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A B S T R A C T   

Analyzing the COVID-19 pandemic is a critical factor in developing effective policies to deal with similar 
challenges in the future. However, many parameters (e.g., the actual number of infected people, the effectiveness 
of vaccination) are still subject to considerable debate because they are unobservable. To model a pandemic and 
estimate unobserved parameters, researchers use compartmental models. Most often, in such models, the tran-
sition rates are considered as constants, which allows simulating only one epidemiological wave. However, 
multiple waves have been reported for COVID-19 caused by different strains of the virus. This paper presents an 
approach based on the reconstruction of real distributions of transition rates using genetic algorithms, which 
makes it possible to create a model that describes several pandemic peaks. The model is fitted on registered 
COVID-19 cases in four countries with different pandemic control strategies (Germany, Sweden, UK, and US). 
Mean absolute percentage error (MAPE) was chosen as the objective function, the MAPE values of 2.168%, 
2.096%, 1.208% and 1.703% were achieved for the listed countries, respectively. Simulation results are 
consistent with the empirical statistics of medical studies, which confirms the quality of the model. In addition to 
observables such as registered infected, the output of the model contains variables that cannot be measured 
directly. Among them are the proportion of the population protected by vaccines, the size of the exposed 
compartment, and the number of unregistered cases of COVID-19. According to the results, at the peak of the 
pandemic, between 14% (Sweden) and 25% (the UK) of the population were infected. At the same time, the 
number of unregistered cases exceeds the number of registered cases by 17 and 3.4 times, respectively. The 
average duration of the vaccine induced immune period is shorter than claimed by vaccine manufacturers, and 
the effectiveness of vaccination has declined sharply since the appearance of the Delta and Omicron strains. 
However, on average, vaccination reduces the risk of infection by about 65–70%.   

1. Introduction 

In December 2019 a new virus causing severe acute respiratory 
syndrome was identified in Wuhan, China. Within a short time, cases of 
new disease were detected in other countries. The growing thread has 
entailed the worldwide response and reaction. In March 2020, the World 
Health Organization (WHO) upgraded the COVID-19 outbreak to a 
pandemic (CRS, 2022). Due to the increasing risk of the pandemic, 
governments have begun to develop certain policies to slow the spread 
of infection, reduce the workload of the public healthcare system and 
reduce the mortality rate, while trying not to halt the economic devel-
opment and helping people to get through temporary suspending of 
certain processes and services (GRT, 2022; Miikkulainen et al., 2021). It 
is worth noting that most of these policies were introduced in response 

to the certain changes of the course of the pandemic, namely “waves” 
characterized by the significant outbreaks of the number of new in-
fections, hospitalizations, or deaths. 

Since the pandemic began, pharmaceutical companies and medical 
institutions around the world have started developing vaccines against 
the new disease. Notwithstanding widespread speculation and indeci-
sion by much of the population about the vaccine, by March 31, 2022, 
more than 5 billion people worldwide had been vaccinated. In addition, 
in the fall of 2021, a revaccination campaign was initiated, triggered by 
a waning immunity, and involving the administration of a booster dose 
of vaccine at intervals ranging from a few months to a year (Assefa et al., 
2022). 

At the time of preparing this work (late 2022), the pandemic can be 
considered over, but there is still considerable debate about its actual 
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scope (i.e., the number of cases), the effectiveness of pandemic controls 
(in particular, vaccine effectiveness), etc. These assessments are 
important for developing policies to respond to similar challenges that 
may arise in the future. 

However, the problem in obtaining such an assessment is that official 
statistics contain data only on registered COVID-19 cases and deaths. 
Therefore, models are needed to extract information on the dynamics of 
other subpopulations affected by the pandemic (unregistered infected, 
vaccinated, etc.) from the available data to study the effectiveness of 
various pharmaceutical and non-pharmaceutical interventions. These 
challenges have attracted the attention of many researchers, not only 
health professionals, but also specialists in mathematical and computer 
modelling (Chang et al., 2021; Miikkulainen et al., 2021). 

An area of particular interest is the compartmental models that 
describe the development of infection (Bjørnstad et al., 2020). The 
classical SIR model (Kermack and McKendrick, 1927; 1933) divides a 
population into three groups: susceptible (S), infectious (I) and recov-
ered (R), and defines coefficients determining the transition rate be-
tween compartments. As we noted above, the observed data do not 
contain information about the dynamics of all groups, most often only 
the number of registered cases is available. However, because the model 
is deterministic, it allows us to reconstruct transition rates from the data 
and thus obtain an estimate of all groups (Bjørnstad et al., 2020; Otu-
nuga, 2021). This is the main advantage of the compartmental models. 
Thus, the problem is to develop a model that corresponds to reality as 
closely as possible, that is, to identify the necessary compartments and 
the links between them. 

For COVID-19, various modifications of the SIR model have been 
proposed, including additional groups such as exposed, vaccinated 
(Acuña-Zegarra et al., 2021; Schlickeiser and Kröger, 2021), hospital-
ized (Arik et al., 2020; Capistran et al., 2021), asymptomatic or unreg-
istered cases (Ivorra et al., 2020; Liu et al., 2020), etc. Fitting variables of 
these models to the observed values provides important insights into the 
unobserved groups, as well as assessing the effectiveness of various 
epidemic control methods (Wibbens et al., 2020; Feng et al., 2021) and 
economic and social impacts (Boissay et al., 2020; Karin et al., 2020). 

The model is usually fitted by numerically solving corresponding 
differential equations and optimizing its parameters (Brewer et al., 
2008). In most cases the model parameters, i.e., the transition rates 
between compartments, are assumed to be constant (not varying with 
time). However, in real life, many parameters of the system vary in time. 
Government policies to limit contact affect the infection rate (Boissay 
et al., 2020; Wibbens et al., 2020), and the rate of vaccination varies 
with the availability of vaccines and efforts to promote vaccination 
(Jentsch et al., 2021; Bruxvoort et al., 2021; Rella et al., 2021; Feikin 
et al., 2022; Yu et al., 2022). In addition, the development of medical 
protocols affects COVID-caused death rate (Knight et al., 2020). More-
over, the probability of registering the COVID cases is highly influenced 
by the testing volume and the pandemic handling strategy (Ivorra et al., 
2020; Rippinger et al., 2021). Additionally, the emergence of new 
strains of the virus seriously affects the nature of the outbreak (Lopez 
Bernal et al., 2021; Shah and Woo, 2022). Strictly speaking, we should 
consider these events as external to the system under study but affecting 
its behavior. 

Moreover, compartmental models with constant parameters can 
describe the spread of infection as a single epidemiological wave with a 
single peak (Comunian et al., 2020); however, at least three peaks were 
observed for the COVID-19 pandemic. This is why the dependence of 
parameters on time is crucial for the analysis. It should be noted that 
some authors assume that the parameters of the system can change over 
time but introduce additional constraints. For example, Schlickeiser and 
Kröger (2021) assume that transition rate ratios are constant; Ivorra 
et al. (2020) establish controls in the form of functional dependencies. 
We can state that fitting a compartmental model with time-varying 
transition rates is a difficult task and, to our knowledge, there is no 
generally accepted method today. 

To overcome these limitations, we propose an extended compart-
mental model, in which transition rates are not constant. This approach 
allows us to extract time dependencies from the data and find more 
realistic distributions. The system parameters are estimated using a 
genetic algorithm. Thus, the contributions of our work can be summa-
rized as follows: 

1. We introduce an extended compartment model that allows us to 
extract the actual number of infected individuals and the actual popu-
lation with immunity (both natural and vaccine-induced) from empir-
ical data containing only registered COVID-19 cases and deaths. 

2. We treat model parameters as time-varying, model is fitted using 
genetic algorithms. This allows us to get a pandemic simulation with 
multiple peaks, which is more consistent with reality. 

3. The results obtained for four countries (Germany, United 
Kingdom, United States and Sweden) are compared with each other and 
provide important insights into pandemic spread. 

It should be noted, however, that by using this approach we sacrifice 
predictive capabilities because, by acting in this way, we can reconstruct 
the time series based on available past observations. The further dy-
namics of the transition rates remain unknown; therefore, multivariate 
time series must be predicted to predict the behavior of the system. On 
the other hand, because this approach allows post factum estimation of 
many parameters that cannot be measured directly, simulation results, 
together with observed indicators such as infection mortality rates or 
latency period length, provide insight into the spread of the pandemic 
and control methods, which is very important for analysis and policy 
making. 

The rest of papers is organized as follows. Section 2 contains the 
description of the compartmental approach and the analysis of the 
recent papers devoted to the COVID-19 pandemic modelling. Section 3 
describes the applied epidemic model and data used for the fitting. 
Section 4 presents the obtained results and their discussion. Finally, all 
the conclusions are summarized in Section 5 where the opportunities for 
further research are also discussed. 

2. Related research 

2.1. Compartmental model 

Here we introduce some definitions that will be required for further 
discussion. The general modelling technique of infectious diseases is a 
compartmental model. The classical SIR model (Kermack and McKen-
drick, 1927; 1933) divides population on three compartments (groups): 
susceptible (S), infectious (I) and recovered (R), with a total population 
size N = S + I + R. The amount of people assigned with each 
compartment varies over time, the progress of individuals between 
compartments can be presented as a flow diagram and a corresponding 
differential equations. 

