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1. Introduction

The 2019 novel Coronavirus has claimed millions of lives globally. The total number of confirmed Coronavirus cases is in the
order of hundreds of millions. The global economy suffered substantially as well. Policymakers around the world faced difficult trade-
offs between public health and economic performance, especially in the early phase of the pandemic, as many policies to curb the
spread of the disease entailed important consequences for the economy. We consider one element of this trade-off: contemporaneous
air pollution exposure, with a specific focus on fine particulate matter. Fine particulate matter, or PM 2.5, refers to airborne particles
with diameter of 2.5 pm or less. When inhaled, these particles can travel deep into the respiratory system and have been linked to
a wide range of adverse health outcomes (Currie et al., 2014). While PM 2.5 was associated with COVID-19 outcomes very early
in the pandemic’s development (see Wu et al., 2020), to the best of our knowledge very little action has been taken to address
contemporaneous air pollution exposure in possibly helping to alleviate severe COVID-19 illnesses, with the exception perhaps of
stringent traffic restrictions in China during the early phases of the pandemic, as described further in Chen et al. (2020a). One
potential explanation is the wealth of correlational findings and relative dearth of causal evidence, especially at the outset of the
pandemic (see Cox and Popken, 2020 for a discussion).

Hence, this paper aims to contribute to our understanding of the contemporaneous effects of air pollution on respiratory illnesses,
with the goal of informing policy in response to respiratory-related pandemics. To this end, we use plausibly random daily changes in
wind direction over the period from January 22 to August 15, 2020, to predict local fine particulate matter concentrations, providing
quasi-experimental evidence of the effect of PM 2.5 exposure on COVID-19 outcomes. We leverage an established identification
strategy that pre-dates the COVID-19 pandemic (Luechinger, 2014; Deryugina et al., 2019; Anderson, 2020). In our preferred high
dimensional fixed effects specification with weather, local policy, and social distancing controls from Unacast cell phone data, we
show that a one pg/m? increase in PM 2.5 increases the same-day number of confirmed cases by 1.8% from the mean case incidence
in a county, where confirmed cases are likely to be a measure for severe cases given that many individuals infected with COVID-19
do not show symptoms (Day, 2020; Gandhi et al., 2020; Persico and Johnson, 2021). In the three-day period following a perturbation
in air quality, the relationship between fine particulate matter exposure and cases is over twice as large, at 0.35 additional cases
per 100,000 individuals. Meanwhile, a one pg/m’ increase in PM 2.5 increases the same-day mortality rate by 4% from the mean,
or between 0.009 and 0.012 additional deaths per 100,000 individuals in a county. Our study also finds that contemporaneous
exposure to PM 2.5 increases COVID-19-related hospitalizations and the use of intensive care units, suggesting that air pollution
increases the severity of illnesses. These results are in line with a growing literature in economics linking air pollution exposure
with respiratory issues, and which stresses the immediacy of such a relationship (Ransom and Pope III, 1995; Beatty and Shimshack,
2011; Ward, 2015; Schlenker and Walker, 2016; Jans et al., 2018; Deryugina et al., 2019; Anderson, 2020; see also Currie et al.,
2014 for a general review of the literature). Our findings are also consistent with the recent COVID-19-specific medical literature
suggesting a role for air pollution in modulating COVID-19 illness severity. In particular, local air pollution, and especially PM 2.5,
may contribute to the severity of an infectious disease such as COVID-19 by debilitating the cardiovascular and immune systems
(Ackermann et al., 2020; Miyashita et al., 2020; Prunicki et al., 2021).

Our paper contributes to several strands of literature. To start, it complements research by two concurrent papers that also apply
causal inference techniques to add to our understanding of the relationship between local air pollution and COVID-19 outcomes.
Our paper, Persico and Johnson (2021), and Isphording and Pestel (2021) all conclude that contemporaneous exposure to local
air pollution worsens COVID-19 outcomes. Our studies, however, have some distinct features. Our study’s application of the same
identification strategy as Deryugina et al. (2019) to a wider range of COVID-19 outcomes is unique, including not just cases and
deaths but also hospitalizations, intensive care unit use, ventilator use, viral tests, and positivity rates. For these analyses, we leverage
both daily state-level records as well as restricted individual-level case surveillance information from the Centers for Disease Control
and Prevention (CDC). We assess these COVID-19 outcomes in the context of the United States, the largest economy in the world
and the nation with the most recorded COVID-19 cases and deaths over our sample period and overall. Persico and Johnson (2021)
also study the context of the United States, but focus on increased pollution from industrial facilities reporting to the Toxic Release
Inventory (TRI). TRI facilities emit a variety of harmful pollutants into air and other environmental media, including no less than 770
toxic substances that cause cancer or acute human health effects (see EPA, 2021 for a full list of TRI chemicals). Further, populations
near TRI facilities may be more vulnerable to the effects of pollution than other communities, in part due to past exposure to TRI
emissions. Hence, despite the rather widespread presence of TRI facilities in the United States, estimates in Persico and Johnson
(2021) apply to different pollutants and underlying populations than our nationwide study. As such, Persico and Johnson (2021)
tend to find a stronger relationship between pollution and COVID-19 outcomes than we do. In contrast, Isphording and Pestel (2021)
apply an empirical approach that resembles ours, using plausibly exogenous changes in wind as an instrument for PM 10 as the
main pollutant of interest. However, their focus is on Germany, a highly developed country like the United States, but one with
possibly different institutional factors, public health policy during the COVID-19 pandemic, cultural preferences for compliance with
regulation, and demand for environmental protection. In particular, case incidence per 100,000 individuals in Germany was less
than one quarter the figure for the United States over our respective sample periods (1.7 compared to 7.9), and death incidence
was similarly close to one half the US figure (0.09 to 0.2). Yet, we note with interest that our estimates are very well aligned with
those in Isphording and Pestel (2021), potentially speaking to the external validity of our two studies.

These three studies, together, set the basis for what we hope may be an emerging literature applying causal inference techniques
to examine the relationship between air pollution and COVID-19 outcomes and, along with Clay et al. (2018) and Graff Zivin
and Neidell (2009), outcomes from viral infections at large. This strand of literature complements the epidemiological literature,
generally correlational in nature, which is led by Wu et al. (2020). With respect to Wu et al. (2020) and the other epidemiological
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studies (such as Bhaskar et al., 2020; Wang et al., 2020a; Bourdrel et al., 2021), our approach is different in at least three dimensions.
First, we use plausible exogenous variation to address potential endogeneity issues. Second, we focus on current exposure to
particulate matter. The contemporaneous dimension is crucial during a pandemic because policymakers have the ability to influence
contemporaneous pollution levels and individual avoidance behavior, but have no control over past exposure to air pollution. Third,
we explore the underlying mechanisms linking pollution exposure to COVID-19 outcomes, such as analyses of hospitalizations,
intensive care unit use, and mechanical ventilation.

Further, our study contributes to a growing literature showing detrimental effects of air pollution on a wide range of outcomes.
For empirical reasons, such literature initially considered mostly early-life outcomes such as infant mortality (e.g., Chay and
Greenstone, 2003; Chay et al., 2003; Currie and Neidell, 2005; Knittel et al., 2016) and birth weight (e.g., Currie and Walker, 2011),
but it has expanded substantially over the last decade to adult outcomes such as emergency room visits, hospitalizations, and adult
mortality (e.g. Schlenker and Walker, 2016; Jans et al., 2018; Deryugina et al., 2019; Simeonova et al., 2019), dementia (e.g.,
Bishop et al., 2018), contemporaneous and long-run education outcomes (e.g., Sanders, 2012; Ebenstein et al., 2016), and other
measures of productivity (e.g., He et al., 2019). Our study is especially relevant to this body of work regarding adult mortality,
adding additional evidence that COVID-19 cases, hospitalizations, use of intensive care units, and mortality respond to local air
pollution. Further, it adds to the growing body of work illustrating the short-term effect of pollution on health outcomes, including
the relationship between days of exposure to pollution and mortality (e.g., Arceo et al., 2016; Simeonova et al., 2019; Deryugina
et al.,, 2019; Anderson, 2020). Overall, we contribute to the literature on pollution and health by showing that air pollution, and
in particular PM 2.5, plays an important role in the management of deadly infectious diseases such as COVID-19, and that these
effects emerge very rapidly.

Finally, our study contributes to an emerging literature on the economics of the COVID-19 pandemic, aimed at identifying
the best policy responses to this emergency (see Brodeur et al., 2020 for a review). As such, our findings have important policy
implications, which the paper discusses in detail. Such policy implications apply both to pandemic and non-pandemic times. From
the contemporaneous relationship between PM 2.5 and COVID-19 morbidity and mortality, it follows that keeping pollution at low
levels may have an immediate payoff in reducing severe cases and deaths during a pandemic. Policymakers have a wide range of
short- and long-term policy levers available to reach this goal, as discussed in Section 6.

The remainder of the paper is organized as follows. Section 2 provides some information about the context of our study and
the related literature. Section 3 describes our data. Section 4 introduces our empirical methods, highlighting how our identification
strategy is designed to overcome endogeneity of pollution exposure and measurement error. Section 5 presents our primary results for
confirmed cases and deaths. We also include an extensive battery of sensitivity tests, analysis of potential mechanisms, and discussion
of heterogeneous treatment effects in Sections 5.3, 5.4, and 5.5. Section 6 illustrates our main policy implications. Section 7 concludes
and suggests avenues for future research.

