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Abstract 

Background  This study aims to construct radiomics models based on [18F]FDG PET/CT using multiple machine 
learning methods to predict the EGFR mutation status of lung adenocarcinoma and evaluate whether incorporating 
clinical parameters can improve the performance of radiomics models.

Methods  A total of 515 patients were retrospectively collected and divided into a training set (n = 404) and an 
independent testing set (n = 111) according to their examination time. After semi-automatic segmentation of PET/
CT images, the radiomics features were extracted, and the best feature sets of CT, PET, and PET/CT modalities were 
screened out. Nine radiomics models were constructed using logistic regression (LR), random forest (RF), and support 
vector machine (SVM) methods. According to the performance in the testing set, the best model of the three modali-
ties was kept, and its radiomics score (Rad-score) was calculated. Furthermore, combined with the valuable clinical 
parameters (gender, smoking history, nodule type, CEA, SCC-Ag), a joint radiomics model was built.

Results  Compared with LR and SVM, the RF Rad-score showed the best performance among the three radiom-
ics models of CT, PET, and PET/CT (training and testing sets AUC: 0.688, 0.666, and 0.698 vs. 0.726, 0.678, and 0.704). 
Among the three joint models, the PET/CT joint model performed the best (training and testing sets AUC: 0.760 vs. 
0.730). The further stratified analysis found that CT_RF had the best prediction effect for stage I–II lesions (training set 
and testing set AUC: 0.791 vs. 0.797), while PET/CT joint model had the best prediction effect for stage III–IV lesions 
(training and testing sets AUC: 0.722 vs. 0.723).

Conclusions  Combining with clinical parameters can improve the predictive performance of PET/CT radiomics 
model, especially for patients with advanced lung adenocarcinoma.
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Background
Lung cancer is the second most common cancer world-
wide and has the highest mortality rate (21%) [1, 2], of 
which 80–85% are non-small cell lung cancer (NSCLC) 
[3]. Epidermal growth factor receptor (EGFR) plays an 
important role in the progression of NSCLC, which 
makes it an effective therapeutic target; tumors with 
EGFR mutations are more heterogeneous [4, 5]. The most 
common histological type of NSCLC is lung adenocarci-
noma [3], which has a higher EGFR mutation rate than 
other subtypes [6]. In Asian patients with lung adeno-
carcinoma, the EGFR mutation rate is as high as 50% 
[7]. Studies have shown that tyrosine kinase inhibitors 
(TKIs) can effectively prolong the progression-free sur-
vival (PFS) of patients with EGFR mutations, and there-
fore they are widely used in the targeted therapy for lung 
adenocarcinoma [8, 9]. The therapy efficacy and prog-
nosis are closely related to the EGFR mutation status of 
the patient. Accurately identifying EGFR mutation sta-
tus in lung adenocarcinoma patients can greatly improve 
patient prognosis.

Molecular testing of needle biopsy or surgically 
resected tumor tissue is the "gold standard" for diagnos-
ing EGFR mutation status. However, this technique is 
invasive and time-consuming, and tumor heterogeneity 
can easily affect its accuracy [10, 11]. In addition, many 
patients cannot undergo this test due to poor physical 
conditions and other reasons (such as fears and anxieties, 
concerns about potential complications, and suboptimal 
lesion location). In recent years, some studies used blood 
samples instead of biopsies to assess EGFR mutation sta-
tus by analyzing circulating tumor DNA (ctDNA). How-
ever, ctDNA testing is expensive and has low sensitivity 
for detecting EGFR mutations [12–14]. Therefore, there 
is an urgent need for an economical, rapid, and reliable 
non-invasive detection method to assess EGFR mutation 
status.

[18F]FDG PET/CT is a non-invasive molecular imaging 
technique widely used in the clinical diagnosis, staging, 
prognosis, and efficacy evaluation of lung cancer [15–
17]. The maximum standard uptake value (SUVmax) is 
one of the routine parameters of PET/CT, which reflects 
the highest uptake value of [18F]FDG by the tumor tis-
sue and is often used in PET image analysis. Radiomics 
is a method that quantitatively evaluates tumor imag-
ing phenotypes via high-throughput feature extraction 
from medical images [18]. Compared to SUVmax, radi-
omics features can better reflect the spatial distribution 
of tumors and more comprehensively evaluate tumor 
heterogeneity. In recent years, using machine learning 
methods with high prediction efficiency and strong feasi-
bility to assess radiomic features and predict EGFR muta-
tion status has become a research “hot spot” [5, 19–32]. 