The movement of individuals from one compartment to another is 
determined by the constant transition rate. It is assumed that the time 
individual spent in the state X before to progress to state Y is a random 
variable with an exponential distribution and rate parameter θXY > 0. 
So, the 1/θXY is the mean period that individual spent in X and θXY itself 
is the number of people moved from X to Y in the time interval dt. 

The infection rate is often considered a consequence of the number of 
contacts between individuals of susceptible and infected groups. Then it 
can be presented as βSI/N, where β is the proportion of contacts leading 
to infection. 

Further, we will view all compartmental variables as normalized by 
the total population N, so for SIR model S + I + R = 1. Thus, the cor-
responding ordinary differential equations (ODE) are 
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dS
dt

= − β
SI
N

dI
dt

= β
SI
N

− γI

dR
dt

= γI,

where γ is the transition rate from infectious to recovered compart-
ments. 

However, there is a latent period between being infected and 
becoming infectious for most infectious diseases: the exposed group (E). 
This extension is considered in SEIR model (Bjørnstad et al., 2020). The 
time spent in the exposed state is also assumed to be a random variable 
with exponential distribution and average value σ. Since immunity after 
recovery is temporary for many infections, individuals in group R will 
lose immunity and return to S with transition rate ω. SEIR model also 
considers mortality that contributes to flows between groups. Death due 
to infection will cause a loss of individuals from the I group at a rate α, 
and all groups will experience background death from other causes at a 
rate μ. For the time periods, when total population does not change 
significantly, it can be assumed constant N(t) = N, so birth and natural 
death rates in the SEIRS model are the same and represented by μ. 

2.2. COVID-19 epidemic modelling 

In this section we will turn specifically to the research that are aimed 
at the modelling of COVID-19 pandemic. All epidemic simulation studies 
can be classified in two ways. First taxonomy bases on the structure of 
the compartmental model. Many authors use the traditional SEIR model, 
while others expand it by introducing additional compartments. This 
allows them to consider subpopulations (most often unobserved) that 
are important in the context of a particular study. Second, studies can be 
divided by the way in which model parameters (transition rates) are 
considered. These rates can be treated as constant or variable. As already 
noted, a model with constant parameters allows modeling only one peak 
epidemic. However, finding variable parameters is a difficult task and 
there is no generally accepted way to do it. Table 1 presents taxonomy of 
all the publications discussed below. 

Authors who use the classical SEIR model with constant transition 
rates (SEIR-CTR) focus mainly on assessing the effectiveness of epidemic 
control methods such as lockdown. For example, Rawson et al. (2020) 
applied the SEIR-CTR model to estimate the efficiency of two possible 
lockdown exit strategies in the UK. The first strategy supposed the 
gradual canceling of restrictions, introduced by the government at the 
start of pandemic, while the second one included full elimination of 
restrictions but with their temporary reintroduction in case of new 
outbreaks. 

Karin et al. (2020) used SEIR-CTR models to estimate important 
parameters affecting outbreak duration and severity and then predicted 
changes in their values caused by various restrictive policies. The results 
of the study suggested a new approach to an exit strategy, which is to 
alternate a 4-day work period with a 10-day isolation period in suc-
cession. The study also shows that the SEIR model is very sensitive to the 

level of infection and the latency period of the virus. 
Feng et al. (2021) used SEIR-CTR to estimate cumulative number of 

registered infectious in Wuhan to assess the impact of strict lockdown. 
The authors also train Artificial Neural Networks (ANN) to predict 
development of epidemic in other parts of China. 

Another line of research focuses on subpopulations that are impor-
tant for pandemic control (vaccinated, hospitalized, asymptomatic 
cases, etc.) but are not considered in the traditional SEIR model. To this 
end, the authors extend the SEIR model by adding compartments to 
track these subpopulations. To analyze COVID-19 vaccination policies, 
Acuña-Zegarra et al. (2021) proposed a model that expands SEIRS 
considering the temporal immunity after vaccination, vaccine imper-
fectness and two groups of infected individuals: symptomatic and 
asymptomatic. According to authors hypotheses, the vaccine has effects 
only on susceptible individuals. Thus, susceptible individuals move to V 
(vaccinated) group at v rate. By analogy with the loss of immunity of 
recovered individuals, the mean time of immunity waning after vacci-
nation is also a random variable with an exponential distribution and 
mean λ. The following proposition is that the vaccine is imperfect. Thus, 
a fraction of individuals in Vmay also become infected, however, with a 
lower probability than those in the Sclass. This probability is determined 
by vaccine efficacy ε. Finally, in Acuña-Zegarra et al. (2021) model, 
exposed individuals remain in class Euntil they become infectious and 
move to either symptomatic or asymptomatic class. Asymptomatic pa-
tients can be detected and recorded, for example, using medical tests or 
postmortem investigation. At the same time, symptomatic patients may 
not seek medical attention and therefore avoid registration. 

Arik et al. (2020) presented a study using the extended model with 
inclusion hospitalized and asymptomatic compartments. The presence 
of the latter group is particularly important because it allows one to 
determine the real number of people infected with COVID-19 since the 
significant portion of population may not show any symptoms while 
being infectious. The model also extends the hospitalized group to those 
who are under intensive care or on a ventilator. 

Capistran et al. (2021) implemented a model which is aimed to 
forecast a hospitalization rate during the outbreaks of COVID-19 
pandemic. The epidemic model proposed in the article divides the 
hospitalized compartment to the patients with mild symptoms, those 
who require intensive care unit (ICU) such as respirators and the pa-
tients in the critical state. Additionally, infected members are also split 
into registered and unregistered ones with the different infection rate for 
both groups. The article also estimates the efficiency of various 
governmental policies against the pandemic such as setting lockdowns 
or changing the duration of quarantine for those who were in contact 
with the infected people. The proposed model was applied on the daily 
mortality and hospitalization data reported from 32 states of Mexico 
during March – July 2020. As a result, the accuracy of predicting the 
hospital bed occupancy varied from 0.8 to 0.95 between the states. 
Besides, another result of the study is the suggestion of the periods for 
reducing the restrictive policies and lockdown due to the decrease of 
COVID-19 infections. However, the research did not consider the change 
in the hospital residence times, therefore it can’t be applied for a long- 
term period due to erratic behavior of pandemic. Authors also assume 
this limitation to be a significant obstacle for estimation of lockdown 
exit strategies. 

Yarsky (2021) extends the SEIR model by adding a new compart-
ments A to track asymptomatic individuals and T to predict the rate at 
which diagnostic tests are performed and yield positive results. The 
author uses genetic algorithms for estimation of transition rates, where 
genome comprises a list of coefficients which do not vary over time. 
Fitness function is computed by comparing model results to the reported 
daily numbers of infections and deaths. 

As we noted above, the traditional compartmental model with con-
stant transition rates allowing to simulate only one peak in the spread of 
infection, so many authors use various techniques to account for changes 
in model parameters over time. Bouchnita et al. (2021) adapted SEIR 

Table 1 
Compartmental models in the COVID-19 analysis literature.   

Model structure  

SEIR Extended 

Model 
transition 
rates 

Constant Feng et al. (2021) 
Karin et al. (2020) 
Rawson et al. (2020) 

Acuña-Zegarra et al. (2021) 
Arik et al. (2020) Capistran 
et al. (2021) Yarsky (2021)  

Varying Bouchnita et al. 
(2021) Eryarsoy et al. 
(2021) Vega et al. 
(2022) 

Ivorra et al. (2020) 
Otunuga (2021) 
Schlickeiser and Kröger 
(2021)  
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model to review the restrictions introduced by Vietnamese government 
to stop the first wave of COVID-19 pandemic. Authors divided the 
observed timespan into two periods. The first one starts with the first 
appeared COVID-19 case in Vietnam, while the second period goes from 
the introduction of the nationwide lockdown till the easing of the re-
strictions. Therefore, despite the parameters of the model are still con-
stant throughout each period, changes of their values between the 
periods can be observed. 

Vega et al. (2022) integrated machine learning (ML) into the SIR 
model to predict the number of people infected with COVID-19 over a 
1–4 week period in Canada and the United States. At each iteration, the 
ML model was used to estimate whether infection rates would change. If 
such a change is expected, new SIR model parameters are estimated. 

Eryarsoy et al. (2021) focused on predicting the number of cases and 
deaths using the SIR model. The authors based their work on the 
assumption that the transition rates in the SIR model can be represented 
by diffusion models (S-curves) commonly used in business research. 

There are also several papers based on different techniques for ac-
counting for the variability of transition rates in extended SEIR models. 
Otunuga (2021) proposed two improvements; first, the author extended 
the SEIR model by dividing the infected class into asymptomatic and 
symptomatic classes, and second, he suggested that transmission, 
symptomatic recovery, and immunity rates are functions of time, but the 
asymptomatic recovery rate is constant. He also assumed that the 
transmission rate and symptomatic recovery rate are stochastic variables 
whose fluctuations are modeled with Gaussian white noise. The author 
then determined the unknown parameters using a generalized method of 
moments on daily case data of infected and recovered individuals over a 
one-year period in the United States. 

