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Introduction

The ability to estimate elapsed time and produce timed 
responses is critical for a wide range of behaviors. Interval 
timing, which is on the scale of hundreds of milliseconds to 
tens of seconds, contributes importantly to cognitive behav-
iors, such as associative learning, sensory-motor processing, 
and decision making [1–3]. Examples of interval timing tasks 
include the peak-interval timing procedure [4, 5], the time pro-
duction task [6], and Pavlovian conditioning [7, 8], in which 
animals are trained to produce a motor action after a specific 
time interval [3]. A prominent feature of interval timing is 
the scalar property, i.e., the variability of timing scales with 
the interval being timed [6, 9–11], which is reminiscent of 
Weber’s law in the psychophysics of sensory discrimination 
[12]. Although many studies on interval timing have focused 
on performance in the steady state, there is also evidence 
showing adaptive timing behavior in a changing temporal con-
text. For instance, during a switching interval variance task in 
which the distribution of action-reward delay switches between 
blocks, mice gradually adjust their waiting time after block 
switches [13]. For rats trained to perform peak-interval tim-
ing procedures at two different intervals that are varied across 
sessions but remain constant within a session, the responding 
times in initial trials of the current session are biased toward 
the inter-reinforcement interval in the last session [14]. For rats 
trained on fixed-interval reinforcement schedules, unpredict-
able changes in the inter-food interval within a session cause 
rapid changes in wait time [15]. These studies demonstrate 
that interval timing behavior changes with temporal statistics, 
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analogous to the influence of trial history statistics on sen-
sory perception and decision making [16–19]. However, it 
remains poorly characterized how interval timing behavior is 
influenced by recent experience of temporal interval. It is also 
unclear which brain regions exhibit history-dependent activity 
in timing tasks.

Neuronal activity related to temporal information process-
ing and timing behavior has been reported in many brain areas, 
including cortex, thalamus, and basal ganglia [2, 3, 20, 21]. 
A whole-brain functional neuroimaging study showed that 
supplementary motor area is consistently activated across all 
timing tasks [22]. In an interval-generation task that requires 
the monkey to hold for a specific time interval instructed by a 
specific visual cue, neuronal activity in the supplementary and 
pre-supplementary motor areas is influenced by the interval 
time indicated by the instructional cue [23]. During a synchro-
nization-continuation tapping task in which subjects need to 
keep track of time, recordings from the medial premotor cortex 
of monkeys showed that neurons are tuned to the duration of 
the produced interval [24], and the elapsed time within inter-
vals can be well decoded from the population activity [25]. 
The secondary motor cortex (M2) in rodents is a homolog of 
the supplementary motor area and premotor cortex in monkeys 
[26–29]. In an odor-guided two-interval timing task in mice, 
the responses of neurons in a subregion of M2 in the ALM 
show temporal scaling between short and long interval trials, 
and the elapsed time from cue onset to reward delivery can be 
decoded from the dynamics of neurons [8]. In a sensory dis-
crimination task that requires the use of short-term memory for 
movement planning, mouse ALM neurons exhibit preparatory 
activity that causally contributes to behavioral performance 
[30, 31]. A growing number of studies also found that M2 
neurons carry trial history information about choice, outcome, 
and sensory stimuli [19, 32–37]. These findings raise the pos-
sibility that M2 activity in timing tasks might be involved in 
short-term memory of the time interval and can be influenced 
by trial history of intervals.

In this study, we aimed to investigate how interval timing 
behavior is dynamically influenced by a change of inter-
reinforcement interval in the previous trial. We also applied 
optogenetics and extracellular recordings to examine the role 
of ALM activity in short-term memory of time interval. Our 
experiments revealed that interval timing behavior is rapidly 
influenced by trial history, and neuronal activity in the ALM 
is modulated by the interval in the previous trial.

Materials and Methods

Animals

All animal procedures were approved by the Animal Care 
and Use Committee at the Institute of Neuroscience, Center 

for Excellence in Brain Science and Intelligence Technology, 
Chinese Academy of Sciences (IACUC No. NA-013-2019). 
The C57BL/6 mice were from SLAC Laboratory Animal 
Co. (Shanghai, China). VGAT-Cre (Slc32a1tm2(cre)Lowl/J, 
Stock No: 016962) and VGAT-ChR2 (B6.Cg-Tg(Slc32a1-
COP4*H134R/EYFP)8Gfng/J, Stock No: 014548) mice 
were from the Jackson Laboratory (Bar Harbor, ME, USA). 
Adult (2 months at the time of surgery) male mice were 
used for all experiments. Mice were housed in groups of 
4–6 per cage in the Institute of Neuroscience animal facility 
(12 h: 12 h light/dark cycle), with the humidity controlled 
at 40%–70% and temperature at 22–23°C.

Surgery

The mice were anesthetized with a mixture of fentanyl (0.05 
mg/kg), medetomidine (0.5 mg/kg), and midazolam (5 mg/
kg) injected intraperitoneally before surgery, and were 
head-fixed in a stereotaxic apparatus. Lidocaine jelly was 
applied to the incision site. Two craniotomies (~1 mm diam-
eter) were made bilaterally above the cortical region to be 
manipulated. The virus (2–3 × 1012 viral particles/mL) was 
injected with a glass pipette (15–20 μm tip diameter) and a 
syringe pump (Harvard Apparatus, Holliston, USA).

To inhibit the subregion of M2 at the ALM (AP 2.46 mm, 
ML ±1.8 mm) (the ML coordinate ranged from 1.5 to 2 mm) 
[38], we used VGAT-ChR2 mice [39] or VGAT-Cre mice 
injected with AAV-FLEX-ChrimsonR, similar to previous 
studies [30, 31, 38]. In these mice, we photostimulated the 
excitatory opsin (ChR2 or ChrimsonR) in inhibitory neu-
rons [39] to achieve ALM inhibition. Because our controls 
were C57BL/6 mice [31] (injected with AAV-hSyn-eGFP), 
we also included in the experimental group some C57BL/6 
mice (injected with AAV-CaMKIIα-GtACR2 to express the 
inhibitory opsin in excitatory neurons). In total, we used 9 
mice for the experiment of ALM inactivation: VGAT-ChR2 
mice (n = 3), VGAT-Cre mice (n = 3, injected with AAV-
FLEX-ChrimsonR), and C57BL/6 mice (n = 3, injected with 
AAV-CaMKIIα-GtACR2). For VGAT-Cre mice, a total of 
200 nL AAV2/8-Syn-FLEX-rc[ChrimsonR-tdTomato] was 
bilaterally injected at a depth of 500 μm in the ALM. For 
C57BL/6 mice, a total of 200 nL AAV2/9-mCaMKIIα-
hGtACR2-EGFP-WPRE-pA was bilaterally injected at a 
depth of 500 μm in the ALM. For control C57BL/6 mice, we 
bilaterally injected 200 nL of AAV2/8-hSyn-eGFP-3Flag-
WPRE-SV40pA at a depth of 500 μm in the ALM.

To inhibit the central and medial subregion of M2 (AP 
1.34 mm, ML ±0.75 mm), we used C57BL/6 mice (n = 6), 
in which 400 nL of AAV2/8-hSyn-eNpHR3.0-EYFP was 
bilaterally injected at a depth of 500 μm.

To inhibit the medial prefrontal cortex (mPFC, AP 2.0 
mm, ML ±0.4 mm), we used C57BL/6 mice (n = 5), in 
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which a total of 200 nL AAV2/9-hSyn-Jaws-KGC-GFP-ER2 
was injected at a depth of 1600 μm.