2. Background

In this section, we cover the context of the COVID-19 pandemic and then refer to the literature preceding the emergence of
COVID-19 that relates air pollution and health, with a particular focus on respiratory illnesses and fatalities. The literature review
provides the basis for the main relationship that we study in this paper and guides the analyses that we perform to shed more light
on the mechanisms behind such relationship.

2.1. Epidemiological and medical context

The 2019 novel coronavirus emerged as a cluster of pneumonia-like infections in Wuhan, China. The earliest studies of the illness
documented symptom presentation in a relatively limited set of hospitalized individuals (see, for example, Chen et al., 2020b). While
the earliest studies necessarily focused on the most severe illnesses resulting in hospitalization, they nevertheless demonstrated a
set of common symptoms as well as risk factors for mortality. The most common symptoms were fever, cough, and shortness of
breath. More serious respiratory symptoms were observed in some patients, with Chen et al. (2020b) observing bilateral lung damage
associated with pneumonia in 75% of patients, “ground-glass” opacities in computerized tomography (CT) scans of lung tissue in
14% of patients, and a collapsed lung in one patient. In another early study of 191 hospitalized patients, fever and cough were
again identified as the most common symptoms, with respiratory failure and acute respiratory distress syndrome (ARDS) occurring
in 98% and 93% of 54 non-surviving patients (Zhou et al., 2020). Non-surviving patients often exhibited rapid progression of lung
lesions in CT scans, again emphasizing the prominence of lung damage in the progression of severe cases (Wang et al., 2021).

By May of 2020, a broader set of characteristics of severe illness were identified and validated through meta-analysis (Huang
et al., 2020) or by aggregating case information across hundreds of hospitals in China. For example, Guan et al. (2020) confirmed
prior findings that the most common symptoms among hospitalized patients were fever (88%), cough (67%), fatigue (38%), sputum
production (34%), and shortness of breath (19%). The same study also summarized frequency of abnormal chest CT scans, with
86% of chest CTs showing some abnormality, including ground-glass opacity (56%) and patchy shadowing in both lungs (52%). In
the US context, Vahey et al. (2021) found that a higher proportion of hospitalized individuals reported cough (83%), fatigue (90%),
and shortness of breath (72%). In a meta-analysis of five studies with combined 5328 patients, Huang et al. (2020) showed that
the clinical presentations most commonly associated with severe illness included shortness of breath, acute cardiac injury, acute
respiratory distress syndrome, and acute kidney injury, demonstrating that multiple organ systems could be affected. A related
meta-analysis also found that shortness of breath as well as hemoptysis (i.e., coughing up blood) was associated with more severe
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illness (He et al., 2021). Other research highlighted the co-morbidities or pre-existing characteristics most associated with severe
disease progression such as hypertension, heart disease, diabetes, and chronic obstructive pulmonary disease (Lv and Lv, 2021;
Khodeir et al., 2021). Despite the broader systemic impacts and vulnerabilities, lung injury remained a hallmark of severe cases
and focal point of research, with studies such as Rendeiro et al. (2021) detailing acute COVID-19 lung injury at the cellular level
in humans. Collectively, this literature provides strong evidence that COVID-19 affects the respiratory system and that respiratory
distress is associated with severe illness and mortality.

Building on this early work, epidemiological studies documented a wider array of symptoms associated with COVID-19. In
particular, these include loss of taste and smell in nearly 40% of patients (Hannum et al., 2022), a potentially lethal inflammatory
response that aggravates acute respiratory distress syndrome known as a cytokine storm (Ragab et al., 2020), neurological symptoms
such as brain fog, amnesia, and stroke (Tsai et al., 2021), as well as lingering symptoms of COVID-19 occurring in as many as 87%
of patients, with such symptoms referred to as Post COVID-19 Syndrome or “long COVID” (Mahase, 2020). The most common
symptoms of Post COVID-19 Syndrome are fatigue and cognitive impairment, which in a third of cases lasts over 12 weeks (Ceban
et al., 2022). Research also shed more light on the clinical progression of the illness. For example, Wang et al. (2020b) show that the
median incubation period from exposure to symptom onset was 7 days, with a typical range of 4-12 days, notably finding that onset
of symptoms could take place up to two weeks after the initial infection. More recent meta-analysis has shown a shorter incubation
period of 5 days for the original COVID-19 strain and increasingly shorter incubation periods for Delta and Omicron strains of 4.4
and 3.2 days, respectively (Wu et al., 2022). In addition, lung injury may occur before symptom onset and before hospitalization
(Wang et al., 2021), although lung scarring or fibrosis was typically observed three weeks after the onset of symptoms (Polak
et al., 2020). Meta-analyses also demonstrate that time in hospital can vary significantly across patients, with median hospital stay
duration across 42 studies ranging from 5 to 29 days (Rees et al., 2020). Finally, in one study of New York City hospitalizations at
the start of the pandemic, time from hospitalization to mortality was a median 9 days (interquartile range of 5-15 days), although
mortality was observed up to 30 days after admission (Cummings et al., 2020). As for time from symptom onset to mortality, Lu
and Reis (2021) leverage Google search data to show that COVID-19 symptom search spikes preceded mortality increases by 22
days on average. In general, studies show a wide range in timelines from symptom onset to hospitalization and from severe illness
to mortality.

Overall, the epidemiological literature provides a strong basis for our investigation of the contemporaneous impacts of air
pollution on COVID-19 morbidity and mortality. It also provides a justification for investigating health impacts up to two weeks
after a pollution shock, in our case driven by changes in wind direction according to our identification strategy.

2.2. Relationship with local air pollution

A large literature has aimed at establishing the effect of local air pollution on human health, including potential impacts to
human capital accumulation, productivity, violent and criminal behavior, as well as earnings (see Currie et al., 2014 for a review
of the first decades of this literature and Aguilar-Gomez et al., 2022 for a more recent review focused on productivity and cognitive
abilities).

Part of this literature focuses on contemporaneous impacts of local air pollution on respiratory conditions, which are especially
relevant for our study on COVID-19 outcomes. Several studies establish a causal relationship between contemporaneous local air
pollution and respiratory conditions, most likely starting with Ransom and Pope III (1995), who leverage the temporary closure
of a steel mill in Utah to show that steel production increases hospital admissions related to respiratory conditions. Beatty and
Shimshack (2011) focus on the particulate matter and toxic substances released by diesel-powered school buses, finding that a
retrofit program to reduce bus emissions led to a large decline in bronchitis, asthma, and pneumonia incidence for both children
and adults with chronic respiratory conditions. Ward (2015) analyzes the role of particulate matter in the Canadian province of
Ontario in driving respiratory hospitalizations among children, making the case that particulate matter is mostly imported from
the United States and thus exogenous to local conditions. Schlenker and Walker (2016) exploit the delays that East Coast airports
may create to flights in California, which lead to increased taxiing and thus higher local air pollution in California, to identify a
relationship between the pollution from taxiing and hospital visits due to asthma and other respiratory issues. Jans et al. (2018)
exploit plausibly exogenous changes in local air pollution driven by thermal inversions to study the relationship between pollution
and health care visits for Swedish children. The authors find a considerable impact of pollution on healthcare visits, as well as on
parents’ work absences for care of sick children, disproportionately affecting low-income households that tend to have worse baseline
health conditions. Deryugina et al. (2019), using the identification strategy that we borrow for our empirical approach, assess the
impact of fine particulate matter on healthcare use, inpatient spending, and mortality from any medical reason in the United States
using Medicare data. Deryugina et al. (2019) find important effects of fine particulate matter on all these outcomes, concluding that
fine particulate matter causes substantial costs to society. Simeonova et al. (2019) assess the change in local air pollution, including
particulate matter, following the implementation of the Stockholm congestion charge and find a decline in acute asthma attacks
in young children. Anderson (2020) examines long-run exposure to particulate matter, exploiting plausibly exogenous variation in
pollution levels along major highways around Los Angeles as driven by wind patterns. Anderson (2020) find that more time spent
downwind of a major highway leads to considerably higher mortality. Collectively, these studies provide consistent evidence of a
causal relationship between exposure to air pollution, and in particular particulate matter, and respiratory conditions.

A potential role for local air pollution in severe acute respiratory syndromes was first suggested years before the COVID-19
pandemic, following previous outbreaks such as SARS in 2002-2004 and MERS in 2012. For instance, Cui et al. (2003) compare
SARS mortality across geographical areas of China and point to a correlation between polluted areas and higher mortality. A similar
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correlation is found over time in Beijing by Kan et al. (2005). However, to our knowledge, minimal causal evidence supported such
a potential relationship before the emergence of literature on COVID-19, thus the importance of research on the causal relationship
between local air pollution and COVID-19 outcomes. We note two potential exceptions, though. A recent study by Clay et al.
(2018) uses coal-fired capacity for electricity generation as a proxy for local air pollution to investigate the link between the
latter and mortality during the 1918 Spanish influenza pandemic. A related study by Graff Zivin et al. (2020) leverages changes
in wind direction to assess the effect of PM 2.5 on influenza-related hospitalizations. They find an effect in the order of 35% extra
hospitalizations attributable to the flu per standard deviation increase in the Air Quality Index (AQI). However, flu shots, whose
effectiveness varies from season to season for largely random reasons, can considerably mitigate such relationship. Together, these
studies and ours contribute to an emerging strand of literature causally assessing the impact of local air pollution on infectious
diseases.