Ivorra et al. (2020) presented a model including unregistered cases, 
hospitalization, and mortality rates, originally applied to the Ebola 
pandemic analysis, and adapted it for COVID-19. A distinctive feature of 
the proposed model was the division of the hospitalized subpopulation 
into those who would recover and those who would die. In addition, the 
effect of various public policies on controlling outbreak severity, such as 
isolation, quarantine, and increased medical resources, was analyzed. 
This was done by introducing time-varying functions representing the 
efficiency of the control measures applied to the corresponding com-
partments. The study used data on infections reported in China, and 
parameters were estimated using multi-objective optimization. Ac-
cording to the results, unreported cases may have caused about 52 
percent of the total number of infections in the first two months of the 
pandemic. In addition, increasing population testing has a huge impact 
on the detection rate and can reduce the outbreak, as can implementing 
restriction policies. However, the effect that these measures have on 
infection rates is delayed by about two weeks. 

Schlickeiser and Kröger (2021) proposed an extended model that 
accounts for vaccination of the susceptible population. However, this 
model considers immunity acquired after vaccination as permanent, 
which is not valid for many infections. Another exciting feature is that 
the authors believe that the parameters of the equations depend on time. 
However, in the following discussion, they assume that the ratios of the 
coefficients are constant. It allows them to study many model features, 
but they do not investigate the impact of changing parameters. 

This is a review of a limited number of papers from a stream of 
hundreds of publications, however, it provides a general view of the use 
of compartmental models in COVID-19 pandemic research. It can be 
concluded that compartmental modelling is applied for a variety of 
purposes: predicting the total number of infected, hospitalized and in 
need of ICU; assessing infection-handling policies, economic impact and 
so on. However, in most cases the authors propose models with constant 
transition rates, which, as noted in the Introduction, do not correspond 
to practice. 

The classical SIR model and its variations treat transition rates as 
constants, assuming the time an individual spends in a particular group 
is a random variable with an exponential distribution. Thus, such a 

model describes the spread of infection as one epidemiological wave 
with a single peak, whereas for COVID-19 at least three waves caused by 
different virus strains have been reported. In addition, different actions 
to control the pandemic also affect the transition rates. Therefore, it is 
necessary to find more realistic distributions of the system parameters. 
However, many authors considering time-varying transition rates 
introduce additional constraints that implicitly or explicitly constrain 
the distributions. 

3. Proposed method 

This section presents the compartmental model we developed and 
the proposed method for fitting it, both solutions aimed at eliminating 
the gaps identified above. The model (Section 3.1) includes additional 
groups that allow us to account for subpopulations of interest for the 
analysis of pandemic experience (vaccinated individuals and unregis-
tered cases). This section also provides a rationale for selecting transi-
tion rates that vary over time. Section 3.2 describes how to fit the model. 

3.1. Compartmental model 

The following section focuses on the description of the developed 
approach for modelling the outbreak of COVID-19 pandemic. Proposed 
extension of SEIRV (Susceptible – Exposed – Infectious – Recovered – 
Vaccinated) model is presented in Fig. 1. 

Firstly, we consider division of the population on six compartments: 
vaccinated (V), susceptible (S), exposed (E), infected (I), dead (D) and 
recovered (R). According to the concept of compartmental epidemic 
modelling, all the individuals initially belong to susceptible compart-
ment but then move on to other groups with the start of the pandemic. 
The introduction of the vaccinated compartment is crucial to analyze the 
effects of the vaccination strategies implemented in different countries, 
determine the efficiency and effectiveness of various vaccines used to 
eradicate the disease and evaluate the immunity induced by vaccine. 
Various publications show that vaccination induces higher immunity 
level than prior infection (Yu et al., 2022). Moreover, WHO recommends 
people to get the jab even if they were previously infected with COVID- 
19. Therefore, it is highly important to distinguish vaccinated persons 
into a separate group. 

According to many studies (e.g., Acuña-Zegarra et al., 2021; Milne 
et al., 2021) vaccine has effect only on susceptible individuals. Thus, 
susceptible individuals move to V group at v rate. Moreover, although 
approved vaccines provide a high level of protection against severe 
decease and death, no vaccine extends 100% protection against possible 
infection (which is mostly asymptomatic or with mild symptoms). In 
other words, individuals protected by vaccine can also get infected with 
COVID-19 but with significantly lower probability than persons from S 
compartment. Consequently, it is safe to assume that a vaccine has a 
level of efficacy ε by which the possibility of being infected can be 
determined (Acuña-Zegarra et al., 2021). At the same time, despite 
producing strong antibody response, vaccines can’t provide permanent 
protection against the infection. Although, some researchers suggest 
that the decrease in level of antibodies does not lead to the declining 
protection, there is evidence of immunity waning several months after 
the vaccination (Baraniuk, 2021). Therefore, it is required to introduce 
the possibility for individuals to move from vaccinated to susceptible 
compartment. In terms of the proposed model, this implies introducing 
the mean time of immunity waning after vaccination which is a random 
variable with an exponential distribution and mean λ. It should also be 
noted that V(t) in our model relates to the number of people protected by 
the vaccine at time t. Published vaccinated data represents total number 
of vaccinated cumulatively, regardless the waning of the vaccine- 
induced immunity, which is inconsistent with our definition of V(t). 
Thus, we treat V(t) as unobserved variable. 

The important feature of the proposed model is an introduction of 
exposed compartment as an intermediate between susceptible and 
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infected individuals. As mentioned above, COVID-19 is characterized by 
the existence of incubation (latency) period during which a person is 
infected but not infectious. The presence of such a compartment in the 
model provides an opportunity to estimate the infection rate more 
precisely as well as consider the differences between the different strains 
of the virus. Moreover, the duration of the latency period is a vital index 
in epidemiology that helps to understand the spread of the decease and 
apply specific handling restrictions and policies for different areas and 
countries at various times (Cheng et al., 2021). The last point is an 
extremely huge advantage in view of the time-dependent character of 
the suggested model. As a result, the individuals transfer from suscep-
tible and vaccinated compartments to the exposed group with the 
certain probability that in case of vaccinated population also considers 
the vaccine efficacy. This probability β(t) represents the infection rate 
which is the crucial parameter of the epidemic model as it refers to the 
speed at which individuals get infected. Nevertheless, the infected 
compartment of population in the developed approach is significantly 
different from classical SIR models. We follow the technique used in 
contemporary research (Liu et al., 2020; Acuña-Zegarra et al., 2021) 
which states that exposed individuals remain in class E until they 
become infectious and move to either symptomatic or asymptomatic 
class. 

Due to the nature of virus-related deceases the number of cases re-
ported by healthcare institutions is usually underestimated. Generally, 
the difficulty of calculation is due insufficient testing, data depression of 
mild or asymptomatic patients, limited awareness of the virus in the 
general population and a time-lag bias (Rippinger et al., 2021). There-
fore, the accurate data can be provided only for the certain part of the 
infected population which is released into a separate class used further 
on as observable variable in the model. Another class, for its part, pro-
vides useful information about the overall magnitude of the pandemic 
and shows the cases that are not considered in the official reports and 

statistics. However, instead of focusing on the level of the symptoms, we 
call these classes IR (infected registered) and IU (infected unregistered) 
following Liu et al. (2020), since this more accurately reflects reality. 
Asymptomatic patients can be detected and recorded, for example, using 
medical tests or postmortem investigation. Compulsory testing intro-
duced in several countries such as Hong Kong or Austria resulted in the 
identification of the significant number of asymptomatic cases which 
were included in the COVID-19 statements. At the same time, symp-
tomatic patients may not seek medical attention and therefore avoid 
registration. Therefore, a considerable share of patients with symptoms 
can be not registered in the reports. Let p(t) be the probability that an 
exposed individual will be registered, thus the corresponding transition 
rate to IR is p(t)σ and transition rate from E to IU is (1 − p(t))σ, where 1/σ 
corresponds to the latency period. 

Another important aspect of the infected compartment is the nature 
of the infection rate β(t) considering the separation of the group on 
registered and unregistered classes. Notwithstanding the existence of the 
papers where infection rate varies for these classes (e.g., Liu et al., 
2020), we assume that the proportion of contacts leading to infection (i. 
e., β(t)) remains the same for both types of contacts. This assumption is 
based on the fact that both symptomatic and asymptomatic individuals 
are presented in each class and on the challenging estimation of the 
asymptomatic people’ contribution to the spread of the virus. Addi-
tionally, a single value of β(t) allows to explicitly include the contact 
frequency in the model and is hence beneficial for the analysis and 
interpretation of its results and outcomes. Therefore, the transition from 
class S to class E is determined by the frequency of contacts of suscep-
tible people with registered and unregistered infectious, βSIR/N and 
βSIU/N correspondingly. 