A summary of the mouse lines, viruses, and numbers of 
mice used for each experiment is provided in Table S1.

After virus injection, the pipette was left in place for 
10–15 min before retraction. Following the injection, opti-
cal fibers (200 μm diameter, NA 0.37) were inserted at the 
cortical surface for the injection site of M2 (either the ALM 
or the central and medial subregion of M2), and 350 μm 
above the injection site of the mPFC. In VGAT-ChR2 mice, 
optical fibers were bilaterally inserted above the ALM (AP 
2.46 mm, ML ±1.8 mm). A stainless-steel head-plate was 
fixed to the skull using dental cement. For mice used in 
extracellular recording, the skull region above the ALM was 
marked with permanent ink. After the surgery, mice were 
given Rimadyl via drinking water for 3 days, and allowed to 
recover with food and water ad libitum for 10 days before 
behavioral training.

Behavioral Task

Mice were deprived of water for 2 days before the behavioral 
training. During the licking task, the mouse was head-fixed 
and sat in an acrylic tube. The lick spout was located ~3 
mm in front of the tip of the nose and 1 mm below the lower 
lip. Touching the spout with the forelimbs was prevented by 
a plastic plate. Tongue licks were detected with a custom-
made electrical lick sensor [40] or by the interruption of an 
infrared beam if the mice were used for electrophysiological 
recordings. Fluid delivery was controlled by a peristaltic 
valve (Kamoer, Shanghai, China). An Arduino microcon-
troller platform was used to measure licking, deliver fluid, 
and apply laser stimulation. A multifunction I/O device 
(USB-6001, National Instruments, Texas, USA) was used 
for data acquisition. The lick signals and task-related signals 
were sampled at 1000 Hz.

The mice first went through a habituation phase and a 
free-drinking phase before being trained in a fixed-interval 
licking task. During the habituation phase (1–2 days), the 
mouse was handled by the experimenter for 5–10 min and 
learned to lick water (300−500 nL) from a syringe. During 
the free-drinking phase (1–2 days), the mouse was head-
fixed into the behavioral apparatus for 30 min per session, 
and water (2–3 μL) was delivered to the spout every 4 s. 
During the training in the fixed-interval licking task (10–30 
days), 2–3 μL of 10% sucrose was delivered every 10 s. 
After mice showed a high level of anticipatory licking before 
reward delivery, non-rewarded probe trials were inserted. 
The duration of each probe trial was 3–4 times longer than 
the interval of the inter-reinforcement trials. Each probe trial 
was preceded by 4–14 reinforced trials. The probe trials rep-
resented ~10% of all trials. Mice were trained with the probe 
trials inserted for 20–50 days until the peri-stimulus time 

histogram (PSTH) of licking in the probe trials resembled 
that in the reinforced trials. In the final task phase, each 
mouse performed the task for 1 h in each session. Mice used 
for electrophysiological recordings further went through 
14–21 days of additional training, during which they were 
head-fixed for ~1 h before the timing task was initiated. This 
1-h period was necessary to insert the electrode into the 
cortex in later electrophysiological experiments.

To examine the scalar property of timing behavior, we 
first trained a group of mice (n = 16) in a 10-s fixed-interval 
task. After the mice learned the task and were tested with the 
peak-interval timing procedure, we trained half of the mice 
with a 7.5-s interval and the other half with a 15-s interval.

Because probe trials represented 10% of all trials in a 
session, we used three sets of experiment to test the effect 
of different types of trial history. Mice were first trained in 
a 10-s fixed-interval task in all sets of experiments. In the 
first set of experiments (Fig. 2), we added probe trials that 
were preceded by an inter-reinforcement interval of 8 s or 
12 s, by delivering the preceding reward 2 s earlier (reward 
at −2 s) or 2 s later (reward at +2 s), while the other inter-
reinforcement intervals were still at 10 s. This allowed us 
to determine whether time estimation in the probe trial is 
affected by trial history of inter-reinforcement interval.

In the second set of experiments (Fig. S1), we examined 
whether the effects of decreasing and increasing the inter-
reinforcement interval are symmetrical. In one session, half 
of the probe trials were preceded by an inter-reinforcement 
interval of 8 s (reward at −2 s) and the other half preceded 
by an inter-reinforcement interval of 10 s as usual (reward 
at 0 s). In another session, the two types of trial history 
for probe trials were ‘reward at +2 s’ and ‘reward at 0 s’, 
respectively, again with all other inter-reinforcement inter-
vals remaining at 10 s.

In the third set of experiments (Figs 3 and S2), we deter-
mined whether a larger change of inter-reinforcement inter-
val causes a larger shift in peak time. In one session, the 
two types of trial history for probe trials were ‘reward at 
−2.5 s’ (the reward in the previous trial was delivered 2.5 s 
earlier) and ‘reward at − 1 s’ (the reward in the previous trial 
was delivered 1 s earlier), with all other inter-reinforcement 
intervals at 10 s (Fig. 3). In another session, the two types 
of trial history for probe trials were ‘reward at − 1 s’ and 
‘reward at 0 s’ (Fig. S2).

In each set of experiments, the two types of trial history 
were interleaved in a session, and their order was rand-
omized across sessions.

Optogenetic Stimulation

Optical activation of GtACR2 or ChR2 was induced by blue 
light, activation of ChrimsonR or Jaws was induced by red 
light, and activation of NpHR was induced by green light. 
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A blue (473 nm), red (635 nm), or green laser (532 nm) 
(Shanghai Laser & Optics Century Co., Shanghai, China) 
was connected to an output optical fiber and the stimulation 
was controlled by an Arduino microcontroller.

Optogenetic experiments were performed after the mice 
were well trained at an inter-reinforcement interval of 10 s. 
For half of the probe trials, 2 s of constant laser stimulation 
was applied before the time of reward delivery on the trial 
preceding the probe trial. To prevent the mice from using 
laser stimulation as a cue of no-reward, we also applied laser 
stimulation for 2 s before the time of reward delivery in 
randomly-selected reinforced trials. The laser power was 5 
mW, 10 mW, and 15 mW at the fiber tip for the blue, green, 
and red laser, respectively.

Extracellular Recording

Before extracellular recording, the mice were head-fixed 
to a holder attached to the stereotaxic apparatus and anes-
thetized with isoflurane (1%–2%). Two craniotomies (~1 
mm diameter) were made bilaterally above the ALM (AP 
2.46 mm, ML ±1.8 mm). The dura was removed, and the 
craniotomy was protected by a silicone elastomer (Kwik-
Cast, WPI, Saratosa, FL, USA). The mouse was allowed 
to recover from anesthesia in its home cage for at least 2 h. 
The recordings were made with multi-site silicon probes 
(A1×32-Poly2-10mm-50s-177-A32, NeuroNexus Technolo-
gies, Ann Arbor, MI, USA). After recordings, the electrode 
was retracted. The craniotomy was cleaned with saline and 
covered with silicone elastomer. For recordings from behav-
ing mice, we made a total of 18 sessions of recording from 
5 mice (3 or 4 sessions per mouse). In some recordings, the 
electrode was coated with fluorescent dye (DiI, Invitrogen, 
Eugene, OR, USA), which allowed us to mark the electrode 
track.