Regarding the potential mechanisms at play, local air pollution, and in particular PM 2.5, may make individuals more vulnerable
to airborne diseases such as COVID-19 by affecting their cardiovascular and immune systems, thus potentially leading to a more
problematic clinical course. The medical literature provides supporting evidence. Prunicki et al. (2021) show that local air pollution
and PM 2.5 exposure lead to cardiovascular dysregulation, immune system alterations such as methylation of immunoregulatory
genes, altered immune cell profiles, and increased blood pressure, which are all relevant to COVID-19 prognosis. Related evidence
shows that smoking may increase the risk of respiratory infections, such as COVID-19, where (second-hand) smoke and pollution
share similar properties in how they affect the human body (Guan et al., 2020; Smith et al., 2020). One meta-analysis of COVID-19
patients found that nearly one third of individuals with smoking history experienced progression to more severe conditions including
death, while only 17% of non-smokers experienced the same (Patanavanich and Glantz, 2020). Based on findings from smoking,
where increased angiotensin-converting enzyme 2 (ACE2) expression is found in lower airway cells in active smokers, Miyashita
et al. (2020) hypothesize that the same mechanism may be at play for particulate matter. The interaction between ACE2 and the
spike protein of the novel coronavirus is key to cell infection in the COVID-19 pandemic, as ACE2 represents the receptor for the
novel coronavirus in human respiratory epithelial cells. As a result, ACE2 expression has been studied in vitro, with particulate
matter collected along a heavily trafficked road in Central London. Miyashita et al. (2020) confirm that particulate matter leads
to significantly higher ACE2 expression. A second channel may connect PM 2.5 and COVID-19 outcomes. Several studies suggest a
potential relationship between increased presence of fine particulate matter in the air and the airborne transmission of COVID-19
via attachment to these particles (Setti et al., 2020; Zhang et al., 2020). However, little evidence exists in support of this second
channel, despite the widespread attention that it has received by both the media and academic circles (Ishmatov, 2022), thus our
limited coverage.

As mentioned in the introduction, our study is not the only one to identify a causal relationship between local air pollution and
COVID-19 cases and deaths. Two concurrent studies, by Isphording and Pestel (2021) and Persico and Johnson (2021), also provide
evidence similar to ours. Persico and Johnson (2021) exploit the temporary lifting of monitoring and compliance requirements at
TRI facilities, which led to increased emissions of a variety of pollutants. Isphording and Pestel (2021) use an empirical approach
based on regional wind direction that resembles our methods. However, the three studies differ in their focus and, as a result,
may differ as well in the magnitude of the effects that they find. Persico and Johnson (2021), for example, find that counties
with more TRI sites experienced 14% more deaths and 53% more cases after EPA rollback of enforcement rules. Given that this
environmental deregulation only led to a 0.7 unit increase in PM 2.5 on average, these effects are much larger than our estimates.
Since TRI sites release many hazardous air pollutants other than fine particulate matter, it seems reasonable that the magnitude
of the estimates in Persico and Johnson (2021) would be larger than those that we observe, as anticipated in Section 1 and as
described in detail in the following sections. Further, populations exposed to pollution from TRI sites may be more vulnerable for
diverse reasons, including past exposure to the many harmful pollutants released at those sites. As for Isphording and Pestel (2021),
they focus on a different country, Germany. While Germany and the United States share comparable levels of development, they
differ in important dimensions related to the governmental approach to the COVID-19 pandemic, social norms and compliance with
regulations, including related to COVID-19, as well as environmental preferences. Results in Isphording and Pestel (2021) are also
not directly comparable to ours because their outcomes are disaggregated by age group, and the independent variable is PM 10
instead of PM 2.5. Despite the underlying differences, it is interesting to note that the estimated relationships are very similar in
magnitude. For example, Isphording and Pestel (2021) find that a one-unit increase in PM 10 increases death incidence of females
aged 60 and 79 by 0.01 per 100,000, which is almost identical to our population-level estimate, as described in detail in the following
sections. For males aged 60 and 79, the figure in Isphording and Pestel (2021) is a larger 0.04 per 100,000, although again this
figure is not directly comparable to our population-level effects. For cases, Isphording and Pestel (2021) find that an additional
unit of PM 10 leads to between 0.2 and 0.45 more cases per 100,000 population depending on the age group considered, which
is larger but roughly similar to our primary estimates despite the different case incidences observed in Germany and the United
States. Effect sizes with respect to cases may be larger in Isphording and Pestel (2021) due to more accurate and standardized
case reporting in Germany, in accordance with the country’s Infection Protection Act, as described in their paper. Alternatively,
the use of PM 10 instead of PM 2.5 could account for slightly different effect sizes. Overall, the similarity of our results, which
we find very reasonable given the common empirical approach, may also speak in favor of the external validity of our results and
those of Isphording and Pestel (2021). Further, when incorporating individual case records from the Centers for Disease Control
and Prevention (CDC), which have more accurate case detection dates as described in Section 3, our results are indeed even more
similar to those of Isphording and Pestel (2021).

We can also compare our findings to the epidemiological literature, correlational in nature, which mostly relies on past exposure
to PM 2.5 rather than contemporaneous exposure. While the epidemiological literature has expanded very quickly (see the reviews
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in Bhaskar et al., 2020; Wang et al., 2020a; Bourdrel et al., 2021), the main reference remains as mentioned the early study
by Wu et al. (2020). The study provides correlational evidence of a relationship between past pollution exposure and COVID-19
outcomes, while cautioning against any causal interpretation of such findings. Wu et al. (2020) find that an additional unit of
past fine particulate exposure is associated with an 8% increase in COVID-19 mortality, which is twice as large as our estimated
contemporaneous relationship.

3. Data

This paper uses daily information on outcomes related to the COVID-19 pandemic, air quality, wind, weather, and social
distancing behavior at the county level from January 22 to August 15, 2020. We also incorporate data on state and county policies
adopted to curb the spread of the virus and individual mask-wearing behavior as measured by survey responses. Our sample is
limited to the contiguous United States and counties with an EPA air quality monitoring station. In the following sections, we
describe data sources and construction of the analytic panel. Supplemental sources of information are listed in Appendix B.

3.1. Measuring severity of the COVID-19 pandemic

In what follows, we present our COVID-19 outcomes. We first describe all relevant data sources. Second, we discuss standard
cleaning procedures. We conclude with discussion of the main summary statistics.

We source daily COVID-19 mortality and caseload information from the 2019 Novel Coronavirus Data Repository by the Johns
Hopkins University Center for Systems Science and Engineering (CSSE).> The CSSE COVID-19 Data Repository was developed
for researchers, public health authorities, and the general public to track the latest information on the COVID-19 outbreak from
all available local sources. This online repository has arguably become the standard source of data for cases and deaths in the
growing COVID-19 literature. The repository tracks cumulative county case and mortality figures posted on state and county health
department websites since January 22, 2020. The underlying state and county health department websites are generally surveillance
and tracking dashboards, updated daily, designed to apprise the public on the spread of COVID-19. Cases and death totals therefore
reflect the most-timely information available from testing centers, care providers, and other institutions required to report to a local
public health regulatory body. For each date in the sample, the cumulative COVID-19 information is pulled from the state website at
12:50 a.m. the morning after the recorded date. As such, the timestamp of these variables is the cumulative figure a state or county
had posted on its website shortly after the end of any given day.® Due to imperfect information on the lag between symptom onset
and case or death reporting as well as the possibility of lagged clinical impacts from recent pollution exposure, we also assess the
relationship between contemporaneous exposure to PM 2.5 and outcomes over 3-day, 7-day, 10-day, and 14-day periods.

Acknowledging that fluctuations in reported COVID-19 cases and deaths may arise through several distinct mechanisms, we also
use daily information collected by the COVID-19 Tracking Project on hospitalizations, intensive care unit admissions, ventilator
use, and viral tests administered.* The Tracking Project data was developed by a crowd-sourced team of volunteers who manually
entered, checked, and double-checked over 870 data elements from state public health websites each day between 5:30 p.m. and
7:00 p.m. Eastern Standard Time. There are two shortcomings of the COVID-19 Tracking Project data. First, unlike the data from
the CSSE COVID-19 Data Repository, all variables in the Tracking Project are at the state level. Second, certain information, such
as ventilator use or intensive care unit admission, is not reported in all states. We investigate the relationship between air pollution
exposure and these outcomes over 3-day and 7-day time horizons.

In addition to the COVID-19 Tracking Project, we obtained the COVID-19 Case Surveillance Restricted Access Detailed Data
published by the CDC.> The surveillance data is patient-level case information collected by hospitals, healthcare providers, and
laboratories and reported to state public health authorities. These public health authorities then submit standardized case reporting
forms to the CDC via the National Notifiable Diseases Surveillance System (NNDSS).® For each case, the surveillance data includes
information about the patient such as demographic characteristics, county of residence, and presence of co-morbidities. It also
indicates illness characteristics such as time of case detection and disease severity, which is documented in terms of both symptom
presentation and clinical course through, for example, hospitalization and mortality. The CDC data present two limitations for our
purposes. First, while the date of case onset is known, the data do not provide information on the timing of hospitalization, admission
to intensive care unit, ventilator use, and mortality. Second, detailed patient-level information is available only when the healthcare
practitioner or laboratory collected it as part of their testing and questionnaire protocol. As such, case reports frequently do not
include complete information on demographics, symptoms, or clinical course. Variables relating to clinical course, in particular, are
reported as unknown or are missing in a high proportion of cases. For example, 55% of mortality, 41% of hospitalization, 92% of

2 See Dong et al. (2020) for more information on the 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE. See
https://github.com/CSSEGISandData/COVID-19. Last accessed: February 10, 2021.