It should be also noticed that the output IR compartment is split into 
three outgoing flows: the deaths caused by COVID-19, the deaths caused 
by other reasons and the recovered compartment. By contrast, the 

Fig. 1. SEIRV model.  
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individuals from IU class can move only to recovered group or to the non- 
COVID caused deaths. Although unregistered patients can also die from 
the decease, it is complicated to estimate the exact number of them due 
to the lack of the common approach of tracking this measure. For 
example, monitoring excess mortality based on postmortem investiga-
tion is the most widespread method for calculating the precise number 
of COVID-induced deaths. However, long-term effects of COVID-19 
more frequently reported by the recovered individuals as well as so 
called post-COVID-19 symptoms may also be the cause of deaths of a 
large number of individuals (Davis et al., 2020). Presence of these fac-
tors creates serious obstacles for estimation of the overall number of 
deaths caused by COVID-19. Therefore, the D in the proposed 
compartment includes only those people, who were officially registered 
as COVID-19 positive patients and their death was directly caused by the 
infection. 

By analogy with the loss of immunity of vaccinated individuals 
described above, the mean time of immunity waning after recovery is 
also a random variable with an exponential distribution and mean ω. 
The following proposition is that the natural immunity is imperfect and 
does not provide lifelong protection against the decease. It is also worth 
mentioning that birth and death rate is included in the model and is 
represented by the parameter μ, which appears in each transition phase 
between the compartments and relates to all the vital dynamics that is 
not related with COVID-19. The introduction of this coefficient makes 
the model more realistic because it considers change in the size of the 
initial population. 

As noted above, the classical SIR model and its variations treat 
transition rates as constants, and such models describe the spread of 
infection as one epidemiological wave with a single peak (Comunian 
et al., 2020), whereas for COVID-19 at least three waves caused by 
different virus strains have been reported. Therefore, we consider that 
many parameters of the system vary in time. Government policies to 
limit contact affect the β(t), and the rate v(t) varies with the availability 
of vaccines and efforts to promote vaccination. In addition, the devel-
opment of medical protocols affects the probability p(t) and rate q(t). 
Moreover, the probability of registering the COVID cases is highly 
influenced by the testing volume and the pandemic handling strategy. 
Additionally, the emergence of new strains of the virus seriously affects 
the nature of the outbreak, that’s why time-dependency of the param-
eters is crucial to analyze. Therefore, introducing time-dependency of 
the parameters helps to fulfil the task of the study which is to estimate 
the effect of the governmental policies on the course of the epidemics. 
All other parameters can be considered constant for the simplification 
purposes. 

Let N(t) = V(t)+S(t)+E(t)+IR(t)+IU(t)+R(t) and N(t)+D(t) = 1.
Thus, corresponding system of ordinary differential equations (ODE) is 

dV(t)
dt

= v(t)S(t) − (μ + λ)V(t) − (1 − ε)β(t)V(t) IR(t) + IU(t)
N(t)

dS(t)
dt

= μN(t) + λV(t) − [μ + v(t) ]S(t) − β(t)S(t)
IR(t) + IU(t)

N(t)

dE
dt

= β(t)[S(t) + (1 − ε)V(t) ] IR(t) + IU(t)
N(t)

− (μ + σ)E(t)

dIR(t)
dt

= p(t)σE − [μ + q(t) + γR ]IR(t)

dIU(t)
dt

= [1 − p(t)]σE − (μ + γU)IU(t)

dR(t)
dt

= γRIR(t) + γUIU(t) − (μ + ω)R

dD(t)
dt

= q(t)IR(t)

(1) 

Tables 2 and 3 list the variables and parameters of the system 
correspondingly. 

3.2. Parameters estimation and optimization 

As ODE are most widely used for describing the temporal evolution 
of a large range of systems, the problem of fitting parameters has 
attracted significant attention of researchers. Estimating model param-
eters from data requires two components (Brewer et al., 2008). The first 
one is an error function ED(θ) that quantifies the difference between 
output of model with parameters θ and the data D. The second compo-
nent is the optimization method that finds the value of θ that minimizes 
ED(θ). 

Here we will focus on so-called solution-based approaches, which 
require the analytical solution of Eq. (1), or the approximate solution 
obtained numerically if an analytical one does not exist. In the last case, 
the approximate solution is 

d x̂(t)
dt

= f(x(t), θ, t )

which more often is accompanied by the least-squares error function, as 
it should be based on the difference between the reconstructed and true 
values. The most widespread method of solving the ODE and finding 
dx̂(t)/dt is the Runge-Kutta fourth-order method with adaptive step-size 
control. 

The considerable advantage of this approach is that it suitable for 
use, notwithstanding the fact that some of the components of the vector 
x̂(t) can not be measured. This is particularly useful for the epidemic 
data as some of the compartments are non-measurable (e.g., exposed, or 
infected population without symptoms). In such case, the calculation of 
the error function is just taken over the measurable components. 

Analyzing the flow of research literature, we can identify three 
classes of optimization methods used to find θ that minimizes ED(θ). The 

Table 2 
Variables of SEIRV model.  

Variable Description Observable 

N(t) Total number of individuals in the population Yes 
S(t) Number of susceptible individuals No 
V(t) Number of individuals protected by vaccine No 
E(t) Number of exposed individuals No 
IR(t) Number of individuals registered as COVID-19 positive 

patients, regardless of symptoms 
Yes 

IU(t) Number of individuals infected with COVID-19 but not 
registered in the official reports 

No 

D(t) Number of individuals officially registered as infected 
with COVID-19 whose death was caused by the virus 

Yes 

R(t) Number of recovered individuals No  

Table 3 
Parameters of SEIRV model.  

Parameter Description Time 
dependent 

μ Natural death / birth rate No 
v(t) Vaccination rate Yes 
λ Waning rate of vaccine, 1/λ is the average time to 

lose vaccine-induced immunity 
No 

ε Vaccine efficacy No 
β(t) Fraction of contacts leading to infection Yes 
σ Latency rate, 1/σ is the average latency period No 
p(t) Exposed individuals’ fraction who become 

registered infectious 
Yes 

γR Recovery rate of registered infected individuals, 1/
γR is the average time which registered individuals 
leave being infectious and contagious 

No 

γU Recovery rate of unregistered infected individuals, 
1/γU is the average time which unregistered 
individuals leave being infectious and contagious 

No 

q(t) Infection-induced death rate Yes 
ω Rate of loss of natural immunity, 1/ω is the average 

time to lose natural immunity 
No  
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first one is based on deterministic single-objective optimization tech-
niques like the Nelder-Mead method (Brewer et al., 2008). This pro-
cedure allows finding only point estimations of θ. The second class 
implements the Bayesian approach for learning the model parameters 
from data (Huang et al., 2020), for example, Markov Chain Monte Carlo 
(MCMC) and its various adaptations. The undoubted advantage of this 
approach is that it allows estimating the distributions of the parameters 
θ. It is widely used for fitting epidemical models (Baguelin et al., 2013; 
Chatzilena et al., 2019; Acuña-Zegarra et al., 2021). The third class in-
cludes nature-inspired metaheuristics methods (Boroujeni & Pashaei, 
2021), in particular genetic algorithms (Katare et al., 2004). This 
approach is also widely used in compartmental models (Shah et al., 
2007, Ivorra et al., 2020). We will also use genetic algorithms as it is the 
only way to fit time-varying parameters. 

Thus, our task is to find such parameters of the SEIRV model, which 
provide the minimum deviation from the observed data for the given 
initial conditions. The observed data, in this case, is a time series IR(t), 
D(t). The initial conditions correspond to the moment before the start of 
the epidemic, so we can set them as 

S(0) = N(0) = 1,V(0) = E(0) = IR(0) = ID(0) = D(0) = R(0) = 0.

Many authors have already solved a similar problem for various 
compartmental models. Still, in most cases, they considered all the 
model parameters as constant and independent of time. However, we 
assume that, at a minimum, the infection force β(t), the probability of 
registering an infected individual p(t), the rate of death of an infected 
person q(t) and the rate of vaccination v(t) vary with time (Table 3). 

We also use combination of three techniques, namely: 
1. Using difference equations instead of differential equations, 
2. Using genetic algorithms to present time-dependent coefficients, 
3. Fit equations using mean absolute percentage error (MAPE). 
The first point concerns the use of time-dependent parameters when 

integrating ODE by the Runge-Kutta method. This problem arises since 
the integration step should be smaller than the time interval presented in 
observed data. The usual solution is a linear extrapolation within the 
interval given by the observed values. Thus, the value of time-dependent 
parameter θ(t) corresponding to the current integration step can be 
obtained as θi+h = h(θi+1 − θi)/m, where m is the number of integration 
steps in the time interval; h is the number of the current point. 