The neural signals were amplified and filtered using a 
Cerebus 32-channel system (Blackrock Microsystems, Salt 
Lake City, UT, USA). Spikes were sampled at 30 kHz. To 
detect the waveforms of spikes, we band-pass filtered the 
signals at 250–7500 Hz and set a threshold at 3.5 SD of 
the background noise. Spikes were sorted off-line using the 
Offline Sorter (Plexon Inc., Dallas, TX, USA). The sorting 
involved cluster cutting of spike waveform features in princi-
pal component space. Spike clusters were regarded as single 
units if the interspike interval was >1.5 ms and the p value 
for multivariate analysis of variance tests on clusters was 
<0.05. Task-related events (licks and reward delivery) were 
digitized as TTL levels and recorded by the Cerebus system.

Histology

The mice were deeply anesthetized with isoflurane 
and perfused with 30 mL saline followed by 30 mL 

paraformaldehyde (PFA, 4%). Brains were removed, fixed 
in 4% PFA (4℃) overnight, and then transferred to 30% 
sucrose in phosphate-buffered saline until equilibration. 
Brains were cut at 60 μm on a cryostat (Leica, VT1200S, 
Wetzlar, Germany). Fluorescence images were captured 
with VS120 (Olympus, Tokyo, Japan). Images were ana-
lyzed with ImageJ (NIH, Bethesda, MD, USA).

Data Analysis

Analyses were performed in MatLab. To analyze licking 
behavior in probe trials for the experiments in which all 
inter-reinforcement intervals were the same (at 7.5, 10, 
or 15 s), time zero of each probe trial was aligned to the 
time of previous reward delivery. For the experiments in 
which the inter-reinforcement interval immediately before 
the probe trials was shortened or lengthened, time zero of 
each probe trial was aligned to the time of the first lick 
after reward delivery in the preceding reinforced trial (i.e., 
aligned to the time of the first rewarded lick), because 
this was the time the mouse obtained the reward and may 
start to time the interval. For optogenetic experiments, we 
aligned time zero to the time of reward delivery preceding 
the probe trial, because all trials were aligned by the time 
of laser onset. PSTHs for the licking behavior were con-
structed by averaging the licks (200 ms/bin) across trials.

For each session, the lick PSTH in the probe trial was 
fitted with a Gaussian function. Only licks within the range 
of [T – T/2, T + T/2] were used for curve fitting, in which 
T indicates the inter-reinforcement interval. For example, 
for a session of 10-s fixed-interval task, licks from 5 to 15 
s of the probe trials were used for curve fitting. Peak time 
was defined as the time corresponding to the peak lick rate 
in the fitted curve. Peak width was the full width at half 
maximum of the Gaussian fit.

We defined a lick bout as a group of licks in which the 
first lick was preceded by at least 0.67 s of no licks, the 
inter-lick interval of the first three licks was <0.33 s, and 
the last lick was followed by ≥0.67 s of no licks. For each 
probe trial, the start time and end time were defined as the 
times of first lick and last lick in a bout. For each session, 
we computed the start time (end time) for each trial, and 
averaged the start time (end time) across trials.

The Weber fraction was computed according to the fol-
lowing equation [11]:

Weber fraction =
peak width

peak time
.

To estimate the scalar property of lick PSTHs in probe 
trials of 7.5-s, 10-s, and 15-s fixed-interval tasks, time 
points along the X axis were normalized by the peak time, 
and lick rates along the Y axis were normalized by the 
peak amplitude.
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For behaving mice used for electrophysiological record-
ings, the two types of trial history for probe trial were 
‘reward at +2 s’ and ‘reward at −2 s’, with all other inter-
reinforcement intervals remaining at 10 s. The two types of 
trial history were interleaved in a session. When we analyzed 
the probe trials, we aligned time zero to the time of the first 
lick after reward delivery in the preceding reinforced trial. 
The PSTH for spiking activity in each probe trial was con-
structed with a bin size of 200 ms. To test whether ALM 
activity was temporally modulated, we took 5 non-overlap-
ping segments of the responses in the first 10 s of probe trials 
and tested the firing rate difference using one-way ANOVA. 
Neurons with P <0.05 were included in the subsequent anal-
ysis. On average, each session of recording yielded 9.72 ± 
4.86 (mean ± SD) temporally modulated neurons. For each 
of the two types of trial history (‘reward at +2 s’ or ‘reward 
at −2 s’), we obtained a peak time (T1 or T2) by fitting the 
lick PSTH with a Gaussian function. To analyze ALM activ-
ity in the early part of a probe trial, we took the response 
profile between time zero and the peak time. The response 
profile between time zero and T2 in the ‘reward at −2 s’ 
condition was the short response profile, and that between 
time zero and T1 in the ‘reward at +2 s’ condition was the 
long response profile. We used the following equation to 
calculate the mean-squared error (MSE) between the short 
response profile and a scaled version of the long response 
profile (scaling factors ranging from 0.1 to 3):

where PSTHshort and PSTHlong are the short and long 
response profiles, respectively, n is the bin number, and f 
is the scaling factor. The best scaling factor was the one 
yielding the minimum MSE [41]. As the probe trials were 
3–4 times longer than the inter-reinforcement interval, we 
also extracted two response profiles for the ‘reward at +2 s’ 
and ‘reward at −2 s’ conditions from the later part of probe 
trials, during which the mice were disengaged from timing. 
The lengths of the two later response profiles were the same 
as those of the early response profiles. We computed a best 
scaling factor for these two later response profiles by com-
puting the MSE described above.

To decode elapsed time from the population firing rates 
of ALM neurons in each probe trial, we used a multiclass 
support vector machine (SVM) with a radial-basis function 
kernel, and the algorithm was implemented in the LIB-
SVM library [7, 42]. For each probe trial in the ‘reward 
at +2 s’ or ‘reward at −2 s’ condition, the period between 
time zero and the peak time (T1 or T2) was divided into 
50 bins (i.e., the bin size was different for the two condi-
tions). As the peak time (T1 or T2) differed across ses-
sions (Fig. 5C, right panel), the time was scaled across 

MSE(f ) =
1

n

n
∑

i=1

[

PSTHshort(ti) − PSTHlong(f × ti)
]2
,

sessions even for the same condition of trial history. The 
SVM decoder was trained on the data from the ‘reward 
at +2 s’ condition, and tested on the data from the same 
condition or on those from a different condition (‘reward 
at −2 s’). In addition to using responses in the early part 
of the probe trial, we also performed SVM decoding using 
responses in the later part of the probe trial.

Across all recording sessions, the minimum number of 
probe trials for the ‘reward at +2 s’ or ‘reward at −2 s’ con-
dition was 18. For those sessions in which the number of 
probe trials was >18, we computed the correlation coef-
ficients between the spike PSTH in each probe trial and the 
spike PSTH averaged over all probe trials, sorted the trials 
according to the correlation coefficients, and took the first 
18 trials of ALM spikes for analysis. For those sessions with 
only 18 probe trials, ALM spikes in all probe trials were 
used for analysis.

For training and testing on data from the same condition, 
we sampled 17 of the 18 probe trials as the training data to 
train the SVM decoder, which was used to decode elapsed 
time based on ALM   responses in the remaining probe trial 
(the testing data), and we implemented this process 18 times. 
For training and testing on data from different conditions, we 
used all 18 probe trials in the ‘reward at +2 s’ condition as 
the training data to train the SVM decoder, which was used 
to decode time based on ALM responses in a probe trial 
from the ‘reward at −2 s’ condition (the testing data), and 
we implemented this process 18 times.