3 We note that there may be unobservable variation across and within states in the exact timing of case and death reporting. While these data are generally
the most timely available, there are likely lags between when a health outcome occurred and when it became known to the state department of health or
posted to the online tracking system. Some of these reporting delays are corrected ex post by state health departments to reflect more accurate time-stamps; we
nevertheless explore sensitivity of our results to temporal alignment in Section 5.3 of the paper.

4 See https://covidtracking.com/data/download. Last accessed: July 7, 2021.

5 See https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance- Restricted- Access-Detai/mbd7-r32t. Last accessed: May 16, 2022.

6 A template case reporting form can be viewed here: https://www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf. Last accessed: May 16, 2022.
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Table 1
Summary statistics.
Mean S.E. Min Max

County-level COVID-19 cases and deaths
Daily case incidence per 100k people 7.875 16.202 0.000 674.427
Daily count of new cases 39.771 153.047 0.000 7198.000
Daily death incidence per 100k people 0.216 0.871 0.000 62.826
Daily count of new deaths 1.314 9.780 0.000 1553.000
County-level air pollution
PM 2.5 6.640 4.231 0.000 116.967
Weighted PM 2.5 6.169 4.172 0.000 87.700
Air Quality Index 27.007 14.710 0.000 182.667
State-level COVID-19 outcomes
Individuals hospitalized on day t 1646.326 2486.516 1.000 18825.000
Individuals in ICU on day t 639.858 835.736 1.000 5225.000
Individuals on ventilators on day t 207.997 283.617 0.000 2425.000
New COVID-19 viral test results on day t 14745.724 23740.560 0.000 187 926.000
Test positivity rate on day t 0.114 0.175 0.000 1.000
Observations 97,885
Counties 737

Reported statistics are at the county-day level. Note that only observations in the main specification are included.

Table 2
CDC case surveillance data summary statistics.
Mean S.E. Min Max Obs
Cases reported with death of patient 0.077 0.266 0.000 1.000 2,421,282
Cases reported with hospitalization 0.169 0.375 0.000 1.000 2,952,214
Cases reported with mechanical ventilator 0.044 0.206 0.000 1.000 442,456
Cases reported with entry to ICU 0.111 0.314 0.000 1.000 471,670

Reported statistics are at the individual level. Observations included are only those with non-missing clinical outcomes.
The total number of reported cases is 5,109,250.

mechanical ventilation, and 91% of ICU entry indicators are missing. Because these missing outcomes could represent cases that
resulted in mortality or other severe outcomes, we do not assign zeros to these missing outcomes. The uncertainty in timing of these
clinical outcomes, paired with the high frequency of missing information, led us not to use these data for our primary regressions,
which instead rely on the Johns Hopkins and COVID-19 Tracking Project data.

We perform straightforward data cleaning procedures on these COVID-19 outcomes. First, we convert Johns Hopkins cumulative
case and death figures into daily totals of new cases or deaths by subtracting the reported total on a given day by the reported total
the prior day in the same county. Next, to ensure comparability across counties, we transform these count variables to incidence
rates per 100,000 individuals.” We also generate variables for the incidence of new cases and deaths per 100,000 population over
3-day, 7-day, 10-day, and 14-day periods following day ¢. For data elements in the COVID-19 Tracking Project, we use raw variables
for the number of individuals currently hospitalized, in an intensive care unit, or on a ventilator for a state. We also generate 3-day
and 7-day totals of these variables, similar to our construction of case and death incidence variables over longer time horizons.®
We also use the COVID-19 Tracking Project’s preferred total tests variable, which reflects the daily state increase in viral tests.
This measure does not count new antigen or antibody tests. We calculate the positivity rate as the increase in new positive viral
tests divided by the increase in total tests at the state level.” We also calculate the positivity rate over 3-day and 7-day periods by
summing the positive tests and total tests over all days in the time horizon and computing the percent of tests that are positive from
the totals.

Summary statistics of the Johns Hopkins CSSE and COVID-19 Tracking Project are presented in the first and third panel of Table 1,
while CDC case surveillance descriptive statistics are in Table 2. Descriptive statistics of additional patient-level characteristics are
presented in Table C2. Figs. 1 and 2 present the development of new cases or deaths across the United States over the sample period.
The first of these figures represents the pattern of new confirmed cases over the course of the outbreak in our sample’s time frame,
illustrating the late March and June waves of contagion in the United States. Fig. 2 represents the geographic spread of the disease
in each month of the outbreak. In this figure, we depict the total monthly rate of new cases per 100,000 people at the county level

Count of Outcome, 100,000

7 We calculate incidence for county i on day ¢ as Rateof Outcome,, = County Pomulaion
“ounty Population;

8 We note that these variables reflect patient-day totals rather than unique patient admissions, as patients can be hospitalized or be in an intensive care unit
for multiple days.
9 See https://covidtracking.com/about-data/data-definitions for more information on these data elements. Last accessed: July 7, 2021.
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Fig. 1. New confirmed COVID-19 cases and deaths in the United States. Notes: Cases and deaths sourced from the Johns Hopkins COVID-19 Data Repository.
Smoothed average calculated with seven lead and seven lag days.

from February (Fig. 2(a)) to July (Fig. 2(f)).!° Our data reflects the well-known pattern of contagion across the United States, with
increasing cases in the Northeast by March and then a spread to new hot spots in the southern and western regions by June.

3.2. Air quality

We source air quality measurements from the EPA’s daily outdoor air quality information, AirNow.!! These air quality
measurements include PM 2.5, PM 10, ozone, NO,, SO,, and the AQI. We focus our analysis on PM 2.5 because of the well-known and
wide-ranging cardiovascular, lung-functioning, and mortality effects associated with exposure to this pollutant (EPA, 2019). While
we also analyze health impacts of other pollutants in AirNow, such as ozone, unfortunately their sampling coverage is generally too
limited to satisfy the identifying assumptions of our empirical specification, which was conceived for the analysis of PM 2.5. Hence,
we can only control for ozone while addressing the issue represented by missing observations.

Fine particulate matter, or PM 2.5, is a complex mixture of particles with diameter of 2.5 pm or less, such as nitrates, sulfates,
ammonium, and carbon. PM 2.5 found in a given area can be either produced locally or transported from other areas. According to
the EPA’s 2017 National Emissions Inventory, a comprehensive estimate of criteria air pollutant emissions, the primary sources of
PM 2.5 in the United States include fires, agricultural dust, road-borne dust, construction dust, waste disposal, commercial cooking,

10 In terms of weeks since the first non-travel-related COVID-19 case, Fig. 2 panel (a) represents the new cases during the first week of the outbreak, panel
(b) new cases during weeks 2 to 5, (c) weeks 6 to 10, and (f) weeks 18 to 22.
11 Gee https://www.epa.gov/outdoor-air-quality-data/download-daily-data. Last accessed: July 7, 2021.
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Fig. 2. New confirmed cases per 100,000 people by US county. Notes: Cases and deaths sourced from the Johns Hopkins COVID-19 Data Repository.

fossil fuel combustion, and industrial processes.'? Fine particulate matter often serves as a proxy for air pollution more broadly, but
unlike heavier pollutants, the small size of PM 2.5 makes it particularly suitable for an identification strategy relying on plausibly
exogenous changes in wind direction as an instrument. Transported PM 2.5 is a large share of total PM 2.5 in a given region because,
unlike some other hazardous air pollutants, PM 2.5 is often transported over long distances (Meng et al., 2020). Wind speed and
direction can therefore greatly influence the source, concentration, and type of PM 2.5 exposure facing a given community, even
over relatively short windows of time (Muller and Mendelsohn, 2007; Deryugina et al., 2019).

Air quality monitoring stations with PM 2.5 measurements from January to August 2020, and their density by county, are
represented in Fig. 3. We aggregate air quality information to the county-day level. In counties with more than one monitoring
station, air quality data is population weighted by the number of individuals in census blocks in a 10 km buffer around the air
quality monitor. Following Deryugina et al. (2019), the EPA’s air quality monitors are classified into 100 clusters based on their
location; these clusters are represented in Fig. 4.'> Summary statistics are presented in the second panel of Table 1. Fig. 5 maps the
mean daily concentration in each month across United States counties. We also show the trend in nationwide fine particulate matter

12 Authors’ calculation using the 2017 NEI data. For more information, see: https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-
nei-data. Last accessed: July 7, 2021.

13 The clustering of air quality monitors over large geographic regions is an important element of our instrumental variables specification. This step ensures
that identification of PM 2.5 relies on regionally transported PM 2.5 rather than local generation. We discuss this step in more detail in Section 4.
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Fig. 3. EPA air quality monitors. Notes: Each dot represents an EPA air quality monitor reporting PM 2.5 in 2020.
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Fig. 4. EPA air quality monitor clusters. Notes: Each color represents one of 100 air quality monitor clusters. These clusters are grouped according to the
location of the air quality monitors by the k-means cluster algorithm following the strategy in Deryugina et al. (2019).

levels and air quality index over the course of the period of study in Fig. 6. While media portrayals suggested widespread decreases
in air pollution during early phases of the COVID-19 pandemic, Fig. 6 shows relatively stable average PM 2.5 and AQI levels across
all monitors. Because the largest sources of PM 2.5 are fires and dust, much of which is likely unrelated to lockdown practices,
we find stable nationwide PM 2.5 levels to be plausible. Actually, Persico and Johnson (2021) find that counties with more TRI
sites saw increased PM 2.5 levels during the early stages of the pandemic, partly resulting from COVID-related regulatory changes.
Similar evidence is provided in Bekbulat et al. (2020), although we note that the experience of cities might have been different,
as described in Berman and Ebisu (2020) and Zhang et al. (2021). We devote several analyses to the examination of heterogeneity
within our sample for descriptive purposes in Section 5.5.