However, most of these studies had small sample sizes, 
with a total sample number of no more than 200 cases 
[19–26], and the TNM stages of the enrolled patients var-
ied greatly [21, 27, 31]. These factors significantly affected 
the stability of the results.

Studies have shown that clinical parameters such as 
gender, smoking history, and the presence of ground-
glass opacity (GGO) are closely related to the EGFR 
mutation status in lung adenocarcinoma [33]. Combin-
ing with clinical parameters can improve model perfor-
mance in predicting EGFR mutation status [4, 5, 26, 30], 
but some researchers suggest that adding clinical features 
to the radiomics model does not improve its predictive 
performance [34, 35]. Therefore, whether incorporating 
clinical parameters can improve the performance of the 
radiomics model is still inconclusive.

In this study, we included 515 patients with all clini-
cal stages. We used LR, RF, and SVM to model CT, PET, 
and PET/CT radiomics features and assess the predic-
tive power. Then, we included clinical parameters to con-
struct joint models and evaluate whether adding clinical 
parameters can further improve the model performance 
in predicting EGFR mutation in lung adenocarcinoma 
patients with different clinical stages.

Methods
Patient data
We retrospectively and consecutively collected lung can-
cer patients who underwent [18F]FDG PET/CT examina-
tions before treatment in our hospital from January 2018 
to April 2022. Inclusion criteria: (1) Lung adenocarci-
noma was confirmed by surgery or biopsy pathology, and 
the pathological classification was based on IASLC/ATS/
ERS lung adenocarcinoma classification criteria [36]; (2) 
the patients completed [18F]FDG PET/CT examination 
before surgery, and the interval between surgery and 
examination was less than 30 days; (3) the EGFR muta-
tion test result was available; (4) patient had no history 
of other malignant tumors. Exclusion criteria: (1) lesions 
with poor image quality or difficulty to measure; (2) 
patient had other subtypes of lung cancer; (3) no chest 
CT images.

According to the above criteria, five hundred fifteen 
patients with lung adenocarcinoma were included, and 
the clinical information of age, gender, smoking status, 
clinical stage, tumor marker, SUVmax, and postopera-
tive pathology was recorded. We used patients collected 
from January 2018 to April 2021 as the training set and 
patients collected from May 2021 to April 2022 as the 
testing set. The study was performed in accordance with 
the ethical standards as laid down in the 1964 Declara-
tion of Helsinki and its later amendments or comparable 
ethical standards. The study protocol was approved by 
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the Ethics Committee of our institution (No. [2022] KD 
087). As our study is a retrospective analysis, informed 
consent is not required. The study flow chart is shown in 
Fig. 1.

EGFR mutation test
EGFR mutation test was performed on tissue specimens 
obtained by surgical resection or biopsy. Real-time fluo-
rescent PCR was performed to detect EGFR mutations in 
exons 18–21 using the EGFR gene mutation detection kit 
purchased from Shanghai Yuanqi Company. The detailed 
procedures followed the manufacturer’s instructions (see 
Additional file 1). If the mutation was detected in any of 
the above exons, the lesion was defined as EGFR mutant; 
otherwise, the lesion was defined as EGFR wild type.

Image acquisition
The image acquisition protocol was developed according 
to the acquisition protocol based on Imaging Biomarker 
Standardization Initiative (IBSI) guidelines [37]. The 
PET/CT image acquisition instrument was a German Sie-
mens BiographmCT (64) PET/CT machine. The patients 
fasted for 4–6 h before the examination, and their height, 
weight, and blood sugar were recorded on the examina-
tion day. [18F]FDG was intravenously injected accord-
ing to the patient’s body weight at 3.70–5.55  MBq/kg. 
The imaging agent was provided by Nanjing Jiangyuan 
Andico Positron Research and Development Company 

(radiochemical purity > 95%). The patients underwent 
PET/CT whole-body imaging after resting in a quiet 
and comfortable environment for 1  h. The patient was 
placed in the supine position and kept holding the head 
with both hands. Imaging lasted for 2 min/bed, and the 
collection range was from the base of the skull to the 
middle of the femur. Diagnostic chest CT imaging was 
performed after the PET/CT scan. After image acquisi-
tion, the TrueX + TOF (ultraHD-PET) system was used 
for image reconstruction. A postprocessing workstation 
TrueD system (Siemens) was used for image evaluation. 
Image acquisition parameters are listed in Additional file.