However, in our case, this approach did not provide the required 
accuracy. Therefore, we transformed ODEs equation into first-order 
difference equations (here i = 1,⋯,M is the observation id and M is 
the number of observations): 

Vi+1 = Vi + viSi − (μ + λ)Vi − (1 − ε)βiVi
IR

i + IU
i

Ni

Si+1 = Si + μNi + λVi − [μ + vi]Si − βiSi
IR

i + IU
i

Ni

Ei+1 = Ei + βi[Si + (1 − ε)Vi ]
IR

i + IU
i

Ni
− (μ + σ)Ei

IR
i+1 = IR

i + σpiEi − (μ + γR + qi)IR
i

IU
i+1 = IU

i + [1 − pi]σEi − (μ + γU)I
U
i

Ri+1 = Ri + γRIR
i + γUIU

i − (μ + ω)Ri

Di+1 = Di + qiIR
i

Ni = Vi + Si + Ei + IR
i + IU

i + Ri

Ni + Di = 1

(2) 

According to the equation regarding Di+1, qi =
Di+1 − Di

IRi
, both D and IR 

are observable variables. Thus, we can exclude Di and qi from the system 
and we are left with only one observable variable IR for model fitting.  

Algorithm 1. Fitting the SEIRV model from data 

(continued on next column)  

(continued ) 

Algorithm 1. Fitting the SEIRV model from data 

Input: initial conditions of SEIRV model (Eq. (2), observed values of IR(t)
population size, mutation and crossover probability, max generations 
10 Generate initial population θ 
20 While stop condition is not satisfied: 
30 Obtain ÎR i (θ) solving Eq. (2) 
40 Compute ED(θ), Eq. (3) 
50 Generate new population θ using selection, mutation, and crossover operations 
60 End while 
Output: fitted SEIRV model  

To solve the system of equations, we construct a genetic algorithm 
(Algorithm 1). The model fitting bases on matrix of observation IR[M×

1], where M is the number of observations. So, each time-dependent rate 
should have M values which correspond to observations of IR. Thus, the 
gene (Fig. 2) includes five subgroups: four strings with length M for the 
rates β(t), p(t), q(t), v(t) filled with real numbers and seven real numbers 
for the rest rates. Total gene length is 4M + 7. 

The core operations of genetic algorithms are selection, mutation, 
and crossover. While for selection, we use the standard roulette wheel 
rule, mutation and crossover should be modified according to gene 
structure. The mutation is performed simultaneously in each five gene 
subgroups (β(t),p(t),q(t),v(t), and rest constant seven rates) with prob-
ability conducted separately for each group. Since each time-dependent 
rate varies in its range, the crossover is also performed separately for the 
subgroups, with the probability calculated independently. We use a two- 
point crossover in each subgroup, i.e., items exchange a subset of genes 
of the same length. 

When fitting the compartment models using GA, most researchers 
use mean least squared error as a fitness function. However, analysis of 
the infectious data shows that they vary over a scale. Therefore, we use 
MAPE, which is scale-independent, as a fitness function (Tofallis, 2015): 

ED(θ) =
100%

M
∑M

i=1

⃒
⃒
⃒
⃒
IR

i − ÎR
i (θ)

IR
i

⃒
⃒
⃒
⃒ (3)  

here IR
i is an observed values of the individuals infected with COVID-19 

at a given time which can be obtained from official reports; ÎR
i (θ)

approximated values obtained by solving the system of difference 
equations with current parameter set θ. 

3.3. Epidemiological data 

The main objective of our study is to analyze and compare various 
handling strategies and approaches realized in different countries. 
Therefore, it is required to apply the proposed model for the data across 
countries with different and even opposite strategies for combating 
COVID-19 outbreaks. However, many researchers indicate the lack of 
trustfulness in the COVID-19 statistical reports issued by the healthcare 
and governmental institutions (Silva & Figueiredo Filho, 2021). Thus, 
before the selection of the countries we evaluated the reliability of 
COVID-19 figures produced by the compartmental epidemic models. 

Balashov et al. (2021) used the Benford’s Law (BL) to investigate the 
credibility of the data regarding total cases and the number of deaths 
caused by COVID-19 for 185 countries affected by the pandemic. The 
research revealed the violations of the BL for approximately one-third of 
countries. Moreover, they compared the level of deviations with the 
overall development of the country (based on such socioeconomic in-
dicators as GDP, Human Development Index (HDI) and several other 
healthcare performance indexes). It was found that the most reliable 
data is provided by the countries with more developed economic sys-
tems especially regarding the death toll. Based on these results, we 
decided to analyze four countries, namely Germany, United Kingdom, 
Sweden, and the USA. These countries implemented different strategies 
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for handling the spread of the epidemic, therefore it can be beneficial to 
take them for comparative analysis. Besides, the effect of different 
vaccines against COVID-19 may be observed as the listed countries used 
various products for vaccination purposes. 

Although proposed model requires only one observable variable IR 

(which stands for the number of registered active COVID-19 cases), we 
also use certain other figures for analytical purposes. For example, we 
need the time series representing the number of people vaccinated with 
the first and second doze (or fully vaccinated in case of single-shot 
vaccine) to compare them with the variable V which shows the num-
ber of people protected by vaccine. Comparison of these values can 
provide the useful insights about the waning of vaccine-induced im-
munity and the efficacy of the current vaccines against the new strains of 
COVID-19. Furthermore, it is important to consider the number of 
confirmed deaths caused by the infection to estimate, inter alia, the 
excess mortality and calculate the death rate of the COVID-19. All the 
above-mentioned indicators were taken from the reports issued by John 
Hopkins University which collects and integrates the best data and 
expert guidance regarding the COVID-19 pandemics (CRS, 2022). 

The data refers to the period between the February 16, 2020 (the first 
available date in CRS reports) and the January 9, 2022. It was decided to 
fit the model on weekly data, so the indicated period includes 100 
observations. 

4. Results and discussion 

In this section we discuss the results obtained after fitting the model 
to the observed data. Section 4.1 proves the accuracy of the model fit. 
Section 4.2 discusses compartment dynamics, which shows the spillover 
of individuals from susceptible group to recovered and protected by the 
vaccine. Also in section 4.2, we begin our discussion of the ratio of 
unregistered to registered cases, which continues in section 4.3. Ac-
cording to our results, the number of unregistered cases at the peak of 
the pandemic was higher than the number of registered cases. In Section 
4.3 we also analyze the probability p(t) that exposed individuals become 
registered patients. Section 4.4 discusses the infection rate β(t) (the 
proportion of contacts between susceptible and infected individuals that 
result in infection) and the infection-induced mortality rate q(t). Section 
4.5 discusses the effectiveness of vaccination. We find a dramatic 
decrease in the effectiveness of vaccine-induced protection in the second 
half of 2021. Section 4.6 discusses parameters that are commonly used 
in pandemic analyses (time to loss of vaccine-induced and natural im-
munity, latency period, etc.). 

4.1. Model fitting 

The most important issue in model fitting is the finding global 
minimum of the error function ED(θ). Since the model is fitted only to the 
number of registered infected individuals IR

i , given the large number of 
model parameters, it is very likely that the parameters cannot be 
determined uniquely. The genetic algorithm belongs to the class of 
heuristic algorithms, hence different runs of the same algorithm with the 
same initial conditions can produce different approximations to the 
optimal solutions. Therefore, we chose an approach based on multiple 
runs of the Algorithm 1. After each run, we calculated the average values 
of the parameters based on all runs performed. The process was 

continued until the change in the averages became statistically insig-
nificant. Our experiments have shown that the optimal number of runs is 
10. Each run was performed with the following hyperparameters: 300 
individuals in the population, 2000 generations, mutation and cross- 
over probabilities equal to 0.2 and 0.7, respectively. 

Fig. 3 presents the fitted value ÎR
i (θ) resulting from 10 runs of Al-

gorithm 1 compared to the observed IR
i values for all countries analyzed 

over the entire study period. The resulting MAPEs are 2.168, 2.096, 
1.208 and 1.703 for Germany, Sweden, the United Kingdom, and the 
United States respectively. All the graphs contain also the 95% confi-
dence interval. It is important to note that the actual time series of all 
countries fit into the confidence interval, which indicates the high 
quality and accuracy of the implemented model. 

Slight discrepancy between the actual and fitted data starting from 
December 2021 can be explained by the appearance of the new Omicron 
variant which is characterized by enhanced transmissibility and higher 
resistance to the existing vaccines and the natural immunity (Shah & 
Woo, 2022). The studied period contains only the starting weeks of the 
Omicron wave, so the model may have produced the results of lower 
accuracy for December 2021 that, nevertheless, get into the 95% con-
fidence interval. In addition to the peak caused by Omicron, all the 
countries faced another peak of the number of registered cases in 
January 2021. This wave was probably caused by the Alpha variant of 
COVID-19 that emerged in December 2020 in UK and spread quickly in 
the following months. 

The overall share of infected registered compartment IR(t) is signif-
icantly higher for the USA and UK (up to 0.06 at the peak) than for 
Germany and Sweden (up to 0.02 at the highest peaks of the pandemic). 

4.2. The dynamics of compartments 

Fig. 4 depicts the evolution of the compartments for the analyzed 
countries starting from the first week after the launching of vaccination 
campaign (January 2021). The general pattern for every country is the 
gradual decline of the share of susceptible compartment from the 
highest values between 0.6 and 0.8 at the start of the given period to the 
lowest values between 0.05 and 0.1 at the end. In contrast, the share of 
recovered individuals and those protected with vaccine is constantly 
increasing and make up most population by the start of 2022. Altogether 
these two compartments constitute up to 80% of the total population of 
the examined countries by the end of the observation period. The share 
of recovered individuals varies between the countries, being the highest 
in Sweden and the lowest in Germany. These differences mainly arise 
from the vaccine efficacy, vaccination rate and rate of loss of natural 
immunity – the parameters that will be thoroughly analyzed later. 

