Skip to main content
. 2023 Apr 4;13:26. doi: 10.1186/s13550-023-00977-4

Table 2.

Comparison of the predictive performance of clinical model, radiomics models, and joint models

AUC 95% CI low 95% CI up Best threshold Specificity Sensitivity Accuracy
Training set
Clinical model 0.738 0.688 0.788 0.643 0.683 0.708 0.698
CT_RF 0.688 0.637 0.739 0.635 0.714 0.547 0.614
CT joint model 0.773 0.727 0.818 0.638 0.795 0.638 0.701
PET_RF 0.666 0.613 0.719 0.525 0.615 0.670 0.649
PET joint model 0.743 0.694 0.792 0.533 0.590 0.794 0.713
PET/CT_RF 0.698 0.647 0.749 0.549 0.739 0.564 0.634
PET/CT joint model 0.760 0.713 0.807 0.573 0.683 0.733 0.713
Testing set
Clinical model 0.681 0.577 0.782 0.538 0.634 0.686 0.667
CT_RF 0.726 0.629 0.822 0.596 0.756 0.643 0.685
CT joint model 0.723 0.628 0.818 0.504 0.683 0.671 0.676
PET_RF 0.678 0.572 0.785 0.504 0.659 0.643 0.649
PET joint model 0.703 0.601 0.806 0.575 0.634 0.686 0.667
PET/CT_RF 0.704 0.603 0.804 0.426 0.561 0.800 0.712
PET/CT joint model 0.730 0.633 0.828 0.491 0.585 0.786 0.712

AUC area under the curve; CI confidence interval; RF random forest