Image analysis and tumor region segmentation
[18F]FDG PET/CT image analysis: PET and CT images 
were analyzed by two physicians (A and B) with 3 years of 
experience in nuclear medicine. The software they used 
was the 3D slicer software 4.11.2 (http://​www.​slicer.​org). 
For PET images, they used a semi-automatic segmenta-
tion method developed by Beichel et  al. [38]. For CT 
images (3  mm), they used NVIDIA AI-Assisted Anno-
tation (3D-Slicer built-in) and the boundary-based CT 
segmentation models to process lung nodule images. The 
segmented tumor region of interest (ROI) was checked 
and proofread by another physician with more than 
10 years of experience in PET/CT diagnosis. Four weeks 
after completing the ROI for all cases, Doctor A seg-
mented the tumor region again for 300 patients, among 

Fig. 1  Flow chart of patient selection. EGFR epidermal growth factor receptor, NECS neuroendocrine carcinomas, NSCC-NOS non-small cell 
carcinoma-not otherwise specified

http://www.slicer.org
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which 70 patients were randomly selected for Doctor B 
to segment.

Image preprocessing
Before feature extraction, the image was normalized, 
and all images were interpolated (sitkBSpline algorithm, 
3rd-order B-spline interpolation) so that the isotropic 
voxel spacing was rotated unchanged and the extracted 
features were compared between different samples. 
CT images were resampled to 1 × 1 × 1 mm3, and PET 
images were resampled to 3 × 3 × 3 mm3. The method of 
fixed bin width was used for discretization, and the bin 
width of CT and PET images was 25 and 0.313, respec-
tively. The bin discretization, Laplacian of Gaussian 
(LOG), and wavelet transform were applied to generate 
different feature sets. For the LOG filter, different sigma 
values were used to extract fine, medium, and coarse 
features; specifically, these features ranged from 0.5 to 5 
with a step size of 0.5. The wavelet transforms produced 8 
decompositions per layer (applying all possible combina-
tions of high-pass or low-pass filters in each of the three 
dimensions, including HHH, HHL, HLH, HLL, LHH, 
LHL, LLH, and LLL). All intensity, histogram, and tex-
ture features were preprocessed (including discretization, 
logarithm, and wavelet).

Feature extraction
Using the Pyradiomics module in Python 3.8.8, we 
extracted multiple features from different feature catego-
ries based on three segmented ROIs (twice from Doctor 
A and once from Doctor B). These categories included 
shape and morphology-based features (14 shape fea-
tures), first-order statistics (18 FOS features), gray-level 
co-occurrence matrix (GLCM 24 features), gray-level 
dependency matrix (14 GLDM features), gray-level run-
length matrix (16 GLRLM features), gray-level size region 
matrix (16 GLSZM features), and the neighbor gray-level 
tone difference matrix (5 NGTDM features). The fea-
tures extracted from three sets of ROIs were assessed for 
within-group and between-group intraclass correlation 
efficient (ICC), and the features with ICCs greater than 
0.75 were considered in good consistency and kept for 
further analysis.

Screening of radiomic features and model construction
To avoid overfitting, the variance method was used to 
remove features with small variance (threshold = 0.24). 
Next, the Mann–Whitney U test was used in the train-
ing set to screen out radiomics features with p value < 0.1, 
which might be associated with EGFR mutation status. 
Then, the Least Absolute Shrinkage and Selection Opera-
tor (LASSO) algorithm was applied to the normalized 
training set data to select the best predictive features. The 

LASSO algorithm added an L1 regularization term to the 
least squares algorithm to avoid overfitting and employed 
fivefold cross-validation.

Machine learning models were built using the Sklearn 
module in Python 3.8.8. Nine models were constructed 
based on CT, PET, and PET/CT radiomics features with 
LR, SVM, and RF, respectively. The training set used 
a grid search with fivefold cross-validation to find the 
optimal hyperparameters (the specific parameters are 
listed in Additional file 1: Table S1), and the models were 
retrained on the entire training set. Receiver operat-
ing characteristic (ROC) curves and the area under the 
curve (AUC) were used to evaluate model performance 
in training and testing sets. The 3 models with the best 
performance on the testing set were kept to calculate the 
Rad-score. We used the SHAP module in Python 3.8.8 
to interpret the model better to understand the impor-
tance of different features in different models. The biggest 
advantage of the SHAP value is that SHAP can reflect the 
positive and negative influence of the features in each 
sample. The radiomics workflow used in this study is 
shown in Fig. 2.