3.3. Wind, temperature, and precipitation

We incorporate wind speed and direction information from the National Oceanic and Atmospheric Administration’s daily weather
station data.'* Figure C1 presents the spatial distribution and density of the 2543 weather stations that record wind speed and

14 See https://www.ncei.noaa.gov/data/local-climatological-data/archive/2020.tar.gz. Last accessed: February 27, 2021.
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Fig. 5. Fine particulate mean daily concentration by month and county. Notes: For each county, the value for each month is calculated by averaging the daily
concentration of PM 2.5, weighted by the number of people in census blocks in a 10 km buffer around the air quality monitor.

direction in the contiguous United States from January to August, 2020.'° Given the importance of wind fluctuations for our
identification strategy, it is worth describing how we construct wind direction and speed variables at the county-day level in
further detail. First, we aggregate wind speed and direction to the station-day level. To this end, we compute the simple average
of wind speed (measured in miles per hour) for each station for each day. Then, since wind direction is measured in degrees, we
aggregate direction for each weather station to the daily level following the techniques laid out in Grange (2014).'® We next link
wind information from the nearest four weather stations to each air quality monitor, again following the methods of Grange (2014),
to compute an average wind direction measurement, where these directional components are further weighted by their distance

15 The data also include information on weather conditions such as precipitation and temperature, but we source this information from elsewhere due to
many missing values, as described below. We also limit the stations to the contiguous United States, reducing the total number of stations from 2820 to 2543.
16 Averaging wind direction requires decomposing wind direction into u and v directional vectors that are weighted by the magnitude of the direction (i.e., wind
speed for each measurement in a day). The u directional vector is —wind speed * sinQ2x * %). The v directional vector is —wind speed * cos(2r * “inddirection
We can then average u and v directional vectors for each station-day combination and compute daily average wind direction as arctan(u, v) * % + 180.
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Fig. 6. Air quality during the pandemic. Notes: Figures plot average county-level fine particulate matter or air quality index on each date. County-level figures
derived by averaging values over all monitors reporting on any given day.

from the air quality monitors in a county.'” Finally, wind direction is re-coded in the same way as Deryugina et al. (2019) such
that the daily mean wind direction is grouped into four categories (1°-90°, 91°-180°, 181°-270°, and 271°-360°). Wind speed,
reported in miles-per-hour, is re-coded into four dummy variables representing quartiles of the speed distribution.

We source precipitation and temperature information at the county-day level from the Parameter-elevation Regressions on
Independent Slopes Model (PRISM) created by the PRISM Climate Group at Oregon State University.'® The PRISM Climate Group
collects climatic data from many monitoring networks, cleans the data, and then estimates geospatially precise weather variables
for each gridded cell across the United States.'* We average precipitation and temperature variables over all gridded cells within a
county for each day. We then convert these variables into five indicators for each quantile of the daily minimum temperature, daily
maximum temperature, and average precipitation distribution. By construction, these five quantile indicators reflect equal portions
of the distributed temperature and precipitation variables from January to August of 2020. Summary statistics of the wind and
weather variables are reported in Table C1.

17 To account for the fact that some weather stations are closer to an air quality monitor, the assigned wind direction for EPA air quality monitor i at time

% w,DIR
t (DIR,) is given by DIR;, = @, where DIR), is a 2xn matrix representing the scalar u and v wind direction components of the j nearest weather

station at time ¢, and w; = (d; j)’l i; the weight of the j monitor based on the distance between i and j (d, ,;)- The convention of inverse-distance weighting the
four nearest weather stations is based on Deryugina et al. (2019), but we explore the sensitivity of our results to this wind direction-to-air quality assignment
mechanism in Section 5.3 and more specifically Table C11.

18 See PRISM (2004) and also https://prism.oregonstate.edu/ for more information. Last accessed: July 7, 2021.

19 We use the R package ‘prism’ to download daily minimum and maximum temperature, as well as precipitation, for each 800 x 800 meter gridded cell in
the United States (Edmund et al., 2020). We make use of tmin, tmax, tmean, and precip_sum options in the “prism” R package.
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3.4. Social distancing metrics

The data company Unacast creates social distancing records by county using cell phone information (Unacast, 2020).?° We use
three relevant variables created by Unacast: change to average daily distance traveled from pre-COVID baseline, change to average
daily visits to non-essential locations from pre-COVID baseline, and change to average daily encounters per square kilometer from
baseline. Change to average distance traveled is a z-score difference in mean distance traveled for all cell phones in a county from
the average traveled distance on the same weekday in a pre-COVID period (March 8, 2021 or earlier). The second indicator, change
to average daily visits, controls for essential movements by distinguishing between essential and non-essential facilities.”* As with
change to average distance traveled, changes to visits are reported as z-scores. Finally, the rate of encounters captures person-to-
person contact. Since Unacast’s underlying cell phone data do not identify if two people have met, they define person-to-person
contact as each time two users are within 50 m of each other for 60 min or less. This value is then normalized by the counties’ area
(in square kilometers) and compared to a national baseline defined as the average encounters for a pre-outbreak period (February
10 to March 8, 2021).?* In all regression specifications, we use the average of all daily values from the previous 2-week period as
control variables. Summary statistics are presented in Table C1.

3.5. Local COVID-19 policies and mask-wearing behavior

State and local policies responding to the pandemic likely played an important role in shaping viral transmission rates as well
as health outcomes (see, for example, Courtemanche et al., 2020). We control for variation in local policies with information from
two datasets. First, we use the COVID-19 Government Response Event Dataset (CoronaNet v1.0) via Safegraph to account for policy
adoption of state governments (Cheng et al., 2020).% Next, we use the COVID-19 State and County Policy Orders Dataset provided
by the United States Department of Health and Human Services.** This second source of local policy information includes all policies
reported in three constituent databases. The first constituent data source is the COVID-19 US State Policy Database (Raifman et al.,
2021). The second set of data elements consists of all stay at home orders available in WikiData. A final set of local policies in the
COVID-19 State and County Policy Orders Dataset was curated specifically for this database by a dedicated team of Virtual Student
Federal Service Interns. For each state, we create indicator variables equal to one if a state policy has started and has not yet ended.
We perform the same with county-level policies, thereby generating a set of state and county policies at the daily level. We report
summary statistics for the full list of policies in Table C1.%

Finally, to test sensitivity of our results to geographical and temporal differences in mask-wearing behavior, we use survey
responses to the Understanding America Survey’s Understanding Coronavirus in America.”® Over our sample time horizon, this
survey asked 7754 internet panel members detailed questions on their behavior with respect to the pandemic every other week,
including on whether the survey respondent wore a mask. The survey responses are therefore at the individual survey-response
level, where state of residence is the most detailed geographic information available per respondent. For each date in our sample,
we collapse these survey responses to a simple average of the yes or no responses for a given state over the prior seven days. This
information allows us to test whether, irrespective of local mask-wearing mandates and other policies, differential aversive behaviors
may influence our results. Mask wearing reduces the spread of COVID-19 (Andrejko et al., 2022), but it could also protect from air
pollutants, including particulate matter (Zhang and Mu, 2018)

4. Methods

Our objective is to estimate the causal relationship between short-term fine particulate matter exposure and COVID-19 morbidity
and mortality, as well as potential channels leading to such morbidity and mortality. However, pollution exposure is not randomly
geographically assigned, and so many confounding factors may correlate with pollution exposure and COVID-19 outbreak severity.
Moreover, EPA-monitored air quality is an imperfect proxy for population exposure to pollution due to the non-random and sparse
placement of monitors within and across counties (see Grainger and Schreiber, 2019). We therefore instrument for air pollution
with local wind direction, following the methodology introduced in Deryugina et al. (2019). While pollution exposure may not
be randomly assigned across communities, daily variation in wind direction within a county is plausibly random. The methods

20 See https://www.unacast.com/. Last accessed: September 2, 2020.

2l Unacast categorized “essential” based on states’ guidelines. Essential locations include facilities like food stores, pet stores, and pharmacies, while non-
essential facilities include restaurants, department and clothing stores, spas and hair salons, among others. See https://www.unacast.com/post/unacast-updates-
social-distancing-scoreboard for more details on Unacast’s methodology. Last accessed: September 2, 2020.

22 For more detail on the indicator’s origin and the methodology followed by Unacast, see https://www.unacast.com/post/rounding-out-the-social-distancing-
scoreboard. Last accessed: September 2, 2020

23 See https://www.coronanet-project.org/download.html. Last accessed: September 2, 2020.

24 gee https://healthdata.gov/dataset/COVID-19-State-and-County-Policy-Orders/gyqz-9u7n. Last accessed: February 10, 2021.

25 The full list of state policies includes limiting mass gatherings, social distancing actions, stay at home or quarantine orders, school closures, testing initiatives,
state border closures, public surface cleaning, curfews, information campaigns, state of emergency declarations, administrative task forces, policies to provide
greater access to personal protective equipment, and other policies to increase access to healthcare resources (such as respirators). The full list of county policies
includes mask mandates, quarantines, and policies with respect to K-12 education, essential and non-essential businesses, religious establishments, manufacturing
establishments, and recreation activities.