During training, the SVM classifier was trained to iden-
tify population activity in each of the 50 time bins, so that 
the population firing rates in a given bin could be distin-
guished from those in each of the other bins. During testing, 
we presented a trial of population responses to the decoder, 
which predicted the population firing rates in each bin as 
coming from one of the 50 bins. The SVM output was repre-
sented in 50 readout units, one for each bin, forming a clas-
sification matrix (Fig. 6A, B). For each actual time bin in the 
classification matrix, the predicted bin was chosen as the bin 
corresponding to the readout unit with the maximum value. 
For each repeat of SVM implementation, we quantified the 
prediction accuracy by calculating the Pearson’s correlation 
coefficient between the predicted and actual bin values [7].

For the early part of probe trials, we compared the capa-
bility of encoding elapsed time between scaled and unscaled 
ALM neurons, whose best scaling factors were within and 
outside ±10% of the mean T2/T1 (computed using T2 and 
T1 in all sessions) [41]. Because decoding accuracy depends 
on the number of neurons [7], we randomly sampled the 
same number of neurons (n = 50) for both scaled and 
unscaled neurons, and repeated the resampling process 10 
times. In each set of resampled data, we performed SVM 
decoding and computed correlation coefficients as described 
above.
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Statistics

The statistical analysis was performed using MatLab. The 
Wilcoxon signed rank test, one-way ANOVA, one-way 
ANOVA followed by the Tukey-Kramer multiple compari-
sons test, one-way repeated measures ANOVA followed by 
Sidak’s multiple comparisons test, and the χ2 test were used 
to determine the significance of the effect. Data are reported 
as the SEM unless otherwise stated.

Results

Licking‑Based Peak‑Interval Timing Task 
in Head‑Fixed Mice

A classic behavioral paradigm to study interval timing is 
the peak-interval timing procedure, which includes fixed-
interval reinforced trials and non-rewarded, longer probe 
trials (also termed peak trials) [4, 43]. Head-fixed mice 
were trained on a fixed-interval licking task as described 
in a previous study [11]. Mice voluntarily licked from a 

drinking spout, which delivered a drop of 10% sucrose solu-
tion every 10 s. After training, mice showed anticipatory 
licking that gradually increased toward the time of reward 
delivery (Fig. 1A). In mice well trained on the fixed-interval 
task, we implemented the peak-interval timing procedure, by 
adding non-rewarded probe trials to evaluate the accuracy 
and precision of time estimation (Fig. 1B). Probe trials were 
10% of all trials, and each probe trial lasted 3−4 times longer 
than the inter-reinforcement interval in reinforced trials. 
While the reinforced trials contained both anticipatory and 
consummatory licking (Fig. 1A), licking behavior was not 
confounded by consummatory licks in probe trials. The lick 
PSTH in probe trials, which was constructed by averaging 
the licks (200 ms/bin) across trials, showed a peak around 
10s (time 0 aligned to the last reward delivery, Fig. 1B), 
corresponding to the inter-reinforcement interval in the rein-
forced trials. To quantify timing behavior in probe trials, we 
fitted the lick PSTH with a Gaussian function, which yielded 
a peak time and a peak width (Fig. 1C). Across a population 
of mice (n = 16) trained with a 10-s fixed-interval task, the 
peak time and peak width in probe trials were 10.24 ± 0.09 
s and 5.91 ± 0.24 s (Fig. 1D), respectively, indicating that 

Fig. 1   Licking-based peak-interval timing task in head-fixed mice. A 
Lick rasters and lick PSTH from an example mouse in a 10-s fixed-
interval task. B Lick rasters and lick PSTHs from an example mouse 
in reinforced trials and probe trials in a 10-s peak-interval timing task. 
In lick rasters of probe trials, blue and red dots mark the start and 
end times of lick bouts in each trial, respectively. C Gaussian fit of 
the lick PSTH in probe trials of an example session. D Parameters 

of licking behavior in probe trials of a 10-s peak-interval timing task 
(n = 16 mice). E Lick PSTHs for probe trials in 7.5-s, 10-s, and 15-s 
peak-interval timing tasks, averaged across 8, 16, and 8 mice, respec-
tively. F−H Peak time, peak width, and Weber fraction across the 
three intervals. I Normalized lick PSTHs for probe trials across the 
three intervals. Data represent the mean ± SEM.
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Fig. 2   Time estimation in 
probe trials is dynamically 
influenced by previous inter-
reinforcement interval. A Lick 
rasters and lick PSTHs in probe 
trials and three preceding 
reinforced trials for an example 
mouse. Red, ‘reward at −2 s’ 
condition; black, ‘reward at +2 
s’ condition. Time zero in the 
probe trial was aligned to the 
time of first lick after the deliv-
ery of reward in the previous 
reinforced trial. B Lick PSTHs 
averaged across a population 
of mice (n = 16), similar to A. 
C−G Comparison of peak time, 
start time, end time, peak width, 
or Weber fraction between 
‘reward at −2 s’ and ‘reward at 
+2 s’ conditions. **P <0.01, 
***P <0.001, n = 16 mice, 
Wilcoxon signed rank test. Data 
represent the mean ± SEM.

Fig. 3   Peak time is shifted 
earlier when the previous 
inter-reinforcement interval 
is shorter. A Lick rasters and 
lick PSTHs in probe trials and 
three preceding reinforced trials 
for an example mouse. Red, 
‘reward at −2.5 s’ condition; 
black, ‘reward at –1 s’ condi-
tion. B Lick PSTHs averaged 
across a population of mice 
(n = 19), similar to A. C−G 
Comparison of peak time, start 
time, end time, peak width, or 
Weber fraction between ‘reward 
at −2.5 s’ and ‘reward at –1 s’ 
conditions. **P <0.01, n = 19 
mice, Wilcoxon signed rank 
test. Data represent the mean 
± SEM.
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the behavior in probe trials reflects the temporal memory of 
the inter-reinforcement interval. The start time and end time 
of the licking bouts in probe trials were 7.92 ± 0.12 s and 
12.80 ± 0.17 s (Fig. 1D), respectively, also suggesting that 
the mice time the expected reward according to the inter-
reinforcement interval.

To determine whether the timing behavior has a scalar 
property, we next trained half of the mice (n = 8) with a 7.5-s 
interval and the other half with a 15-s interval (Fig. 1E−I). 
Analysis of probe trials in the three interval conditions (7.5 
s, 10 s, and 15 s) showed that, as the peak time increased 
from 7.96 ± 0.06 s to 15.50 ± 0.10 s (Fig. 1F), the peak 
width also increased from 3.90 ± 0.32 s to 8.94 ± 0.56 s 
(Fig. 1G). For lick PSTHs in probe trials of the three interval 
conditions, the Weber fraction was not significantly differ-
ent (P = 0.13, one-way ANOVA, Fig. 1H), and the three 
curves normalized by peak time and peak lick rate largely 
overlapped (Fig. 1I). These results demonstrate the scalar 
timing property of the fixed-interval licking task, consistent 
with previous reports [11, 44].

Time Estimation in Probe Trials is Dynamically 
Influenced by a Decrease of Inter‑reinforcement 
Interval in the Previous Trial

We next determined whether time estimation in the probe 
trial is affected by a change of inter-reinforcement interval 
in the previous trial. Because probe trials were 10% of all 
trials in a session, we used several sets of experiments to 
test the effect of different types of trial history. The first set 
of experiments contained both an increase and a decrease 
of inter-reinforcement interval in the same session (Fig. 2). 
The second set of experiments contained either an increase 
or a decrease of inter-reinforcement interval in a session 
(Fig. S1), with the purpose to determine whether the two 
effects are symmetrical. The third set of experiments (Figs 3 
and S2) was designed to determine whether a larger change 
of inter-reinforcement interval causes a larger shift in peak 
time. Mice trained in a 10-s fixed-interval task were used for 
all sets of experiments. In well-trained mice, anticipatory 
licking in the probe trials mostly occurred within ±3 s of the 
peak time (Fig. 1B–D). We therefore restricted the increase 
or decrease of inter-reinforcement interval to within 3 s.