The compartment of exposed individuals is the third-largest group in 
all countries except Sweden which attributes to the difference in latency 
rates between the countries. The number of unregistered infected in-
dividuals exceeds the number of registered cases in all countries. It 
should be also noted that this number is the lowest for Germany than for 
other three countries. In addition, it is worth noting the difference in the 
proportions of registered and unregistered infected. The USA and UK 
have more registered cases in the total amount of infected individuals 
than Sweden and Germany. 

It can be explained by the differences in the testing volumes in these 
countries (Hasell et al., 2020) presented in Table 4. Testing rate in 

Fig. 2. Chromosome structure.  
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Germany is 2 times lower than in the United States and five times lower 
than in the United Kingdom. Similarly, the testing rate in Sweden is 
approximately 1.5 times smaller than in the USA and 3.5 times smaller 

than in the UK. It can be assumed, that active testing in the UK and the 
USA may lead to the detection of the higher number of asymptomatic 
cases, that can get into the unregistered compartment in Germany or 
Sweden. However, we can also see an increase in the share of registered 
compartment in Germany, starting with November 2021. This could 
have been caused by the rise of performed tests due to the spread of 
Omicron variant of COVID-19. 

Note also that testing intensity is positively correlated with the 
average probability of detecting and registering infected individuals 
(Table 4), represented in our model by the parameter p(t). 

4.3. Registered and unregistered infected individuals 

As it can be hard to get the insights about the evolution of certain 

Fig. 3. Fitted vs observed values of the registered infected individuals.  

Fig. 4. The evolution of the compartments’ sizes for different countries in 2021.  

Table 4 
Rate of COVID-19 tests performed in the analyzed countries as of April 19, 2022 
(per 100 000 population).  

Country Testing rate per 100 000 
population 

Mean probability of registering an 
infected person E[p(t) ]

Germany 145 177  0.179 
Sweden 209 032  0.195 
UK 747 378  0.240 
USA 297 967  0.209  
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compartment from the stacked area chart, Fig. 5 compares the changing 
of the share of registered and unregistered infected people in analyzed 
countries. From the data presented, we can see that the maximum pro-
portion of unregistered infected individuals was up to 9.5% of the 
population in Sweden, 8.4% in the United States, 4.4% in Germany and 
6.6% in the United Kingdom in the Spring of 2021. The sum of both 
compartments IR and IU, i.e., the total share of infectious individuals in 
population is 11%, 10.7%, 4.7%, and 8.2% respectively. 

In general, data for every country follows similar pattern. Regarding 
the number of registered cases, we can see the upward trend with several 
peaks in January, April or October 2021 and the following increase 
which is probably caused by the spread of Omicron strain. Presumably, 
the appearance of new potentially dangerous variants of COVID-19 
motivates the governments to promote the testing campaign more 
active which leads to the increase of the share of registered cases in total 
number of infections. 

As for the share of unregistered cases, an upward trend can be 
observed till summer 2021, which then changes into a downward trend. 
Furthermore, overall decline of the infected compartment’s size may be 
caused by the high number of vaccinated and recovered individuals. It is 
also worth mentioning that significant discrepancies between the graphs 
representing the number of registered and unregistered infected in-
dividuals started in January 2021 with the spread of Alpha variant. This 
suggests the high impact that every new strain of COVID-19 has on the 
evolution of pandemic. 

In turn, Fig. 6 represents the line graphs that shows the changing of 
the share of exposed individuals in analyzed countries throughout 
pandemics. According to the graphs, the countries can be divided into 
two groups. The first group which contains the US and UK is charac-
terized by the ascending trend of the share of exposed individuals which 
turns into descending trend in summer 2021. It may be caused by the 
decreasing of the latency period for the new variants of COVID-19 that 
spread in these countries after June 2021 (e.g., Delta and Omicron). 
Besides, the vigorous vaccination campaign or the rise of the number of 
recovered individuals could basically reduce the size of the compart-
ment of people susceptible to the virus. The share of exposed individuals 

in the Germany and Sweden generally follows the same evolutionary 
pattern with the difference that the decline of the exposed compart-
ment’s size in Sweden starts in spring 2021 and goes more sharply than 
for the US and UK. It should also be highlighted that the share of exposed 
individuals is as well as the number of registered cases generally higher 
in the USA and UK rising above 0.2 and 0.25 respectively at the peak of 
pandemics. 

Fig. 7 presents the evolution of the exposed individuals’ fraction who 
become registered as COVID-19 positive patients. It should be noted that 
the value of this ratio is influenced not only by the accuracy of tests that 
are used to detect COVID-19 but also by the efficacy of the testing 
campaign that should target the large groups of population susceptible 
to infection. Therefore, due to the higher number of performed tests 
(Table 4) the average value of p(t) is higher for UK and the USA. 

We can see that the values mostly fluctuate between 0.2 and 0.4 and 
2–3 peaks above these numbers. The first peak in April – July 2020 is 
probably caused by the high degree of caution in the first months of 
pandemics. People performed tests when the first signs of the symptoms 
appeared and that contributed to the high level of infection’s detection. 
Another peak values between October 2021 and January 2022 can be 
explained by the spread of the Omicron variant that led to the increase in 
the testing volumes. It should be also highlighted that the values of the 
ratio for UK hit a peak around January 2021. This considerable increase 
was probably caused by the appearance and spread of Alpha variant. It is 
worth reminding that the UK was the first country where this strain 
emerged, so that healthcare and governmental institutions attempted to 
detect as many new cases of Alpha as possible to stop or slow down the 
spread of this variant. 

4.4. Infection rate and mortality 

Fig. 8 shows the evolution of the infection rate β(t) (i.e., the pro-
portion of contacts between susceptible and infected individuals leading 
to infection) throughout pandemic for individuals not protected by 
vaccine. It is necessary to highlight the high noise level in data that 
makes its interpretation more complicated. Therefore, we decompose 

Fig. 5. Share of registered and unregistered infected individuals in total population.  
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the time series with the help of Singular Spectrum Analysis (SSA). SSA 
was developed from principal component analysis (Golyandina et al., 
2001). The use of the SSA algorithm does not require limiting assump-
tions about the structure and properties of the time series (for example, 
stationarity), and display the good performance on short time series. 
Moreover, Golyandina (2011) emphasized such an advantage of SSA as 
resistance to noise, and, consequently, the effectiveness of this method 

when working with real data, and highly appreciated the possibility of 
visual interpretation of the components of the analyzed system. Fig. 8 
also shows the first component of the SSA decomposition (with the 
window length of 4), labelled SSA-1, which presents the general trend of 
the infection rate. All other components of the SSA decomposition 
oscillate around zero with small amplitude. 

Fig. 9 shows the densities of the β(t) distributions. The vertical 

Fig. 6. Share of exposed individuals in total population.  

Fig. 7. Exposed individuals’ fraction who become registered infectious, p(t).  
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dashed line corresponds to the mean value, the solid blue line represents 
a smooth density estimate obtained using a Gaussian kernel, the black 
sold line corresponds to a normal distribution fitted to parameters 
extracted from the data. As can be seen, the β(t) distribution for Ger-
many and Sweden is very close to normal, as confirmed by the Andersen- 
Darling and Shapiro-Wilk tests. The actual β(t) distribution for the UK 
and USA does not follow a normal law. These differences can be 
explained by a combination of external factors influencing the spread of 
the disease: effectiveness of vaccination, government policies, etc. 

Table 5 presents statistics of β(t) extracted from data including the 
results from Andersen-Darling and Shapiro-Wilk tests. It also lists the 
value of Hurst exponent, which is a useful statistical technique for 
classifying time series according to their long-term memory. The values 
of the Hurst exponent lie in the range from 0 to 1. The value of 0.5 
represents a true random process (Brownian motion or random walk). 
That means the lack of correlation between the past and future points of 
the time series. The value above 0.5 means the strong trend and 
persistence. Such a time series can be characterized as those with posi-
tive autocorrelation, so the increase or decrease in values will likely to 
be complimented by the further increase or decrease in the future. 
Lastly, the value of Hurst exponent between 0 and 0.5 indicates the 
negative autocorrelation or the anti-persistence of the time series. As can 
be seen, the value of the Hurst exponents for all countries corresponds 
mean-reverting motion. 

As shown in Table 5 and Fig. 9, the average infection rate ranges 
from 0.48 in Sweden to 0.64 in the UK. This means that not all contact 
between susceptible and infected individuals lead to the spread of 
infection. However, it reaches a value close to 1 at certain times (espe-
cially in the UK in September 2020 and November 2021). What these 
extreme values are related to (measurement errors, model inaccuracy, 
external factors) remains to be seen. 