Statistical analysis
Statistical analysis was performed using R software 
(version 3.4.3; http://​www.R-​proje​ct.​org/). Continuous 
variables were expressed as mean ± standard deviation 
(normal distribution) or median (Q1–Q3) (skewed dis-
tribution). Categorical variables were expressed as fre-
quency or rate (%). Differences in clinical data and PET/
CT metabolic parameters between different EGFR muta-
tion status (binary variables) were tested using the χ2 test 
(for categorical variables), T test (for normal distribu-
tion), or Mann–Whitney U test (skewed distribution). 
Multivariate logistic regression method was used to con-
struct a clinical model with significant clinical parame-
ters, and a joint model and the corresponding nomogram 
were built by combining the clinical parameters with 
three Rad-scores. The minimum Akaike information cri-
terion was used to select the best model parameters. The 
calibration curve confirmed the agreement between the 
nomogram and observations, and the model’s power was 
evaluated using ROC curve and AUC. The model’s accu-
racy, sensitivity, and specificity were calculated to obtain 
a quantitative performance measurement. Decision 
curve analysis (DCA) assessed the models’ clinical util-
ity and net clinical benefit. A pairwise comparison of the 
model AUCs was performed using the method proposed 
by Delong et al. [39]. All statistical tests were two-sided, 
and p < 0.05 was considered statistically significant. Since 
the carcinoembryonic antigen (CEA) of 49 cases (9.5%), 
the cytokeratin 19 fragment (CYFRA21-1) of 99 cases 
(19.1%), the neuron-specific enolase (NSE) of 74 cases 

http://www.R-project.org/
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(14.3%), the serum squamous cell carcinoma antigen 
(SCC-Ag) of 91 cases (17.6%) were missing, we imputed 
the missing data using miceforest (version 5.4.0; https://​
github.​com/​Anoth​erSam​Wilson/​micef​orest/).

Results
Clinical characteristics of patients
The clinical characteristics of the patients are shown in 
Table 1. A total of 515 patients with lung adenocarcinoma 
were enrolled in the study, including 264 females and 
251 males. The average age was 64.0 ± 9.2  years (ranging 
from 36 to 87 years). In total, 175 patients (34.0%) had a 
smoking history, and 348 (67.6%) had solid nodules. The 
patients’ clinical stages were: stage I: 209 cases (40.6%), 
stage II: 24 cases (4.7%), stage III: 85 cases (16.5%), and 
stage IV: 197 cases (38.3%). The EGFR mutation status was 
pathologically confirmed by surgical resection or biopsy: 
there were 202 cases (39.2%) with EGFR wild type and 313 
cases (60.8%) with EGFR mutant (including 3 cases of exon 
18, 127 cases of exon 19, 13 cases of exon 20, 150 cases of 
exon 21, 1 case of exon 19 + 20, 2 cases of exon 19 + 21, 1 
case of exon 20 + 21, and 16 cases of the unknown exon).

There were no significant differences between the train-
ing set (n = 404) and testing set (n = 111) in age, gender, 
smoking history, nodule type, nodule location, tumor 
markers, and EGFR mutation rate (all p > 0.05). Tumor 
long axis, tumor short axis, clinical stage, and SUVmax 
showed significant differences between the two datasets 
(all p < 0.05), possibly due to the different compositions 
of patients during different periods (see Additional file 1: 
Table  S2). To eliminate this difference, we performed 
a stratified analysis (stratified by clinical stage) in both 
datasets to verify the robustness of the joint model. The 
clinical parameters of gender, smoking history, nodule 
type, CEA, SCC-Ag, clinical stage, tumor long axis, and 

tumor short axis explained the differences between EGFR 
mutant and wild-type patients (all p < 0.05 in training set).

Validation of the predictive efficacy of traditional 
metabolic parameters
SUVmax was significantly different between EGFR mutant 
and wild type in the training set (p = 0.005) but not in the 
testing set (p > 0.05). SUVmax had a weak predictive abil-
ity for EGFR mutation status in lung adenocarcinoma 
(training set AUC = 0.582, 95% CI 0.526–0.638, testing 
set AUC = 0.584, 95% C0I 0.475–0.694).

The screening results of the three modality radiomics 
features
Based on the segmentations of tumor regions on PET/
CT images, a total of 3562 radiomics features (1781 PET 
features, 1781 CT features) were extracted. Among them, 
423 CT features and 248 PET features were excluded 
based on intragroup ICCs evaluation, and 109 CT fea-
tures and 81 PET features were excluded according to 
intergroup ICCs evaluation. Next, we used the variance 
method, Mann–Whitney U test, and LASSO algorithm 
(Additional file  1:Figure S1) to further screen out 8 CT 
features, 4 PET features, and 4 PET/CT fusion radiom-
ics features (2CT + 2PET), respectively (Additional 
file 1:Table S3).