In the first set of experiments (Fig. 2), we used probe tri-
als that were preceded by an inter-reinforcement interval of 
8 s or 12 s, by delivering the reward 2 s earlier or 2 s later 
(Fig. 2A), while the other inter-reinforcement intervals were 
still 10 s. In the subsequent analysis, the two types of trial 
history were referred to as ‘reward at −2 s’ and ‘reward at 
+2 s’ conditions. To compare timing behavior in the probe 
trial between the two types of trial history, we defined time 
zero as the time of first lick after reward delivery, which was 
the time mice received a reward in the previous reinforced 

trial (Fig. 2A, B). We found that the peak time in probe 
trials was significantly earlier in the ‘reward at −2 s’ than 
the ‘reward at +2 s’ condition (P = 5.3×10-4, Wilcoxon 
signed rank test, n = 16, Fig. 2C). Similarly, the start and 
end times of the licking bout in probe trials were also earlier 
in the ‘reward at −2 s’ condition (P <0.01, Wilcoxon signed 
rank test, Fig. 2D, E). The peak width was not significantly 
different between the two conditions (P = 0.12, Wilcoxon 
signed rank test, Fig. 2F). The Weber fraction appeared to 
be larger in the ‘reward at −2 s’ than the ‘reward at +2 s’ 
condition, although the difference did not reach statistical 
significance (P = 0.07, Wilcoxon signed rank test, n = 16, 
Fig. 2G). Thus, the results suggest that time estimation is 
dynamically influenced by a change of inter-reinforcement 
interval in the previous trial.

In the second set of experiments (Fig. S1), we examined 
the effects of decreasing and increasing the inter-reinforce-
ment interval separately. In one session, half of the probe 
trials were preceded by an inter-reinforcement interval of 8 
s (‘reward at −2 s’) and the other half preceded by an inter-
reinforcement interval of 10 s as usual (‘reward at 0 s’). We 
found that the peak time in the probe trials was significantly 
earlier in the ‘reward at −2 s’ than the ‘reward at 0 s’ condi-
tion (P = 0.03, Wilcoxon signed rank test, n = 7, Fig. S1A). 
In another session, the two types of trial history for probe 
trial were ‘reward at +2 s’ and ‘reward at 0 s’, respectively, 
again with all other inter-reinforcement intervals remaining 
at 10 s. As shown in Fig. S1F, the peak time in ‘reward at 
+2 s’ and ‘reward at 0 s’ conditions was not statistically dif-
ferent (P = 0.58, Wilcoxon signed rank test, n = 7). Thus, 
when the amount of interval change was 2 s, a decrease in 
previous inter-reinforcement interval is more effective than 
an increase in previous inter-reinforcement interval at influ-
encing time estimation in the probe trial.

A third group of mice (n = 19) were used for the third 
set of experiments. In one session, the two types of trial 
history for probe trial were ‘reward at −2.5 s’ (the reward 
in previous trial was delivered 2.5 s earlier) and ‘reward at 
− 1 s’ (the reward in previous trial was delivered 1 s ear-
lier), respectively, with all other inter-reinforcement inter-
vals remaining at 10 s (Fig. 3A, B). We found that the peak 
time in probe trials was significantly earlier in the ‘reward 
at −2.5 s’ than the ‘reward at − 1 s’ condition (P = 0.0025, 
Wilcoxon signed rank test, n = 19, Fig. 3C). The start time 
of licking bout in the probe trial was significantly earlier 
in the ‘reward at −2.5 s’ condition (P = 0.0062, Wilcoxon 
signed rank test, Fig. 3D), although the end time was not 
significantly different between the two conditions (P = 0.3, 
Wilcoxon signed rank test, n = 19, Fig. 3E). The peak width 
was not significantly different between the two conditions (P 
= 1, Wilcoxon signed rank test, Fig. 3F). The Weber frac-
tion appeared to be larger in the ‘reward at −2.5 s’ condition 
(P = 0.064, Wilcoxon signed rank test, n = 19, Fig. 3G). 
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In another session, in which the two types of trial history 
for probe trial were ‘reward at − 1 s’ and ‘reward at 0 s’, 
respectively, we found that the peak time for the ‘reward at 
− 1 s’ was significantly earlier than that for the ‘reward at 
0 s’ condition (P = 0.0011, Wilcoxon signed rank test, n = 
19, Fig. S2). Together with the finding that peak time was 
earlier in the ‘reward at −2.5 s’ than the ‘reward at − 1 s’ 
condition, the data suggest that the peak time is shifted ear-
lier when the inter-reinforcement interval in previous trial 
becomes shorter.

Optogenetic Inactivation of a Subregion of M2 at ALM 
Alters Timing of Licking Behavior

As the part of M2 at the ALM not only plays an important 
role in licking action [45, 46] but also encodes information 
about elapsed time in a licking-based timing task [8], we 
wondered whether ALM activity in the previous trial influ-
ences the timing of anticipatory licking in the current trial. 
To manipulate ALM activity, we used a total of 9 mice, 
including VGAT-ChR2 mice (n = 3), VGAT-Cre mice (n 
= 3, injected with AAV-FLEX-ChrimsonR), and C57BL/6 
mice (n = 3, injected with AAV-CaMKIIα-GtACR2) (Fig. 
S3 and Fig. 4). After the mice were well trained with a 10-s 
fixed-interval licking task, non-rewarded probe trials (10% 
of all trials) were inserted to evaluate the performance of 
time estimation. For half of the probe trials, 2 s of con-
stant laser stimulation was applied to inhibit the ALM (AP 
2.46 mm, ML ±1.8 mm, with the ML coordinate ranging 
from 1.5 to 2 mm) before the time of reward delivery on 
the trial preceding the probe trial (Fig. 4A, B). To analyze 
the effect of optogenetic inhibition on timing behavior, we 
aligned time zero to the time of reward delivery preceding 
the probe trial, which was also the time of laser offset. We 
found that optogenetic inhibition of the ALM significantly 
reduced the lick rate of mice (P = 0.0039, Wilcoxon signed 
rank test, n = 9, Fig. 4C), consistent with previous reports 
that the subregion of M2 at the ALM causally contributes to 
licking behavior [45, 46]. Laser offset may cause a rebound 
in lick rate, but optogenetic inhibition did not significantly 
affect the interval of reward (i.e., interval between the time 
of first lick after reward delivery and the time of previous 
reward delivery) (P = 0.65, Wilcoxon signed rank test, n 
= 9, Fig. 4D), because laser was turned off at the time of 
reward delivery. Interestingly, however, inactivation of the 
ALM before reward delivery induced the peak to occur 
significantly earlier in probe trials (P = 0.0039, Wilcoxon 
signed rank test, n = 9, Fig. 4E). Optogenetic inhibition also 
caused an earlier shift in end time (P = 0.0078, Wilcoxon 
signed rank test, n = 9), without significantly affecting the 
start time (Fig. 4F, G). The peak width was not significantly 
different between laser-off and laser-on conditions (P = 0.73, 
Wilcoxon signed rank test, Fig. 4H). The Weber fraction in 

laser-on condition was significantly larger than that in laser-
off condition (P = 0.039, Wilcoxon signed rank test, n = 
9, Fig. 4I). Thus, inactivating ALM before reward delivery 
caused an earlier shift in peak time, similar to that induced 
by a shortening of inter-reinforcement interval preceding the 
probe trial (Figs. 2 and 3).