Fig. 10 shows the evolution of the infection-induced death rate q(t), 
its mean values and first component of SSA decomposition (trend). The 
values in Germany in Sweden are generally higher than in the USA and 
UK. In the USA and UK, there is a sharp increase in pandemic-related 
deaths in winter 2021, but the number is declining in the second half 
of the year. In Germany and Sweden, the picture is different - a short 
spike in winter 2021 is followed by a decline, which is quickly followed 
by a rise in mortality that continues until the end of the study period. 
Again, this may be explained by the Alpha variant that emerged in 
December 2020 in UK and spread quickly in the following months. It is 
also worth mentioning the existence of other medical, social, and bio-
logical factors that may have impact on the death rate and cannot be 

estimated in our study. 

4.5. Vaccination efficacy 

Fig. 11 presents the share of population which is protected by vac-
cine alongside with the number of people that are fully vaccinated or 
vaccinated at least with one doze. As it was mentioned above, the var-
iable v(t) considers the waning of vaccine-induced immunity, therefore 
it provides more accurate data than the cumulative values of vaccinated 
individuals which are published in the official reports. The line charts 
for all four countries follow the same pattern. With the start of vacci-
nation campaign in January 2021 only one doze is already sufficient for 
gaining the immunity to COVID-19, as the chart for v(t) lies between the 
chart for vaccinated and fully vaccinated individuals. However, during 
the period between April and July 2021, the share of v(t) compartment 
stops rising despite the increase in the number of people getting vaccines 
and even start decreasing from autumn 2021. These results may indicate 
the higher level of vaccines’ efficacy against the initial strains of SARS- 
CoV-2 and Alpha variant than against Delta and Omicron variants. 

Indeed, there are many researchers (e.g., Feikin et al., 2022), proving 
that existing vaccines provide lower level of protection for Delta and 
Omicron strains. Moreover, the researchers also claim that one doze of 
mRNA vaccines (those produced by Moderna and Pfizer-BioNTech) 
gives a high level of protection against the decease (Bruxvoort et al., 
2021; Lopez Bernal et al., 2021). 

Additionally, the higher share of V compartment in Germany in 
comparison with other three countries should be also highlighted. This 
feature can be explained by the later start of the active phase of vacci-
nation campaign. While UK and Sweden vaccinated around 50 per cent 
of the population with at least one dose by April 2021, Germany pro-
vided vaccine only for 10 per cent of the individuals. Thus, the increase 
in the share of v(t) compartment was achieved mainly by the high level 
of vaccination which delayed the immunity waning to July 2021. 
Regarding the USA, low numbers of people protected by vaccine may be 
caused by the active use of Moderna vaccine which, in fact, was 
restricted in Germany as well as in Sweden for the alleged side effects 
(Bruxvoort et al., 2021). 

In our model, the effectiveness of the vaccine is determined by the 
parameter ε, the value 1 − ε determining how many times less likely the 
vaccinated person is to be infected by contact with the disease than the 
susceptible one. The ε values are 0.689, 0.696, 0.723, and 0.652 for 
Germany, Sweden, UK, and USA, respectively. Thus, we can conclude 
that, on average, vaccination reduces the risk of infection by about 

Fig. 8. Infection rate for unvaccinated individuals and its trend presented by first SSA component.  
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65–70%. 4.6. Average values of pandemic parameters 

Table 6 shows the average values of the parameters that are 
commonly used for analyzing epidemics. The difference in the average 

Fig. 9. Distribution of the infection rate β.  

Table 5 
Parameters of infection rate distribution.  

Country Mean Std. dev. Skewness Kurtosis Normality test Hurst exponent 

Germany  0.59  0.16  − 0.07  − 0.35 yes  0.05 
Sweden  0.48  0.22  0.04  − 0.64 yes  0.14 
UK  0.64  0.18  − 0.18  − 0.78 no  0.19 
USA  0.57  0.18  − 0.23  − 0.87 no  0.18  
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times between the analyzed countries can be explained by the variety of 
treatment protocols used by their healthcare institutions and by other 
factors that are not considered in the implemented model. 

The average time to lose vaccine-induced immunity for all the 
analyzed countries slightly exceeds five months, although vaccine 
manufacturers guarantee immunity against COVID-19 for at least six 
months after the full vaccination (Zhang et al., 2021). However, these 
times were evaluated on the initial variant of SARS-CoV-2 while the new 
strains such as Alpha, Delta and Omicron can overcome the protection 
provided by the existing vaccines. Therefore, since the summer 2021 the 
healthcare systems of the world countries started promoting booster 
shots that ensure the immunity against the new variants of the virus. The 
period that should pass between the primary and booster vaccination 
varies depending on the current epidemiological situation and cam be 
also shorter for the most vulnerable parts of the population. For 
example, CDC recommends the booster shot four months after the prior 
vaccination to people over the age of 65 and to those who are over 50 

Fig. 10. Infection-induced death rate q(t), its average value and first component of SSA decomposition throughout the pandemic.  

Fig. 11. Share of individuals protected by vaccine vs the share of vaccinated and fully vaccinated individuals.  

Table 6 
Average values of pandemic parameters (days).   

Country 

Parameter Value Germany Sweden UK USA 

Average time to lose vaccine- 
induced immunity 

1/λ 154 151 188 127 

Average time to lose natural 
immunity 

1/ω 256 263 233 238 

Average time which registered 
individuals leave being 
infectious 

1/γR 6.26 5.67 6.33 6.43 

Average time which 
unregistered individuals 
leave being infectious 

1/γU 5.54 5.31 5.88 5.81 

Average latency period 1/σ 5.33 5.29 5.66 5.44  
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with certain medical conditions increasing the chance of severe illness. 
Nevertheless, all the vaccines maintain their high efficiency against se-
vere disease and hospitalization. Therefore, it is required to calculate 
these values to be able to assess the performance of the vaccines, but this 
task is not the part of our study. 

According to the values of the duration of natural and vaccine- 
induced immunity, recovering from the infection provides longer and 
sustainable immunity lasting around 8 months. This is inconsistent with 
Yu et al. (2022) who suggest that vaccination induces higher immunity 
level than prior infection. 

Regarding the average time to lose vaccine-induced immunity, 
similar values for Germany in Sweden should be highlighted. Both 
countries used Pfizer-BioNTech vaccine as the main one in their vacci-
nation campaign, so that this ensured almost identical waning of the 
immunity. The low value for the USA can be again explained by the 
active use of Moderna vaccine. Additionally, it is worth mentioning the 
longest duration of the vaccine-induced immunity for the UK. This may 
relate to the usage of viral vector AstraZeneca vaccine in the immuni-
zation campaign. 

It is also important to analyze and compare the average time which 
registered and unregistered individuals leave being infectious. As it can 
be seen in the Table 6, this time is higher for registered cases. This is 
because the largest part of registered cases includes symptomatic and 
severe diseases that require more time for treatment and recovery. The 
lowest values of these parameters for Sweden should also be noted. 
Nevertheless, we cannot thoroughly estimate the values without 
considering medical protocols approved in the analyzed countries. 
Regarding the latency period, it varies between 5.29 and 5.66 days 
which is aligned with the estimations performed by other researchers 
(Xin et al., 2021; Lauer et al., 2020). 

It should also be stated that the parameters shown in Table 6 were 
not supposed to be time dependent in the proposed model (Table 2). 
However, in real life their values may change mainly because of the 
spread of different new strains of COVID-19. There are many studies 
showing that the duration of immunity against infection as well as la-
tency and infectious period vary for different variants of SARS-CoV-2. 
For example, Rella et al. (2021) concluded that vaccine-resistant 
strains can significantly reduce the duration of immunity as well as 
decrease the efficacy of the vaccines. The same is applicable for the 
natural immunity which has a higher waning rate for the vaccine- 
resistant strains. Therefore, the stationarity of the above-mentioned 
parameters that was introduced for simplification purposes can be 
considered as a limitation of the implemented model. 

5. Conclusion 

The proposed approach, based on reconstruction of real distributions 
of transition rates from data using genetic algorithms, allows fitting a 
model describing several pandemic waves. The model was fitted with 
MAPEs of 2.168, 2.096, 1.208 and 1.703 for Germany, Sweden, the UK, 
and the US respectively. The results are consistent with general empir-
ical statistics from medical studies (e.g., incubation period, latency 
period, etc.), confirming the quality of the model. Using the model, we 
investigated some features of the pandemic in four countries. 

The main results, which open the way for further research, are as 
follows:  

• The mean infection rate β(t) i.e., the proportion of contacts between 
susceptible and infected individuals leading to infection is 0.48, 0.57, 
0.58 and 0.64 for Sweden, the USA, Germany, and the UK respec-
tively. However, at certain times it will reach a value close to 1 (e.g., 
in the UK in September 2020 and November 2021). A possible 
explanation is that these extremes are associated with new, more 
infectious strains of the virus, but more research is needed on the 
causal relationships of the resulting time series β(t) with a broader 
list of external factors (government policies, data quality, etc.). 