The predictive power of the three modality radiomics 
features for EGFR mutation status
The corresponding AUCs of the radiomics models are 
shown in Fig. 3, and the feature weights for each model 
are shown in Additional file  1:Figure S2. Among the 9 
constructed radiomics models, the three models based 
on RF algorithm were better than the models based on 
LR and SVM algorithms in both training set and testing 

Fig. 2  Flow chart of radiomics analysis

https://github.com/AnotherSamWilson/miceforest/
https://github.com/AnotherSamWilson/miceforest/
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Table 1  Clinical characteristics of patients with different EGFR mutation status in training set and testing set

Mean (SD)/Median (Q1–Q3)/N (%).

EGFR epidermal growth factor receptor; CEA carcinoembryonic antigen; CYFRA 21–1 cytokeratin 19 fragment; NSE neuron-specific enolase; SCC-Ag squamous cell 
carcinoma-associated antigen; SUVmax maximum standardized uptake value

EGFR Training set
n = 404

Mutant p value Testing set
n = 111

Mutant p value

Wild type Wild type

N 161 243 41 70

Age (years) 64.83 (9.11) 63.65 (9.22) 0.210 64.22 (8.75) 63.19 (9.48) 0.570

Gender  < 0.001 0.021

 Female 51 (31.7%) 162 (66.7%) 13 (31.7%) 38 (54.3%)

 Male 110 (68.3%) 81 (33.3%) 28 (68.3%) 32 (45.7%)

Smoking history 87 (54.0%) 54 (22.2%)  < 0.001 18 (43.9%) 16 (22.9%) 0.020

Nodule type  < 0.001 0.037

 Solidity 128 (79.5%) 147 (60.5%) 32 (78.0%) 41 (57.6%)

 Sub-solidity 33 (20.5%) 96 (39.5%) 9 (22.0%) 29 (42.4%)

Nodule location 0.645 0.696

 Top right 47 (29.2%) 81 (33.3%) 10 (24.4%) 21 (30.0%)

 Middle right 6 (3.7%) 14 (5.8%) 4 (9.8%) 8 (11.4%)

 Lower right 34 (21.2%) 50 (20.6%) 12 (29.2%) 14 (20.0%)

 Top left 44 (27.3%) 63 (25.9%) 9 (22.0%) 20 (28.6%)

 Lower left 30 (18.6%) 35 (14.4%) 6 (14.6%) 7 (10.0%)

Tumor long axis (mm) 32.10 (20.70–47.20) 25.60 (20.30–37.65) 0.002 40.70 (29.50–49.50) 29.40 (23.70–38.60) 0.008

Tumor short axis (mm) 23.20 (14.60–33.20) 19.00 (14.30–27.65) 0.015 29.60 (24.10–33.40) 22.35 (16.20–28.45) 0.008

Clinical stage 0.005 0.378

 I 52 (32.3%) 125 (51.4%) 8 (19.5%) 24 (34.3%)

 II 12 (7.5%) 3 (1.2%) 4 (9.8%) 5 (7.1%)

 III 33 (20.5%) 35 (14.4%) 8 (19.5%) 9 (12.9%)

 IV 64 (39.8%) 80 (32.9%) 21 (51.2%) 32 (45.7%)

CEA (ng/ml) 5.24 (2.61–15.61) 3.23 (1.60–12.25) 0.016 5.08 (2.42–13.39) 5.58 (2.24–19.84) 0.781

CYFRA 21–1 (ng/ml) 3.58 (2.42–6.20) 3.23 (2.17–5.34) 0.084 4.36 (3.24–6.43) 3.73 (2.58–6.90) 0.313

NSE (ng/ml) 15.10 (11.79–20.28) 14.75 (12.04–20.38) 0.988 15.81 (13.07–20.55) 14.97 (12.14–18.64) 0.281

SCC-Ag (ng/ml) 1.01 (0.72–1.51) 0.78 (0.56–1.01)  < 0.001 0.89 (0.72–1.29) 0.83 (0.56–1.18) 0.350

SUVmax (ng/ml) 13.03(6.27–18.21) 10.14(3.44–17.51) 0.005 15.60(8.51–20.67) 13.62(5.50–17.98) 0.139

Fig. 3  The AUC values of the nine radiomics models in the training set (A) and testing set B. LR logistic regression, RF random forest, SVM support 
vector machine
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set, and the AUCs of CT_RF, PET_RF, and PET/CT_RF 
in the training set were 0.688, 0.666, and 0.698, respec-
tively, and the AUCs in the testing set were 0.726, 0.678, 
and 0.704, respectively. Although the performance of 
CT_RF model was better than that of PET_RF and PET/
CT_RF models in the testing set, the difference was not 
significant (both p > 0.05). Table 2 lists the diagnostic effi-
cacy of the three best models.

