propose here that low-density RGC type mosaics exhibit on
average significantly lower regularities than high-density
RGC type mosaics. It would be very informative to exper-
imentally verify this prediction. To this date, this question
remains unanswered. This hypothesis is in accordance with
recent studies showing that some low-density RGCs do not
exhibit regular spacing [42].

Moreover, we question here the relevance of regular spa-
cing as a criterion for a group of RGCs to form a RGC type.
Indeed, if no low-density RGC types exhibit highly regular
spacing as predicted here, this criterion does not discriminate
RGC types. Retinal mosaics have been reported to enable uni-
form sampling of visual information [43,44]. Our finding
could have implications in our understanding of how differ-
ent features of a visual scene are extracted and processed by
the retina. We can also interrogate how the existence of low-
density RGC populations that are not organized in mosaics
fits within the theory of efficiency coding, which has been
proven to generate regular and anti-aligned RGC organiz-
ations [45,46].

We also show here that high mosaic regularity can be
achieved with limited migration distance (8.72 µm ± 0.11,
n = 8). This average migration distance is in accordance
with in vivo measurements, reporting that RGCs and SACs
tangential migration does not exceed 30 µm [31]. However,
the average migration distance measured in our simulations
is notably lower than the one experimentally measured at
around 20 µm [27] and could be explained by the absence
of retinal surface expansion implementation in our simu-
lations. The CM mechanism implemented here is based
only on local cues and short-distance interactions, and
thereby follows the description of tangential dispersion in
mouse, reported as a local, short-distance, phenomenon
[28]. Our results are consistent with previous studies showing
that a tangential cell dispersion does not appear to be directly
related to the cell time of birth, but rather to its cell type [28].

The CM and RI dynamics resulting from the CM mechan-
ism are in agreement with the literature, where it is reported
that RI increases mostly between P1 and P5, with the spacing
between cells still increasing after that period, until P10 [4].
After reaching the correct cell layers, a slower and finer tangen-
tial positioning phase of RGC within the GCL has been
reported [27,47]. Cellular movement during this period has
been described as random but important for exact cellular posi-
tioning [47]. In accordance with our results and as stated by
other studies [2], these highly varied movements are likely to
be related to mosaic formation and refinement. Indeed, these
movements appear random as the whole RGC population is
considered, while it should be divided into types in order to
meaningfully investigate RGCs lateral migration. If it were
possible to examine each type independently, our model
suggests that these movements, reported as random, would
appear as coherent, as illustrated by figure 9.

4.2. Starburst amacrine cell mosaic formation
Besides RGCs, other retinal cell types are known to exhibit
regular spacing, including photoreceptors, bipolar cells or
SACs. While our simulation procedure can be applied to all
cell types in the retina to study their spatial organization,
we chose in this section to investigate SACs, which cell popu-
lation is divided into the GCL and the INL. Both SAC layers
form mosaics that are reported to be independent from each
other [1,2]. Thus, there is only limited overlap between their
populations. We found no RI variation from P3–P4, indicat-
ing that these two SACs populations have already created
their mosaics by P3–P4, hence shortly after SACs migration
into their respective cellular layer. Surprisingly, in vitro data
did not show a decrease in cell density during the develop-
ment while the retinal tissue is expanding, thus increasing
in diameter, which theoretically should lead to a decrease
in cellular density if no new cells are born. This entails the
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Figure 9. CM appearing as random if the whole population is considered homogeneously (a) or coherent (homotypic avoidance) if the population is sub-divided
into two populations (b).
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possibility for cell birth during that time, or perhaps CM. In
addition, we observed that the calculated exclusion factor
does not vary, also supporting this assumption. Moreover,
the observed complementarity of GCL and INL mosaics per-
haps indicates interactions between these two SAC
populations during their cellular organization, before they
migrate to their respective layer.

Here, we investigated this GCL–INL population inter-
action hypothesis further by building a simulation of SACs
mosaics development. These simulations clearly show that
our modelling procedure can successfully be applied to
another cell population, with minimal parameter changes.
We have been able to explain differences in GCL and INL
mosaic regularities (the RI of the INL population being
higher than that of the GCL population) by using only local
interactions between SACs. This is the case if SACs constitute
a unique population, or if GCL and INL populations are dis-
tinct (in other words, if one common or two distinct chemical
cues are used). In the former case, this RI difference can be
explained by the higher number of cells migrating to the
INL compared to the GCL. Precisely, the percentage of a
population characterized by a highly regular mosaic dictates
the regularity of the resulting sub-population. Hence, the
bigger the sub-population, the closer the obtained RI will
be to the RI of the initial population, if cells constituting
this sub-population are chosen randomly. In the latter case,
this observed RI difference between the GCL and INL popu-
lations can be explained by the higher cell density of SACs in
the INL. This higher cell density in the INL allows more inter-
actions and homotypic repulsion and thus the emergence of a
higher RI than for the cells located in the GCL.

However, and importantly, only the simulation condition
using a common chemical cue for mosaic formation can
explain the complementarity observed between the GCL and
INL populations. Indeed, if the two mosaics are formed inde-
pendently, they largely overlap without exhibiting the mutual
exclusion observed in vitro. This suggests that the GCL and
INL populations of SACs are not fully independent but anti-
aligned. This result is in line with previous studies reporting
that anti-alignment of mosaics with similar feature selectivity
optimizes the encoding of visual scenes [45].

Our results predict that a shared guidance cue is respon-
sible for mosaic formation of SACs in the GCL and INL.
Locally diffused molecular guidance could be a possible
cue candidate for mosaic formation. If this is the case, our
prediction could be potentially experimentally verified by
using knock-out experiments blocking either the secretion
or the reception of this chemical guidance.

Our model does not aim at modelling and explaining
mosaic formation at the whole retina’s level. The focus of our
model is on the local level and the explanation of how mosaics
can form using only local cues and neighbouring cell–cell inter-
actions. This work focuses on the early stage of mosaic
formation and does not consider electrical activity, which is
known to play a key role during retinal development
[23,48,49]. Future work could be conducted using the same fra-
mework, investigating further retinal cellular organization by
modelling axonal and dendritic development or by considering
the impact of spontaneous electrical activity during retinal
development. Notably, it has previously been demonstrated
that spontaneous activity, such as retinal waves [50], is impli-
cated in the establishment of retinal receptive fields [51].
Likewise, our model could be further extended with additional
factors, including neurotransmitters and neuromodulators. In
all cases, all mechanism added to the model should be
informed by concrete experimental data, and the model
should incorporate only mechanisms necessary to explain a
given phenomenon—in order to limit its complexity and
allow reliable interpretation of the results. Alongside exper-
imental studies, computational modelling and the approach
presented in this work, represent crucial tools to investigate
the mechanisms taking place during retinal development.
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