Fig. 4   Optogenetic inactivation of ALM before reward delivery 
shifts the peak time earlier in probe trials. A Upper, schematic of the 
behavioral task and laser stimulation. Middle and lower, lick rasters 
and lick PSTHs in probe trials and 5 s of the preceding reinforced tri-
als for an example mouse. Red, laser-on trials; black, laser-off trials; 
shading, duration of laser stimulation. B Lick PSTHs averaged across 
a population of mice (n = 9). C−I Comparison of lick rate during 
[−2 0] s, interval of reward (interval between the time of first lick 
after reward delivery and the time of previous reward delivery), peak 
time, start time, end time, peak width, or Weber fraction between 
laser-off and laser-on trials. Green, VGAT-ChR2 mice (n = 3); pur-
ple, VGAT-Cre mice (n = 3) injected with AAV-FLEX-ChrimsonR; 
gray, C57BL/6 mice (n = 3) injected with AAV-CaMKIIα-GtACR2. 
*P <0.05, **P <0.01, n = 9 mice, Wilcoxon signed rank test. Data 
represent the mean ± SEM.
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For control C57BL/6 mice in which control virus (AAV-
hSyn-eGFP) was bilaterally injected in the ALM (Fig. S3C), 
laser stimulation for 2 s before the time of reward deliv-
ery on the trial preceding the probe trial did not affect peak 
time (Fig. S4), indicating that the change in time estimation 
induced by ALM inactivation (Fig. 4) was not due to laser 
stimulation itself.

M2 occupies a large area along the rostral-caudal axis 
[47]. In addition to the subregion of M2 at the ALM (AP 
2.46 mm, ML ±1.8 mm), we also examined a different sub-
region of M2 at a central and medial location (AP 1.34 mm, 
ML ±0.75 mm) (Fig. S3D). We found that inactivation of 
this central and medial subregion of M2 for 2 s before the 
time of reward delivery did not affect peak time in probe trial 
(Fig. S5). This result suggests that neuronal activity in the 
ALM, but not in the central and medial subregion of M2, is 
involved in short-term memory of time interval.

Optogenetic Inactivation of mPFC does not Affect 
Timing Behavior

Previous studies showed that activities related to temporal 
processing and timing behavior are distributed in the brain 
[3, 20]. Among frontal cortical areas, neurons in the mPFC 
also convey information about elapsed time [48, 49]. We 
thus further determined whether perturbation of mPFC 
activity before reward delivery influences interval timing 
in probe trials. To manipulate mPFC activity, we injected 
AAV-hSyn-Jaws bilaterally into the mPFC of C57BL/6 mice 
(Fig. S3E). Electrophysiological recordings confirmed that 
activating Jaws suppressed the firing rates of cortical neu-
rons (Fig. S3G). We found that inactivation of mPFC for 2 
s before the time of reward delivery on the trial preceding 
the probe trial did not affect peak time (Fig. S6). Together, 
the results suggest that neuronal activity in the ALM but not 
in the mPFC is important for short-term memory of time 
interval.

ALM Activity in Probe Trials Preceded by Long 
and Short Inter‑reinforcement Intervals Exhibits 
Task‑engagement‑dependent Temporal Scaling

Because time estimation in probe trials was dynamically 
influenced by a decrease of inter-reinforcement interval in 
the previous trial, we next considered how ALM activity in 
probe trials is adaptive to the preceding inter-reinforcement 
interval. To address this issue, we recorded from ALM neu-
rons in mice that were trained with a 10-s fixed-interval lick-
ing task (Fig. S7A). During the recording session, while 
most inter-reinforcement intervals were 10 s, those preced-
ing the probe trials were either 8 s or 12 s, referred to as 
‘reward at −2 s’ or ‘reward at +2 s’ (Fig. 5A). To analyze 
neural activity related to time estimation, we only included 

those neurons that exhibited significant temporal modula-
tion of firing rates during the first 10 s of probe trials, as 
defined by significant differences in firing rates over 5 non-
overlapping periods (P <0.05, one-way ANOVA).

For the responses during the first 10 s of probe trials, 
when we sorted the neurons according to the time of maxi-
mum firing rate in the ‘reward at +2 s’ condition and used 
the sorted index to plot response profiles for the ‘reward at 
−2 s’ condition (Fig. 5B), we found that the latter appeared 
to show sequential firing, suggesting that ALM responses 
in the latter condition are scaled from that in the former. 
We next quantified the degree of temporal scaling for the 
response profiles of single ALM neurons in the probe tri-
als. For the licks in each probe trial, we aligned time zero 
to the time of the first lick after reward delivery. For each 
of the two types of trial-history of probe trial, we fitted the 
lick PSTH with a Gaussian function, obtaining two peak 
times (T1 and T2 for ‘reward at +2 s’ and ‘reward at −2 s’, 
respectively, Fig. 5C). For each ALM neuron, we extracted 
a response profile within the period of [0 T1] for probe trials 
in the ‘reward at +2 s’ condition (black curves in Fig. 5D 
and F) and a response profile within the period of [0 T2] 
for those in the ‘reward at −2 s’ condition (red curves in 
Fig. 5D, F). We then calculated a best scaling factor that 
produced a minimum difference between response profiles in 
the two types of probe trial (Fig. 5E, G). For the population 
of ALM neurons (n = 175), the distribution of best scaling 
factor showed a peak at ~0.96 (Fig. 5H), close to the ratio 
between T2 and T1 (T2/T1 = 0.90 ± 0.01, mean ± SEM, n = 
18 sessions; Fig. 5C, right). For 33.71% of ALM neurons (59 
out of 175, red bars in Figs. 5H and S7B), the best scaling 
factor was within ±10% of the mean T2/T1, suggesting that 
their response profiles in probe trials preceded by long and 
short inter-reinforcement intervals exhibit temporal scaling.

Although the duration of a probe trial was 3–4 times 
longer than the inter-reinforcement interval of reinforced 
trials, mice exhibited anticipatory licking only in the early 
part but not in the later part of a probe trial (Fig. S8A, C), 
suggesting that mice were actively engaged in timing in 
the early part but less so in the later part. Using this less 
engaged period as a control, we applied similar analysis to 
ALM responses in the later part of probe trials. For these 
responses, when we sorted the neurons according to the 
time of maximum firing rate in the ‘reward at +2 s’ condi-
tion (Fig. S8B) and used the sorted index to plot response 
profiles of the same neurons in the ‘reward at −2 s’ condi-
tion, we found that the latter did not show sequential fir-
ing (Fig. S8D), suggesting that firing patterns in the two 
conditions are not temporally scaled. We also performed 
scaling factor analysis by using response profiles in the 
last T1 s of the ‘reward at +2 s’  condition and those in 
the last T2 s of the ‘reward at −2 s’ condition. For these 
responses in the later part of probe trials, the distribution 
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of best scaling factor did not show a peak near T2/T1 (Fig. 
5I), and the percentage of neurons with best scaling factor 
within ±10% of the mean T2/T1 was significantly lower 
than that in the early part of probe trials (χ2

(1) = 41.14, P 
= 1.42×10−10, Fig. 5J). These results suggest that, during 
probe trials preceded by long and short inter-reinforcement 
intervals, the temporal scaling of ALM response profiles 
is specific to the period when mice are actively engaged 
in timing behavior.