• The maximum proportion of exposed individuals in the entire pop-
ulation ranges from 0.14 in Sweden to 0.25 in the UK. This allows us 
to estimate the spread of the pandemic. It is worth noting that in all 
countries except Germany, there is a decreasing trend in the number 
of exposed persons from the first quarter of 2021.  

• The proportion of registered infections among exposed individuals 
generally ranges between 0.2 and 0.4, with several peaks above these 
figures. Potentially interesting to find out how this relates to testing 
and other non-pharmacological interventions.  

• According to our model, the average duration of vaccine induced 
immunity is shorter than the manufacturers claim. Before the 
appearance of Delta variant of SARS-CoV-2, even one shot of the 
vaccine provided the required protection against the virus, while 
with the appearance of new variants of the virus the vaccine-induced 
immunity became less effective. However, on average, vaccination 
reduces the risk of infection by about 65–70%.  

• There is variation in the duration of vaccine-induced immunity, 
which may be due to different vaccines being used in countries. The 
UK displays the longest duration of vaccine-induced immunity and 
the highest reduction in the probability of infection of the vaccinated 
through contact with the disease (ε = 0.723). However, group V 
(individuals protected by vaccine) reaches the largest size in 
Germany.  

• The average time of loss of natural immunity is higher in Germany 
and Sweden than in the UK and USA. To find out why this is the case, 
a comparative study of the policies of pandemic-handling in these 
countries is needed. 

The advantages of the proposed approach, as discussed above, are 
the ability to model multiple pandemic waves and hence to estimate 
unobserved subpopulations more accurately. However, the focus on 
reconstructing the time series representing the transition rate from 
observed data limits the predictive ability of the model. In the case of 
constant transition rates, predictions can be obtained by simply inte-
grating the corresponding ODEs. To make predictions based on our 
approach, a predictive model for multivariate time series β(t), p(t), q(t),
v(t) is additionally needed. This extension is the goal of future research. 

There is another scope for further improvement. The data on Omi-
cron variant can be taken for the analysis and the results can be 
compared to those for other strains of the virus. The data for other 
countries can also be considered for the analysis to provide a more ho-
listic picture. 

Note also that the calculation of real distributions of transition rates 
opens new possibilities for analyzing pandemic handling policies. 
Typically, researchers in this field consider population distributions 
across compartments as endogenous variables. Consideration of how 
different interventions affect transition rates can provide additional 
insights. 

CRediT authorship contribution statement 

Yuri Zelenkov: Conceptualization, Methodology, Validation, 
Writing – review & editing. Ivan Reshettsov: Methodology, Software, 
Validation, Writing – original draft. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Y. Zelenkov and I. Reshettsov                                                                                                                                                                                                                



Expert Systems With Applications 224 (2023) 120034

16

References 

Acuña-Zegarra, M. A., Díaz-Infante, S., Baca-Carrasco, D., & Olmos-Liceaga, D. (2021). 
COVID-19 optimal vaccination policies: A modeling study on efficacy, natural and 
vaccine-induced immunity responses. Mathematical Biosciences, 337, Article 108614. 
https://doi.org/10.1016/j.mbs.2021.108614 

Arik, S., et al. (2020). Interpretable sequence learning for COVID-19 forecasting. 
Advances in Neural Information Processing Systems, 33, 18807–18818. 

Assefa, Y., Gilks, C. F., Reid, S., et al. (2022). Analysis of the COVID-19 pandemic: 
Lessons towards a more effective response to public health emergencies. 
Globalization and Health, 18, 10. https://doi.org/10.1186/s12992-022-00805-9 

Baguelin, M., Flasche, S., Camacho, A., Demiris, N., Miller, E., & Edmunds, W. J. (2013). 
Assessing optimal target populations for influenza vaccination programmes: An 
evidence synthesis and modelling study. PLoS Medicine, 10(10), e1001527. 

Balashov, V. S., Yan, Y., & Zhu, X. (2021). Using the Newcomb-Benford law to study the 
association between a country’s COVID-19 reporting accuracy and its development. 
Scientific Reports, 11, 22914. https://doi.org/10.1038/s41598-021-02367-z 

Baraniuk, C. (2021). How long does covid-19 immunity last? The BMJ., 373, Article 
n1605. https://doi.org/10.1136/bmj.n1605 

Bjørnstad, O. N., Shea, K., Krzywinski, M., & Altman, N. (2020). The SEIRS model for 
infectious disease dynamics. Nature Methods, 17, 557–558. https://doi.org/10.1038/ 
s41592-020-0856-2 

Boissay, F., Rees, D., & Rungcharoenkitkul, R. (2020). Dealing with COVID-19: 
understanding the policy choices, BIS Bulletins 19, Bank for International 
Settlements. 

Boroujeni, S. P. H., & Pashaei, E. (2021). Data clustering using chimp optimization 
algorithm. In 11th IEEE International Conference on Computer Engineering and 
Knowledge (ICCKE), pp. 296-301. 10.1109/ICCKE54056.2021.9721483. 

Bouchnita, A., Chekroun, A., & Jebrane, A. (2021). Mathematical modeling predicts that 
strict social distancing measures would be needed to shorten the duration of waves 
of COVID-19 infections in Vietnam. Frontiers in Public Health., 12(8), Article 559693. 
https://doi.org/10.3389/fpubh.2020.559693 

Brewer, D., Barenco, M., Callard, R., Hubank, M., & Stark, J. (2008). Fitting ordinary 
differential equations to short time course data. Philosophical Transactions of the 
Royal Society A, 366, 519–544. https://doi.org/10.1098/rsta.2007.2108 

Bruxvoort, K. J. et al. (2021) Effectiveness of mRNA-1273 against Delta, Mu, and other 
emerging variants of SARS-CoV-2: test negative case-control study. BMJ, 375: 
e068848. doi:10.1136/bmj-2021-068848. 

Capistran, M. A., Capella, A., & Christen, J. (2021). Forecasting hospital demand in 
metropolitan areas during the current COVID-19 pandemic and estimates of 
lockdown-induced 2nd waves. PLoS One1, 16(1), e0245669. 

Chang, S., Pierson, E., Koh, P. W., et al. (2021). Mobility network models of COVID-19 
explain inequities and inform reopening. Nature, 589, 82–87. https://doi.org/ 
10.1038/s41586-020-2923-3 

Chatzilena, A., Van Leeuwen, E., Ratmann, O., Baguelin, M., & Demiris, N. (2019). 
Contemporary statistical inference for infectious disease models using Stan. 
Epidemics, 29, Article 100367. https://doi.org/10.1016/j.epidem.2019.100367 

Cheng, C., et al. (2021). The incubation period of COVID-19: A global meta-analysis of 53 
studies and a Chinese observation study of 11 545 patients. Infectious Diseases 
Poverty, 10, 119. https://doi.org/10.1186/s40249-021-00901-9 

Comunian, A., Gaburro, R., & Giudici, M. (2020). Inversion of a SIR-based model: A 
critical analysis about the application to COVID-19 epidemic. Physica D: Nonlinear 
Phenomena, 413, Article 132674. https://doi.org/10.1016/j.physd.2020.132674 

CRS (2022). Coronavirus Resource Center. Johns Hopkins University. Available at: 
https://coronavirus.jhu.edu Accessed: June 20, 2022. 

Davis, H. et al. (2020). Characterizing Long COVID in an International Cohort: 7 Months 
of Symptoms and Their Impact. medRxiv. 10.1101/2020.12.24.20248802. 

Eryarsoy, E., Delen, D., Davazdahemami, B., & Topuz, K. (2021). A novel diffusion-based 
model for estimating cases, and fatalities in epidemics: The case of COVID-19. 
Journal of Business Research, 124, 163–178. https://doi.org/10.1016/j. 
jbusres.2020.11.054 

Feikin, D. R., et al. (2022). Duration of effectiveness of vaccines against SARS-CoV-2 
infection and COVID-19 disease: Results of a systematic review and meta-regression. 
The Lancet, 399(10328), 924–944. https://doi.org/10.1016/S0140-6736(22)00152- 
0 

Feng, S., Feng, Z., Ling, C., Chang, C., & Feng, Z. (2021). Prediction of the COVID-19 
epidemic trends based on SEIR and AI models. PLoS One1, 16(1), e0245101. 

Golyandina, N., Nekrutkin, V., & Zhigljavsky, A. (2001). Analysis of Time Series Structure: 
SSA and related techniques. New York – London: Chapman & Hall/CRC:  

Golyandina, N. (2011). On the choice of parameters in Singular Spectrum Analysis and 
related subspace-based methods. New York - London: Chapman & Hall/CRC:  

GRT (2022). COVID-19 Government Response Tracker. University of Oxford. Available 
at: https://www.bsg.ox.ac.uk/research/research-projects/covid-19-government- 
response-tracker. Accessed: June, 20, 2022. 

Hasell, J., et al. (2020). A cross-country database of COVID-19 testing. Scientific Data, 7, 
345. https://doi.org/10.1038/s41597-020-00688-8 

Huang, H., Handel, A., & Song, X. (2020). A Bayesian approach to estimate parameters of 
ordinary differential equation. Computational Statistics, 35, 1481–1499. https://doi. 
org/10.1007/s00180-020-00962-8 
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