We further compared the performance of CT_RF, 
PET_RF, PET/CT_RF, and SUVmax for predicting EGFR 
mutation status. The ROC curves of the three radiom-
ics models and SUVmax in training set and testing set are 
shown in Additional file 1: Figure S3. The AUCs of three 
radiomics models were significantly better than SUVmax 
in both training and testing sets (all p < 0.05).

The performance of radiomics model combined 
with clinical parameters for predicting EGFR mutation 
status
We first constructed a clinical prediction model (base-
line model) with the 8 clinical parameters in Table  1 
that might be related to the EGFR mutation status. Five 
parameters were finally included, and the model equation 
is as follows:

Logit(P) = 0.91617 + 0.00156 × CEA  −  0.05743 × SCC-
Ag − 0.92507 × (Gender = male) − 0.57848 × (Smoking his-
tory = positive) + 0.70786 × (Nodule Type = sub-solidity).

Next, the above 5 parameters were combined with the 
three best radiomics models (CT_RF, PET_RF, and PET/
CT_RF) to construct joint prediction models. The three 
joint models are as follows:

CT joint model:

Logit(P) =​ ​− 2.11428​ + 0.0017​7 × C​EA − 1.31​985 × (Ge​nder  
= ​male) + 0​.52447  ×  (Nodu​l​e T​ype​ = ​s​ub-solidi​ty) +  
4.96787 × CT_Rad;

PET joint model:
Logit(P) = − 1.01180 + 0.00170  ×  CEA –0.86919  ×   

(Gender = male)− 0.58352 × (Smoking history = positive) +  
4.02651 × PET_Rad;

PET/CT joint model:
Logit(P) = − 1.66386 + 0.00183  ×  CEA –0.89610  ×   

(Gender = male) − 0.53267  ×  (Smoking.history = positive)  
+ 5.20912 × PET/CT_Rad.

The ROC and DCA curves of the clinical and three 
joint models are shown in Fig. 4, and the diagnostic effi-
cacy is shown in Table  2. In the training set, CT_joint 
model had the highest specificity of 0.795, while the PET 
joint model and the PET/CT joint model had the high-
est accuracy of 0.713, and the PET joint model had the 
highest sensitivity of 0.794. In the testing set, CT_RF had 
the highest specificity of 0.756, while the PET/CT_RF 
and the PET/CT joint model had the highest accuracy of 
0.712, and the PET/CT_RF model had the highest sensi-
tivity of 0.800.

The AUCs of three joint models and clinical model 
in the training set followed the order of CT joint 
model > PET/CT joint model > PET joint model > clinical 
model, but only the AUC of CT joint model was signifi-
cantly better than the clinical model (p = 0.049). The AUC 
values in the testing set followed the order of PET/CT 
joint model > CT joint model > PET joint model > clinical 
model, but the differences were not significant (p > 0.05). 
By calculating the net reclassification index (NRI), we 
found that the PET/CT joint model correctly reclassified 

Table 2  Comparison of the predictive performance of clinical model, radiomics models, and joint models

AUC​ area under the curve; CI confidence interval; RF random forest

AUC​ 95% CI low 95% CI up Best threshold Specificity Sensitivity Accuracy

Training set

Clinical model 0.738 0.688 0.788 0.643 0.683 0.708 0.698

CT_RF 0.688 0.637 0.739 0.635 0.714 0.547 0.614

CT joint model 0.773 0.727 0.818 0.638 0.795 0.638 0.701

PET_RF 0.666 0.613 0.719 0.525 0.615 0.670 0.649

PET joint model 0.743 0.694 0.792 0.533 0.590 0.794 0.713

PET/CT_RF 0.698 0.647 0.749 0.549 0.739 0.564 0.634

PET/CT joint model 0.760 0.713 0.807 0.573 0.683 0.733 0.713

Testing set

Clinical model 0.681 0.577 0.782 0.538 0.634 0.686 0.667

CT_RF 0.726 0.629 0.822 0.596 0.756 0.643 0.685

CT joint model 0.723 0.628 0.818 0.504 0.683 0.671 0.676

PET_RF 0.678 0.572 0.785 0.504 0.659 0.643 0.649

PET joint model 0.703 0.601 0.806 0.575 0.634 0.686 0.667

PET/CT_RF 0.704 0.603 0.804 0.426 0.561 0.800 0.712

PET/CT joint model 0.730 0.633 0.828 0.491 0.585 0.786 0.712



Page 8 of 13Gao et al. EJNMMI Research           (2023) 13:26 

10.0% (95% CI 1.0–19.0%, p = 0.029) of mutant type more 
than the clinical model, while there was no significant 
difference in identifying wild type (p = 0.410). Further 
comparison of DCA showed that the net benefit of the 
three joint models was higher than that of the clinical 
model in both training and testing sets (Fig. 4).