ALM Population Activity Encodes Elapsed Time

We further used a multiclass SVM [7, 42] to perform trial-
by-trial decoding of time from the population activity of 
ALM neurons. We first performed decoding using responses 
in the early part of probe trials (Fig. 6A). For each probe 
trial from the ‘reward at +2 s’ (‘reward at −2 s’) condition, 
we took the spike train in the first T1 (T2) s and binned the 
spikes to 50 time bins. The SVM decoder was trained with 

Fig. 5   Temporal scaling of ALM responses in probe trials preceded 
by long and short inter-reinforcement intervals. A Schematic of 
reward delivery for the reinforced trial preceding a probe trial in the 
‘reward at −2 "s" or ‘reward at +2 "s" condition. B Left, Z-scored 
responses in the ‘reward at +2 "s" condition (each row is one unit). 
The units are ordered by time to peak firing rate. Right, Z-scored 
responses in the ‘reward at −2 "s" condition. The units are ordered 
by the unit index at left. C Left, lick PSTHs of an example session 
during probe trials in the ‘reward at +2 s’ (black) and ‘reward at −2 
s’ (red) conditions. T1 (T2) indicates the peak time for the ‘reward 
at +2 s’ (‘reward at −2 s’) condition. Right, peak time in each ses-
sion. D Spike rasters and PSTHs for an example ALM neuron in the 

‘reward at +2 s’ (black) and ‘reward at −2 s’ (red) conditions. E The 
best scaling factor for the neuron in D is the one that yields the mini-
mum MSE between the short response profile and a scaled version 
of the long response profile. F Spike rasters and PSTHs for another 
example ALM neuron. G The best scaling factor for the neuron in F 
is the one that yields the minimum MSE. H Distribution of best scal-
ing factors for ALM neurons (n = 175) in the early part of probe tri-
als. Red, best scaling factors were within ±10% of T2/T1. I Distribu-
tion of best scaling factors in the later part of probe trials. J Number 
of neurons with best scaling factor within (or outside) ±10% of T2/
T1 during the early vs the later part of probe trials (χ2

(1) = 41.14, P = 
1.42×10–10). In C, D and F, data represent the mean ± SEM.
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the population firing rates from multiple trials of training 
data in the ‘reward at +2 s’ condition, and then was pre-
sented with population activity from a trial of testing data in 
the same condition (‘reward at +2 s’) or in a different condi-
tion (‘reward at −2 s’). The SVM output was represented in 

50 readout units, one for each time bin, forming a classifica-
tion matrix (Fig. 6A, upper). For each actual bin in the clas-
sification matrix, the predicted bin was the one correspond-
ing to the readout unit with the maximum value (Fig. 6A, 
lower). For the classification matrix produced by using 

Fig. 6   Neural dynamics in the ALM can encode elapsed time. A 
SVM decoding using population activity in the early part of probe 
trials. Left, training and testing data are both from ‘reward at +2 s’. 
Right, training and testing data from ‘reward at +2 s’ and ‘reward at 
−2 s’. Upper, classification matrix averaged over all repeats of SVM 
implementation. For each time bin, the readout values are normal-
ized across readout units. Lower, Predicted vs actual time bins for 
all repeats of SVM implementation. B SVM decoding using popula-
tion activity in the later part of probe trials, similar to A. C Predic-
tion accuracy for SVM decoding using ALM population activity in 

the early and later parts of probe trials. Each data point is the result of 
one repeat of SVM implementation. D Prediction accuracy for SVM 
decoding using the activity of scaled or unscaled ALM neurons in 
the early part of probe trials. Each data point is the result of SVM 
decoding using one set of resampled data. Scaled neurons: best scal-
ing factor is within ±10% of the mean T2/T1. Unscaled neurons: best 
scaling factor is outside ±10% of the mean T2/T1. **P <0.01, ***P 
<0.001, one-way ANOVA followed by Tukey-Kramer multiple com-
parisons test. Data represent the mean ± SEM.
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testing data in the ‘reward at +2 s’ condition (i.e., train-
ing and testing data were from the same condition, Fig. 6A, 
upper left), the large values were mostly along the diagonal 
line of the matrix, suggesting that the predicted bins largely 
match the actual bins. We also obtained similar classifica-
tion results when we used testing data in the ‘reward at −2 
s’ condition (i.e., training and testing data were from differ-
ent conditions, Fig. 6A, upper right), suggesting that ALM 
dynamics in one type of trial-history condition can predict 
the elapsed time in another type of trial-history condition.

We next applied decoding analysis using responses in the 
later part of probe trials (Fig. 6B). The SVM decoder was 
trained with the training data using population firing rates in 
the last T1 s of the ‘reward at +2 s’ condition, and then was 
presented with population activity from a trial of testing data 
in the same condition (Fig. 6B, left) or in the ‘reward at −2 
s’ condition (Fig. 6B, right). We found that the classification 
matrix did not show large values along the diagonal line in 
either case, suggesting that information about elapsed time 
in the later part of probe trials is not encoded by the popula-
tion activity of ALM neurons.

To quantify decoding performance for each repeat of 
SVM implementation, we computed Pearson’s correlation 
coefficients between the predicted and the actual time bin 
(Fig. 6A lower and Fig. 6B lower). For decoding using 
responses in the early part of probe trials, SVM decoder 
yielded high accuracy no matter whether the training and 
testing data were from the same or different conditions 
(Fig. 6C). For decoding using responses in the later part 
of probe trials, however, the correlation coefficient was not 
significantly different from zero (Fig. 6C). Thus, when mice 
were actively engaged in timing behavior that was adaptive 
to the previous inter-reinforcement interval, the population 
activity of ALM neurons reliably encoded elapsed time and 
the representation was scalable.

For the early part of probe trials, we further compared 
the capability of encoding elapsed time between scaled and 
unscaled ALM neurons, whose best scaling factors were 
within and outside ±10% of the mean T2/T1. During each 
repeat of SVM implementation, we randomly sampled 50 
units from the scaled or the unscaled neurons. We repeated 
the SVM decoding 10 times, each with a different set of 50 
randomly-sampled units. As shown in Fig. 6D, for SVM 
decoding using training and testing data from different 
conditions (‘Train +2 s Test −2 s’) as well as that using 
data from the same condition (‘Train +2 s Test +2 s’), the 
correlation coefficient between the predicted and the actual 
time bin was significantly higher for scaled neurons than for 
unscaled neurons (P <0.001, one-way ANOVA followed by 
Tukey-Kramer multiple comparisons test). This result sug-
gests that, compared with unscaled neurons, those neurons 
with temporally scalable firing patterns can encode elapsed 
time more reliably.

Discussion

In this study, we examined the trial-history influence of 
interval timing behavior. Using a licking-based peak-interval 
timing task in mice, we found that interval timing was rap-
idly adaptive to a decrease of inter-reinforcement interval in 
the previous trial. Bilateral inactivation of the subregion of 
M2 at ALM, but not the central and medial subregion of M2 
or the mPFC, for a short period of time before reward deliv-
ery shifted the peak of anticipatory licks to an earlier time in 
the next trial, suggesting that ALM activity is essential for 
the short-term memory of time interval. By analyzing ALM 
spiking responses in probe trials preceded by short and long 
inter-reinforcement intervals, we demonstrated that ALM 
neurons showed task-engagement-dependent temporal scal-
ing in their response profiles and could encode elapsed time. 
These results reveal that ALM activity not only contributes 
to the short-term memory of time interval but also reflects 
the influence of recent experience during time estimation.