26 See https://covid19pulse.usc.edu/. Last accessed: April 12, 2022.
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in Deryugina et al. (2019) further reduce measurement error by identifying PM 2.5 changes only from the regional impact of wind
on PM 2.5. The regional effect of wind on PM 2.5 is constructed by clustering air quality monitors into 100 regional groups and
employing air monitor cluster-specific wind direction instruments.” By restricting the wind-induced impact on PM 2.5 to be the
regional effect across clusters in many counties, the influence of any potentially-endogenous locally-generated fine particulate matter
is minimized.*

We instrument for air pollution with local wind direction, with the aim of identifying the effect of acute exposure to air pollution
on our outcomes of interest, by employing the following empirical specification. Let PM 2.5,,,, represent the average PM 2.5
concentration in county i, state s, week of the outbreak w, and day ¢. y;,,, is the health outcome of interest; these outcomes include
the daily incidence of confirmed COVID-19 cases per 100,000 population and the incidence of confirmed COVID-19 deaths per
100,000 population.?® We also explore the same case and death outcomes over 3-day, 7-day, 10-day, and 14-day periods to account
for possible reporting lags and delayed disease progression. Consider the following two stage least squares regression equation:

2
PM 2.5, = z Z ﬁ[fl (G; =gl * D]R?t()b +X'y + i + Mg + Viswr )
g€G b=0

Viswr = OPPM 2.5, + X'y + M + Mgy + €ign

In Eq. (1), DIR® represents three wind direction dummies indicating whether average wind direction falls into one of three
90° quadrants for county i on day t. The b superscript on DIR;,, as well as the same subscript on g, refers to wind directions in
the set {0°-90°, 91°-180°, 181°-270°}, where wind direction from angles 271°-360° is the omitted category. As in Deryugina
et al. (2019), variable 1[G; = g] is an indicator function asserting that county i belongs to air quality monitor group g in the set
of all air quality monitor clusters G. Our excluded instruments are the full interaction of air quality monitoring clusters with wind
direction dummies. Intuitively, the g; coefficients capture how wind direction influences PM 2.5 levels across a regional cluster of
air quality monitors g.>° Aside from the excluded instruments, Eq. (1) includes the term X for a suite of time-varying controls for
state and county COVID-19 mitigation policies, day of the week, five county-level dummies for wind speed quantiles, five county
indicators for each minimum and maximum temperature quantile, five county indicators for each precipitation quantile, two lagged
wind direction-by-monitor cluster interactions, and prior 2-week averages of Unacast social distancing metrics based on cell phone
data. Unacast social distancing variables are the change in average distance traveled from county-level baseline, change in visits
from baseline, and change in the rate of human encounters per square kilometer. We incorporate lagged 2-week averages for these
variables to control for behavior over the relevant incubatory period of COVID-19.! ¢, is a random error term clustered at the
county level. The coefficient of interest in Eq. (1) is ¢, an estimate of the relationship between an additional pg/m> of PM 2.5 and
case or death incidence from COVID-19. We note that ¢ is an estimate of the local average treatment effect of an additional unit
of PM 2.5. Providing causal evidence based on local average treatment effects has implications for external validity. In particular,
we infer from compliers, individuals whose COVID-19 status is affected by PM 2.5 and who would not have added to COVID-19
caseloads or deaths in a counterfactual scenario with lower PM 2.5. While never takers are unlikely, always takers represented by
unhealthy individuals are plausible in the context of COVID-19. Section 5.4 expands our analysis to hospitalizations, use of intensive
care units, and use of ventilators, which are more likely for vulnerable individuals. If the fraction of always takers was large for
these outcome variables, one would expect the effect of PM 2.5 to be muted.

Eq. (1) incorporates high-dimensional county and state-by-week fixed effects, 7; and #,,.** These fixed effects control for
time-constant county heterogeneity and time-varying state characteristics.*® Due to the nature of the spread of a contagion, the
state-by-week fixed effects are best suited for controlling for the evolving baseline infection rate in a local population, endogenous
responses to the infection rate, and the ways in which underlying heterogeneity may interact with these dynamics. Intuitively,
these fixed effects allow us to ask how better or worse air quality impacts the severity of the COVID-19 outbreak while taking a
ceteris paribus approach with respect to local characteristics, infection rate, and behaviors. For the purpose of comparison, we also

27 See Fig. 4 for a map of all air monitor clusters.

28 Deryugina et al. (2019) perform many robustness tests to confirm that this regional-based specification is not identifying local generation of fine particulate
matter. The authors perform randomization tests across monitors within regional cluster, showing that the results are the same for all randomized sub-groups
within cluster. See their Online Appendix A, “Source of Identifying Variation”, for a detailed discussion.

29 Each week of the outbreak w is defined as one plus the number of weeks since January 19, 2020, which is the first week of reporting in the Johns Hopkins
Data. Therefore, each weekly period is measured from Sunday to Saturday.

30 For example, a given wind direction is allowed to influence air pollution in the Chesapeake Bay region differently than the same wind direction in the San
Francisco bay region. Moreover, each f; is common to all monitors within a larger region, and so a few monitors near local sources in a given county should
not systematically identify each f.

31 We note that social distancing behavior over the previous two-week period may potentially be correlated with air quality. We take this theoretical possibility
seriously and test the sensitivity of our results to alternative specifications in which we alter the control variables in our model, as shown in Table C6. We
further discuss this potential issue in Section 5.3.

32 please refer to Correia (2016) for more details.

33 The use of state-by-week fixed effects, or within-state-and-week comparisons, imply that we are not investigating how air quality affects the speed of
transmission of the virus but rather how air quality affects the severity of illness among already-infected individuals. Confirmed cases are expected to represent
more severe cases, for which infected individuals experience symptoms and seek testing (Day, 2020; Gandhi et al., 2020). We do not expect air pollution to
change the threshold of symptoms leading individuals to seek testing, but rather to increase the number of people whose symptoms exceed such threshold. The
often-lengthy incubation period, testing lags, and reporting lags mean that our estimation procedure does not identify the speed of transmission. Section 5.4
further examines potential transmission channels as discussed in the literature and how they may relate to our empirical framework.

14



W. Austin et al. Journal of Environmental Economics and Management 119 (2023) 102815

show results with metropolitan statistical area (MSA)-by-week or core-based statistical area (CBSA)-by-week fixed effects. CBSAs
are groupings of counties anchored to one or more population centers of population greater than 10,000 individuals, whereas MSAs
are groupings of counties around population centers with population greater than 50,000 individuals.**

In line with Deryugina et al. (2019), the identifying assumption is that, after flexibly controlling for the above-mentioned
variables, county-level variation in daily wind direction is unrelated to variation in morbidity and mortality in the same county,
if not through variation in primarily regionally-transported wind-dependent air pollution. Since we control for two lagged wind
instruments within air monitor cluster, the instrument is moreover identified only from same-day changes from recent wind direction,
which reduces the likelihood that wind direction in general may be jointly correlated with COVID-19 outcomes and PM 2.5
concentrations. Moreover, identification requires that our wind direction by monitor cluster instruments strongly predict local air
pollution.*> Hence, this empirical approach provides quasi-experimental evidence of the effect of air pollution, instrumented by
changes in wind direction, on health outcomes, while addressing common issues identified in the literature such as measurement
error from various sources.

5. Results

In this section, we present estimates of the impact of PM 2.5 on a variety of COVID-19 outcomes, leveraging plausibly causal
variation in air pollution as described in Section 4. This section is organized as follows. First, we show how this harmful form of air
pollution affects COVID-19 case incidence and then death incidence at the county level. Next, we provide a battery of robustness
tests and sensitivity analyses. Then, we explore the mechanisms underlying our case and death incidence results, showing that our
findings primarily result from worsening of existing cases. Finally, we conduct heterogeneity analyses to provide suggestive evidence
of the types of counties most impacted by pollution with respect to COVID-19.

5.1. COVID-19 cases

Contemporaneous exposure to air pollution may influence the severity of illness, thereby increasing the number of confirmed
cases. Table 3 shows our primary results on confirmed cases across a range of fixed effects specifications. In columns (1) through (3),
we show the relationship between PM 2.5 and case incidence per 100,000 individuals in a county across specifications with state-by-
week, MSA-by-week, and CBSA-by-week fixed effects. In column (1), we find that an increase of one pg/m? of fine particulate matter
in a county increases the number of confirmed cases per 100,000 population by 0.15. This is a 2% increase from the mean case
incidence per county on a given day. In columns (2) and (3), we show that this increase is similar when adopting MSA-by-week
or CBSA-by-week fixed effects. We find similar yet larger effects on case incidence when using restricted CDC case surveillance
data, as shown in the first three columns of Table 10. These results, which are likely more accurate with respect to timing of case
confirmation, are between 0.24 and 0.27 per 100,000 population, or a 2.4 to 2.7% increase relative to mean case incidence per
additional unit of PM 2.5. Our results on case incidence are comparable to those of Isphording and Pestel (2021), who find that
one additional unit of fine particulate matter averaged over three-day periods increased COVID-19 case incidence in Germany by
between 0.2 and 0.45 per 100,000 population depending on the age group considered.