We further performed stratified analysis to verify 
the diagnostic performance of radiomics models, clini-
cal models, and joint models in different clinical stage 
(Table  3). In the training set, clinical stage significantly 

affected the prediction of EGFR mutation status by the 
three radiomics models and the joint PET/CT model, 
suggesting there was an interaction effect (all p < 0.05); 
however, this effect was not significant in the testing set 
(p = 0.067–0.869). The EGFR mutation rates and clini-
cal characteristics of the patients with different clini-
cal stages are shown in Additional file  1: Table  S4. For 
stage I-II nodules, besides clinical model, other models 
all showed varying degrees of overfitting. The CT joint 
model performed best in the training set (AUC: 0.838), 

Fig. 4  ROC and DCA curves of the clinical model and CT, PET, PET/CT joint model in the training set (A–B) and testing set (C–D). ROC receiver 
operating characteristic, AUC​ area under the curve
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while the CT_RF model performed the best in the test-
ing set (AUC: 0.797). For stage III-IV nodules, the clini-
cal model performed the best in the training set (AUC: 
0.729), followed by the PET/CT joint model (AUC: 
0.722); in the testing set, the clinical model showed sig-
nificant overfitting (AUC: 0.675), while the PET/CT joint 
model showed the best performance (AUC: 0.723). The 
nomogram and a calibration curve of the PET/CT joint 
model are shown in Fig. 5.

Discussion
This article aims to use machine learning methods to 
construct a radiomics model based on 18F-FDG PET/
CT images to predict the EGFR mutation status in lung 
adenocarcinoma patients and evaluate the added value 
of clinical parameters in improving the predictive per-
formance of the radiomics model. CT_RF, PET_RF, and 
PET/CT_RF achieved moderate predictive performance 
(training and testing sets AUC: 0.688, 0.666, and 0.698 vs. 
0.726, 0.678, and 0.704, respectively). Furthermore, the 
PET/CT joint model had the best predictive performance 
(training and testing sets AUCs: 0.760 vs. 0.730), espe-
cially in the advanced lung adenocarcinoma subgroup 
(training and testing sets AUCs: 0.722 vs. 0.723).

Recent meta-analysis confirmed that SUVmax had mod-
erate predictive power for EGFR mutation status (AUC: 
0.68–0.69) [40, 41]. Our study found that the predictive 
ability of SUVmax for EGFR mutation status was weak 

(AUC: 0.584), possibly because our study only included 
lung adenocarcinomas. In this study, three radiom-
ics models based on RF were finally selected, and their 
prediction performance was all significantly better than 
SUVmax, which is consistent with the results from Zhang 
et al. [42]. The possible reason is that radiomics features 
can better reflect the spatial distribution of tumors than 
the traditional metabolic parameters, thereby more com-
prehensively evaluating the tumor heterogeneity. For 
the specific radiomics features in the model, the one 
with the highest weight in CT_RF was original_first-
order_Median, which represents the median grayscale 
intensity of the CT image, indicating that the lower the 
nodule density, the higher the probability of EGFR muta-
tion. original_shape_Maximum2DdiameterColumn was 
the feature with the highest weight in the PET_RF model. 
It represents the nodule length, and a smaller length is 
associated with a higher EGFR mutation rate. In the PET/
CT_RF model, original_firstorder_Media and original_
shape_Maximum2DdiameterColumn were still the two 
radiomics features with the highest weights, which con-
firmed the robustness of these features.

The clinical characteristics of lung adenocarcinoma 
patients are important variables in evaluating EGFR 
mutation status. We found that the lesion size and clini-
cal stage of the EGFR mutation group were significantly 
lower than those of the wild-type group, suggesting that 
the lesions in mutation group were smaller and earlier in 
stage. Moreover, the subsolid nodules had a higher EGFR 

Table 3  Predictive performance of radiomics models, clinical model, and three joint models in different clinical stages

AUC​ area under the curve; CI confidence interval; RF random forest

Model Stage I–II
n = 233

Stage III–IV
n = 282

p for interaction

AUC (95% CI) AUC (95% CI)