Previous studies have shown that estimation of time inter-
val can be influenced by both non-temporal and temporal 
contexts [50, 51]. For instance, the sense of time can be 
altered by attention [52], emotional experience [53], anxiety 
[54], or non-temporal stimulus size [55]. In terms of tempo-
ral context, a widely reported phenomenon in the time repro-
duction task of human subjects is the central tendency effect, 
in which prior temporal context influences the interval esti-
mate in such a way that a shorter interval is overestimated 
and a longer interval is underestimated [56–59]. Similar 
to human subjects, rodents in timing task are also sensi-
tive to the distribution of temporal intervals and can adjust 
their waiting time accordingly [13]. Using a fixed-interval 
schedule, previous studies have shown that the waiting time 
of rodents and pigeons can rapidly follow a step-function 
change in inter-food interval within a session [15, 60]. Our 
findings add to the literature that interval timing is adaptive 
to the temporal context.

The peak-interval timing procedure often requires many 
sessions of training to form a criterion interval in the refer-
ence memory [43, 44]. In our case, mice usually underwent 
30−50 training sessions before being tested in sessions con-
taining probe trials preceded by a shorter or longer inter-
reinforcement interval. We found that a decrease in inter-
reinforcement interval caused an earlier shift in the peak 
time in probe trials, suggesting that the interval estimation 
established by long-term temporal memory can be rapidly 
modified by short-term experience of an interval decrease. 
Compared to a decrease of inter-reinforcement interval by 2 
s, an increase in inter-reinforcement interval by 2 s was not 
immediately effective at influencing time estimation in the 
probe trial. For the ‘reward at +2 s’ condition in which the 
reward delivery preceding the probe trial was postponed by 
2 s, the reinforced trial might effectively become a probe 
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trial, i.e., time integration may be terminated after the target 
interval passes without reinforcement and timing is reset 
with a reward delivery. In addition to the asymmetric effect 
of ‘reward at −2 s’ and ‘reward at +2 s’ on peak time, we 
also found that the start time was more adaptive than the end 
time (Figs. 3, S1, and S2). These effects may reflect the sca-
lar property of interval timing behavior, in which the vari-
ability of timing is proportional to the interval being timed 
[9, 10]. Interestingly, an asymmetric effect has also been 
reported in the sequential effect in the variable foreperiod 
task [61, 62], and it has been suggested that the sequential 
effect involves arousal modulation [62, 63]. For the decrease 
of inter-reinforcement interval in the ‘reward at −2 s’ condi-
tion in our study, there might be a ‘surprise effect’ influenc-
ing the arousal level when the reward occurred earlier than 
expected. Because dopamine neurons encode the reward pre-
diction error [64] and dopamine neuron activity can control 
the judgment of time [65], it is of interest for future studies 
to determine whether dopamine neurons are involved in the 
influence of trial history on interval timing. Our finding that 
short-term experience of an interval decrease and an interval 
increase had asymmetric effects may impose constraints on 
models of interval timing [1, 3]. Although the peak time in 
the probe trial was rapidly affected by a decrease in inter-
reinforcement interval, the peak width was not significantly 
different between different conditions of preceding inter-
reinforcement interval. As peak time and peak width reflect 
timing accuracy and timing precision, respectively [44, 66], 
our results suggest that, while timing accuracy is rapidly 
adaptive to short-term experience, timing precision estab-
lished by long-term training is relatively stable.

Previous studies have shown that neuronal activity in 
sensory cortex [67, 68], prefrontal cortex [6, 41, 69–71], 
thalamus [6, 66, 72], tectum [73], and basal ganglia [11, 65, 
74–76] play an important role in timing behavior. Although 
many behavioral studies have examined the effect of tem-
poral context on interval timing, few studies have investi-
gated the underlying neural substrate. A recent study found 
that, in monkeys trained to reproduce time intervals drawn 
from short or long interval distributions, the speed of neural 
dynamics in dorsomedial frontal cortex is adjusted accord-
ing to the mean of the interval distribution [77]. A previous 
study on sensory timing demonstrated that intervals in the 
range of hundreds of milliseconds can be encoded as specific 
states in a model neural network that uses short-term syn-
aptic plasticity to keep track of the memory trace of recent 
stimulus history [78]. The model predicts that discrimination 
of a temporal target is impaired when a distractor precedes 
the target at random intervals, and the prediction has been 
confirmed by human psychophysical studies [78]. Using 
a waiting task, a recent study found the neural correlates 
of history-dependent waiting time bias in both M2 and the 
mPFC [79]. In our study, we used a peak-interval timing task 

and found that interval timing in the range of seconds was 
influenced by a shortening of the previous inter-reinforce-
ment interval. Our finding is consistent with the trial history 
influence reported in value-based decision and perceptual 
decision tasks [17, 18, 35, 80–85], in which the memory of 
the most recent trial shows the greatest effect [19, 32, 35]. 
We also found that inactivation of the subregion of M2 at 
the ALM for a short period before reward delivery caused 
an underestimation of elapsed time in probe trials. This 
suggests that the time period while the ALM is inactivated 
cannot be stored in short-term memory, likely resulting in 
a shortening of the perceived inter-reinforcement interval. 
Our results are also consistent with the important role of 
rodent M2 and monkey premotor cortex in memory-guided 
perceptual decision-making [30, 31, 86–89].

The subregion of M2 at the ALM is a region necessary 
for motor planning of licking action [45, 46]. We found that 
optogenetic inactivation of the ALM for 2 s before reward 
delivery resulted in a reduction of lick rate, which was asso-
ciated with an earlier shift in peak time in the following 
probe trial (Fig. 4), whereas optogenetic inactivation of 
the central and medial subregion of M2 or the mPFC had 
no effect on lick rate or peak time (Figs. S5 and S6). This 
raised an interesting possibility that mice may partly rely on 
licking action to estimate elapsed time in the licking-based 
interval timing task. Such a conjecture that motor action 
may be used to keep track of time is supported by several 
studies. For instance, in rodents performing an interval dura-
tion categorization task, the temporally structured behavioral 
sequences during stimulus presentation predict the temporal 
judgment in the choice period [90]. Using a treadmill-based 
timing task, a recent study showed that accurate timing of 
rats is associated with the stereotyped motor routine on the 
treadmill [91]. A wealth of evidence has shown that motor-
related regions, such as the premotor cortex, basal ganglia, 
and cerebellum, are implicated in timing [3, 20, 51]. Our 
study adds to the literature supporting the hypothesis that 
sensorimotor experience plays an important role in the rep-
resentation of time [51]. Our results also suggest that, in 
addition to the subregion of M2 at the ALM, other licking-
related regions, such as the lateral superior colliculus and 
the ventrolateral striatum [11, 92–94], may also contribute to 
short-term memory of interval in the licking-based interval 
timing task. It is also of interest to determine at the cir-
cuit level [95] whether ALM projections to these regions is 
involved in short-term memory of time interval.

In animals performing a timing task containing both short 
and long intervals, temporal scaling of neural responses has 
been found in several brain regions, including prefrontal 
cortex, M2, striatum, and thalamus [6, 8, 41, 49, 77, 96]. 
The activity profiles in different intervals are similar when 
compressed or stretched, which may allow flexible tempo-
ral control of sensorimotor and cognitive behaviors [6]. In 
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our study, a subpopulation of ALM neurons scaled their 
responses in probe trials in accordance with the preceding 
inter-reinforcement interval, and compared with the unscaled 
neurons, these scaled neurons better encoded elapsed time 
and the representation was scalable. This temporal scaling 
of neuronal responses was diminished when mice were not 
attentively engaged in time estimation. Our results suggest 
that ALM activity during the period of active time-estima-
tion is influenced by recent trial history to enable adaptive 
timing behavior.
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