We quantify the magnitude of these findings in three ways. First, these results imply that a 10% increase in PM 2.5 within a
county would lead to 0.09 or 1.2% greater case incidence on the same day. Second, we compare our results to the relevant standard
deviation of PM 2.5. The within-county standard deviation of average daily PM 2.5 over our sample period is 3.6 pg/m°>. Therefore,
a wind-induced shift in PM 2.5 of one standard deviation would be expected to increase cases in any given county by at least 6.5%
from the mean. Third, we estimate the approximate change over the support of wind-induced PM 2.5 shifts. We incorporate four
wind-direction dummies. Within any county, the wind direction associated with lowest PM 2.5 levels has an average PM 2.5 level of
4.9 pg/m?; the second is 5.9, third is 6.9, and the highest wind direction is associated with mean PM 2.5 level of 7.9 pg/m>. These
categories illustrate that any given county has wide variation in PM 2.5 levels associated with wind direction, ranging an average
of 3 pg/m> from lowest to highest wind direction-pollution combination. Therefore, any given county would be expected to see at
least 5.4% more confirmed cases on the worst wind-pollution combination days in comparison to the best ones, or at least a 1.8%
increase in confirmed cases from even a slight step up in PM 2.5 associated with a marginal change in wind direction.

Estimates including the complete set of covariates are presented in columns (1) to (3) of Table C3. The point estimates for
these covariates should only be interpreted as correlational, and so it is not surprising to see that many policies, such as county
quarantine and mask-wearing mandates, are actually positively associated with case incidence. This pattern seems plausible if the
timing of some state and local policy reflects a response to higher community infection rates. On the other hand, some measures such
as statewide K-12 policies, creating an administrative task force, and regulating religious establishments are generally negatively
associated with new case incidence. As for social distancing behavior, we find that traveling less distance away from home over the

34 In each of these alternative fixed effect specifications, counties that are not in an MSA or CBSA are assigned state-by-week fixed effects. For example, a
county and MSA-by-week fixed effects specification would make within-MSA, within-week comparisons for MSAs, while rural regions would be compared to
other non-MSA regions in the same state and week. To avoid over-fitting, any MSA or CBSA with only one county is assigned the state-by-week fixed effect.
Analyses are also provided where we focus only on MSAs.

35 As in Deryugina et al. (2019), we report F-statistics computed by assuming that first-stage errors are not serially correlated. We have also computed the
F-statistics assuming serially correlated first-stage errors. As in Deryugina et al. (2019), F-statistics computed assuming serially correlated errors are substantially
larger than those we report. In either case, both computation methods yield F-statistics above 10 for our primary empirical specifications on PM 2.5.
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Table 3
Wind and PM 2.5 IV — Confirmed COVID-19 cases.
@ (2 3)
Weighted PM 2.5 0.146** 0.128** 0.133**
(0.0684) (0.0647) (0.0659)
F Stat 14.28 14.89 15.13
Dep Var Mean 7.875 7.882 7.882
Pct change mean 1.849 1.627 1.689
Controls v v v
County & State-by-week FEs v
County and MSA-by-week FEs v
County and CBSA-by-week FEs v
Observations 97,885 97,783 97,740

* p<0.1, ™ p<0.05, ** p<0.0l. Standard errors clustered at the county level in parentheses. Outcomes are daily case incidence
per 100,000 population. Controls include state-level and county-level policy adoption, wind speed, minimum and maximum daily
temperature, precipitation, prior two-week social distancing behavior, day-of-week, and two lagged wind direction-by-monitor
cluster interactions. Displayed output of a two-stage least squares regression model with county and state-by-week, MSA-by-week,
or CBSA-by-week fixed effects in which wind direction and air quality monitor cluster interactions are used to predict PM 2.5
levels in a county on a given day. F-statistics of the relevance test are computed assuming first-stage standard errors are not
serially correlated.

Table 4
Wind and PM 2.5 IV — Confirmed COVID-19 deaths.
(€9)] ) 3)
Weighted PM 2.5 0.00918 0.0122%* 0.0103*
(0.00571) (0.00600) (0.00600)
F Stat 14.28 14.89 15.13
Dep Var Mean 0.216 0.216 0.216
Pct change mean 4.256 5.646 4.785
Controls v v v
County & State-by-week FEs v
County and MSA-by-week FEs v
County and CBSA-by-week FEs v
Observations 97,885 97,783 97,740

*p<0.1,* p<0.05,*** p<0.0l. Standard errors clustered at the county level in parentheses. Outcomes are daily death incidence
per 100,000 population. Controls include state-level and county-level policy adoption, wind speed, minimum and maximum daily
temperature, precipitation, prior two-week social distancing behavior, day-of-week, and two lagged wind direction-by-monitor
cluster interactions. Displayed output of a two-stage least squares regression model with county and state-by-week, MSA-by-week,
or CBSA-by-week fixed effects in which wind direction and air quality monitor cluster interactions are used to predict PM 2.5
levels in a county on a given day. F-statistics of the relevance test are computed assuming first-stage standard errors are not
serially correlated.

prior two-week period is strongly negatively associated with case incidence, while the rate of encounters over the past two weeks
is positively associated with case incidence.

Further, we show how air pollution impacts the number of cases over the following 3, 7, 10, and 14 day periods in the first
panel of Table 5. For concision, we show only specifications with county and state-by-week fixed effects.>® In column (1), we see
our previous result that a one pg/m? increase in PM 2.5 increases the case incidence by 0.15. Column (2) of the table suggests that
a one unit increase in fine particulate matter in a given county is expected to increase the number of cases per 100,000 population
by 0.35 over the following three-day period. While this effect in magnitude is over twice as large, it is a smaller percent increase
relative to the mean 3-day combined case rate at 1.5%. Meanwhile, the same one unit increase would be expected to increase the
case rate by 0.4 over a seven-day period, 0.65 over a ten-day period, and by 0.3 over a two-week period. It seems reasonable that
the magnitude of the effects would increase over longer time horizons before plateauing, as a given exposure to pollution may lead
the severity of cases to increase over several days, and testing or reporting lags may further delay the time of confirmation. Yet,
our estimates also become noisier over longer time horizons.

5.2. COVID-19 deaths
Table 4 displays point estimates for the relationship between levels of fine particulate matter and confirmed COVID-19 deaths. As

in Table 3, columns (1) through (3) display results on death incidence per 100,000 individuals across our three primary fixed effects
specifications. The point estimate in column (1) suggests that an additional unit of wind-induced PM 2.5 would raise the same-day

36 MSA-by-week and CBSA-by-week fixed effects specifications point to very similar patterns. The corresponding estimates are presented in Table C4 and Table
C5 in the Appendix.
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Table 5
Wind and PM 2.5 IV — Confirmed COVID-19 cases and deaths across 1, 3, 7, 10, and 14 day periods.
(€D 2) 3) “@ 5)
Same-day 3-day total 7-day total 10-day total 14-day total
Case incidence per 100,000
Weighted PM 2.5 0.146%* 0.351%* 0.393 0.656 0.316
(0.0684) (0.158) (0.332) (0.457) (0.579)
F Stat 14.28 14.28 14.28 14.28 14.28
Dep Var Mean 7.875 23.787 56.541 81.911 116.792
Pct change mean 1.849 1.475 0.694 0.801 0.270
Controls v v v v v
County & State-by-week FEs v v v v v
Observations 97,885 97,885 97,885 97,885 97,885
Death incidence per 100,000
Weighted PM 2.5 0.00918 0.00785 0.0307** 0.0153 0.0141
(0.00571) (0.00874) (0.0139) (0.0168) (0.0212)
F Stat 14.28 14.28 14.28 14.28 14.28
Dep Var Mean 0.216 0.649 1.537 2.218 3.150
Pct change mean 4.256 1.209 1.998 0.688 0.448
Controls v v v v v
County & State-by-week FEs v v v v v
Observations 97,885 97,885 97,885 97,885 97,885

* p <01, * p<0.05 ** p< 00l Standard errors clustered at the county level in parentheses. Controls include state-level
and county-level policy adoption, wind speed, minimum and maximum daily temperature, precipitation, prior two-week social
distancing behavior, day-of-week, and two lagged wind direction-by-monitor cluster interactions. Displayed output of a two-stage
least squares regression model with county and state-by-week fixed effects in which wind direction and air quality monitor
cluster interactions are used to predict PM 2.5 levels in a county on a given day. The outcomes in column (1) are same-day
incidence of cases or deaths. Outcomes in column (2) are incidence of cases or deaths over the same day and the following two
days. Outcomes in column (3) are deaths over the same day and the following nine days. Outcomes in column (4) are incidence
of cases or deaths over the same day and the following thirteen days. All regressions use same-day predicted fine particulate
matter as dependent variable. F-statistics of the relevance test are computed assuming first-stage standard errors are not serially
correlated.

death rate from COVID-19 by 0.009. This coefficient is slightly larger and more statistically precise when adopting MSA-by-week
or CBSA-by-week fixed effects in place of the state-by-week fixed effects, as displayed in columns (2) and (3). These results suggest
a 4%-6% increase from the mean daily death rate of 0.2 per 100,000 population in a county.’” These results are similar to those
in Isphording and Pestel (2021), who find that an average increase of one additional unit of PM 10 over a three-day period would
increase COVID-19 death incidence in Germany by 0.04 per 100,000 male individuals between 60 and 79, or by 0.01 for females of
the same age group. This impact among patients aged 60-79 is not directly comparable to our population-level estimates, although
we note that it is nevertheless very similar to the impacts we observe, especially for female patients of this demographic group.
To provide additional context for the magnitude of our estimates with respect to wind, our estimates suggest that a 10% increase
in mean PM 2.5 on a given day would increase mortality incidence from COVID-19 by 0.006-0.007 per 100,000 population in a
county depending on the fixed effects specification, or at minimum a 2.7% increase from the mean daily incidence. Similarly, a one
standard deviation increase in PM 2.5, or a within-county shift of 4.2 ug/m?®, would lead to an increase in 0.04 deaths per 100,000
population, a nearly 15% increase from the mean death incidence. Lastly, another way to interpret our results would suggest that
wind shifting within a county from the dirtiest to the cleanest direction would lead to 13% more deaths, or 0.03 individuals per
100,000 population.