Training set

Clinical model 0.728 (0.650–0.806) 0.729 (0.661–0.797) 0.856

CT_RF 0.791 (0.727–0.856) 0.576 (0.499–0.653)  < 0.001

CT joint model 0.838 (0.779–0.896) 0.699 (0.628–0.769) 0.001

PET_RF 0.711 (0.632–0.789) 0.589 (0.511–0.666) 0.005

PET joint model 0.753 (0.680–0.826) 0.720 (0.652–0.788) 0.251

PET/CT_RF 0.802 (0.737–0.867) 0.612 (0.534–0.689)  < 0.001

PET/CT joint model 0.794 (0.727–0.860) 0.722 (0.653–0.790) 0.032

Testing set

Clinical model 0.655 (0.446–0.865) 0.675 (0.547–0.804) 0.810

CT_RF 0.797 (0.634–0.961) 0.665 (0.537–0.794) 0.067

CT joint model 0.782 (0.634–0.929) 0.682 (0.556–0.808) 0.520

PET_RF 0.625 (0.439–0.811) 0.707 (0.577–0.836) 0.316

PET joint model 0.675 (0.481–0.870) 0.707 (0.580–0.835) 0.869

PET/CT_RF 0.744 (0.582–0.961) 0.702 (0.573–0.830) 0.784

PET/CT joint model 0.750 (0.589–0.911) 0.723 (0.599–0.846) 0.837
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Fig. 5  The nomogram and calibration curves of the PET/CT joint model for predicting EGFR mutation in lung adenocarcinoma. A The calibration 
curve in the training set. B The calibration curve in the testing set. C The nomogram. The horizontal axis is the predicted incidence of the EGFR 
mutation, and the vertical axis is the observed incidence of the EGFR mutation. The red line is the reference line, indicating that the predicted value 
is equal to the actual value. The green line is the calibration curve, and the areas between two gray line represent the 95% CI on both sides
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mutation rate, which is consistent with other reports [33, 
43]. Several other studies have shown that female gender 
and no smoking history are associated with EGFR muta-
tions [8, 44, 45], which is supported by our findings. In 
this study, the clinical model had a certain predictive 
value for EGFR mutation status (AUC: 0.681), of which 
CEA level and gender were kept in the subsequent joint 
models, and higher CEA level and female gender were 
independent predictors for EGFR mutation. In the testing 
set, the predictive performance of PET joint model and 
PET/CT joint model was further improved compared to 
the original radiomics models, which is consistent with 
previous studies [4, 29].

Lung adenocarcinoma patients with different clinical 
stages have different treatment options. Patients with 
advanced stages are often inoperable, and the treatment 
relies more on traditional chemotherapy and targeted 
therapy. In this study, we found that the CT_RF model 
had the best prediction power on stage I–II lesions, and 
the combination with clinical parameters did not improve 
its predictive performance, which might be related to 
the high proportion of subsolid nodules in stage I–II 
nodules. Yang et  al. [34] and Cheng et  al. [35] obtained 
similar results in subsolid nodules. For stage III–IV nod-
ules, the PET/CT joint model was the best at predict-
ing EGFR mutation status, and it was better than PET/
CT_RF. Since stage III–IV patients are more dependent 
on targeted therapy, the PET/CT joint model can assist 
clinicians in making more precise treatment decisions for 
advanced patients.

Compared to previous studies, a major advantage 
of our research is that we had a large sample size and 
included all stages, and through stratified analysis by 
clinical stage, it provided the optimal population for the 
radiomics model in clinical practice. There are still some 
limitations of this study. First, this study is a single-center 
retrospective study with fewer patients in stage II; thus, 
the model needs to be further verified prospectively 
in external datasets. Secondly, Beig et  al. [46] believed 
that the CT radiomics features of the surrounding area 
of nodules also have certain predictive values, but we 
did not include them when performing the segmenta-
tion; thus, we might lose some information around the 
tumor, and further research is needed to determine the 
optimal parameter values for image reconstruction and 
preprocessing. Third, the stratified analysis showed that 
the clinical stage impacted the model’s prediction perfor-
mance, and it is necessary to build a separate model for 
early lung adenocarcinoma. Fourth, we did not include 
CT semantic features (such as burrs, vacuoles, lobula-
tion) in the study; although some studies believe that 
these features are related to EGFR mutation status [47, 
48], the process of semantic feature labeling is highly 

observer-dependent, with significant inter-observer vari-
ability [45, 49, 50]. Fifth, to include more samples in the 
study, we did not use 1-mm CT images, which could 
affect the performance of CT radiomics model [51].

Conclusion
The [18F]FDG PET/CT radiomics models constructed 
using machine learning algorithms were a potential non-
invasive method to identify EGFR mutation status in 
patients with lung adenocarcinoma. The clinical stage could 
affect the model’s prediction performance, and the PET/
CT joint model was more effective in predicting the EGFR 
mutation status in patients with advanced lung adenocar-
cinoma. The different models based on PET/CT radiom-
ics features and clinical parameters can help guide clinical 
decision-making and promote individualized and precise 
targeted therapy for patients in different clinical stages.
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