We perform the same regression on mortality incidence derived from the restricted CDC case surveillance data in Table 10. While
these data have accurate dates of case confirmation, they do not include information on the timing of mortality. Hence, we simply
assign each mortality event to the date of case confirmation. As we might expect, these results are attenuated in comparison to
estimates using Johns Hopkins data. In particular, columns (4) through (6) demonstrate that a one unit increase in PM 2.5 on the
day of case confirmation increases the later mortality incidence associated with these cases by 0.004 to 0.007, a 1.6-2.3% increase
from the mean. These are half as large as our primary estimates for which timing of mortality is known. We take this as evidence
that air pollution exposure impacts case severity and case progression to mortality after initial infection and case confirmation. We
return to this discussion in Section 5.4.

Finally, consistent with Deryugina et al. (2019), we examine the relationship between exposure to an additional unit of PM 2.5
and COVID-19 deaths over longer time horizons. The corresponding estimates are provided in Table 5. For death incidence, we show
that the relationship remains roughly constant at 0.008 over a 3-day period. Over a 7-day period, we observe that an additional unit
of PM 2.5 increases death incidence by 0.03 per 100,000 population, which is three times the magnitude of the same-day effect but

37 Regression results with the complete set of covariates can be found in Table C3, columns (4) to (6).
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only a 2% percent increase relative to the 7-day mean death incidence. We observe noisier relationships between exposure to PM
2.5 and death incidence over 10- and 14-day periods, with a magnitude slightly larger but roughly consistent with the same-day
impact. To provide some context for these magnitudes, our results suggest that a county would have 6% fewer deaths if wind came
from the least-polluted direction for one week, in comparison to itself if wind came from the most-polluted direction for the same
period of time.

5.3. Robustness tests

We assess the sensitivity of our results to a battery of robustness tests. We proceed as follows. First, we incorporate different
combinations of time-varying daily controls. In particular, we confirm our results when controlling for local infection severity. We
also test the sensitivity of our results to differential self-reported mask-wearing behavior. Next, we re-estimate our main model
with controls for ozone concentrations as in Isphording and Pestel (2021). Further, we explore alternative specifications relying on
inverse hyperbolic sine-transformed case and death outcomes or using ordinary least squares. We also exclude various localities with
possibly unique characteristics. We then re-examine our methods for assigning wind direction to the local level and incorporating
weather controls. Finally, we test how reporting inconsistencies may impact our results by dropping each day of the week from our
regression sample one at a time.

Inclusion of different time-varying controls: Our primary regressions control for local policies to control the spread of COVID-19, wind
speed, daily precipitation, daily minimum and maximum temperature, past two-week average social distancing information, day of
the week, and two days of lagged wind-direction combinations. In Table 6, we determine whether our primary results differ when
subsets of controls are employed.

To start, we show results with only our primary fixed effects for county, state-by-week, day of the week, and lagged wind
instruments in columns (1) and (5), hence dropping controls for weather, state and local policies, and social distancing behaviors.
In this specification, we see a relationship between fine particulate matter and cases that is of smaller magnitude to our primary
estimates for cases, at roughly 1.3% increase from the mean compared to 1.8%, although statistical precision is similar. For deaths,
we see a relationship of larger magnitude and statistical precision at a 6.5% increase from the mean relative to 4.2% in our main
specification. The difference in how these controls affect point estimates for cases and mortality could reflect the fact that some
of these controls are more or less influential on cases than mortality. It is also possible that weather events are correlated with
PM 2.5 and mortality, hence driving up the estimated relationship between PM 2.5 and mortality. These possibilities highlight
the importance of controlling for these variables. In columns (2) and (6), we adjust the model to include daily precipitation and
temperature controls. For cases and deaths, we observe, likely because of omitted variable bias being gradually addressed, larger
point estimates of comparable statistical precision to the simple case presented in columns (1) and (5), suggesting that one unit
of fine particulate matter in a county led to a 2% increase in daily case incidence and a 7% increase in daily death incidence.
Adjusting the model to include local policies, in columns (3) and (7), leaves the magnitude of the point estimates and statistical
precision largely unchanged for both cases and deaths. In these cases, again, we observe somewhat smaller point estimates for cases
than our primary specification in Tables 3 and 4. Finally, in columns (4) and (8), we drop policy controls and add our past 2-week
social distancing behavior controls. While this specification change does not particularly affect our point estimate on cases, it tends
to decrease the magnitude and precision of our relationship between fine particulate exposure and death incidence. Still, in general,
the results in Table 6 are roughly comparable to our primary estimates, with the magnitude for cases situated between an increase
of 1.3%—-2% and for deaths between 4%-7%. This evidence compounds that provided in Deryugina et al. (2019) on the validity of
wind direction as an instrument for air pollution.

The results in Table 6 suggest attenuation with inclusion of prior two-week social distancing controls. We note that two-week
average social distancing behavior may be correlated with pollution through two channels, avoidance behavior (Graff Zivin and
Neidell, 2009; Neidell, 2009; Deschénes et al., 2017) and the fact that past social distancing behavior may imply less pollution.
These factors may lead to the attenuation dynamics that we observe. We therefore further explore the sensitivity of our results to
different formulations of social distancing controls in Table C6. In general, we observe point estimates of very similar magnitude
when adopting different variations of these controls. Importantly, in column (1), we see point estimates of similar magnitude and
even greater statistical precision for death incidence when dropping social distancing controls altogether. This analysis suggests that
including social distancing controls in our empirical model leads to more conservative estimates.

Lastly, since case and death incidence from COVID-19 may be largely dependent on the accumulated local caseload over a
recent period, we consider additional controls related to the local severity of the pandemic within a county in Table 7, as Persico
and Johnson (2021) and Isphording and Pestel (2021) also do. In columns (1) and (4), we condition on the number of days since
the first death in a county. In columns (2) and (5), we condition on the cumulative number of cases seven days prior. Similarly,
columns (3) and (6) condition on cumulative number of cases fourteen days prior. Each regression uses county and state-by-week
fixed effects and the standard controls of Tables 3 and 4. For each additional control, our point estimates on case incidence are
slightly larger but vary by less than 0.003 in magnitude compared with our baseline estimations and remain the same in terms of
statistical significance. The magnitude of the point estimates on death incidence also vary little with inclusion of these controls, by
no more than 0.0004. However, inclusion of controls for accumulated cases in the weeks prior increases precision of point estimates
on death incidence, which now reach statistical significance. Overall, the inclusion of these controls increases the magnitude and
precision of our results, suggesting they may be an important factor to account for in the estimations. Hence, the results in Table 7
point to our baseline estimations as rather conservative.
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Table 6
Wind and PM 2.5 IV — Model sensitivity to included controls.
Cases Deaths
@ (2) 3) @ ©)] (6) @) (8
Weighted PM 2.5 0.0870* 0.125**  0.135**  0.133* 0.0112***  0.0121***  0.0119***  0.00919
(0.0473)  (0.0624) (0.0627) (0.0680) (0.00362) (0.00439) (0.00448) (0.00562)
F Stat 22.00 15.43 15.32 14.38 22.00 15.43 15.32 14.38
Dep Var Mean 6.321 6.320 6.320 7.875 0.169 0.169 0.169 0.216
Pct change mean 1.377 1.972 2.140 1.684 6.592 7.152 7.040 4.262
County & State-by-week FEs v v v v v v v v
Lagged instruments v v v v 4 v v v
Day-of-week FEs v v v v v v v v
Weather controls v v 4 v v 4
Policies controls v v
Social distancing controls v v
Observations 128,314 128,247 128,247 97,885 128,314 128,247 128,247 97,885

* p<0.1,* p<0.05, *** p<0.0l. Standard errors clustered at the county level in parentheses. Displayed output of a two-stage
least squares regression model with county and state-by-week fixed effects in which wind direction and air quality monitor cluster
interactions are used to predict PM 2.5 levels in a county on a given day. All regressions include controls for day-of-week and
two lagged wind direction-by-monitor cluster interactions. Baseline results with only these controls are depicted in columns (1)
and (5). Columns (2) and (6) add weather controls for precipitation, minimum temperature, and maximum temperature. Columns
(3) and (7) include weather controls and add controls for state and local policies. Columns (4) and (8) include weather controls
as well as three controls for prior two-week social distancing behavior, although state and local policy controls are dropped.
F-statistics of the relevance test are computed assuming first-stage standard errors are not serially correlated.

Table 7
Wind and PM 2.5 IV — Controlling for severity of the pandemic.
Cases Deaths
@ (@) 3 )] 5) (6)
Weighted PM 2.5 0.146** 0.147** 0.149** 0.00917 0.00951* 0.00957*
(0.0683) (0.0683) (0.0682) (0.00571) (0.00572) (0.00573)
F Stat 14.28 14.27 14.27 14.28 14.28 14.28
Dep Var Mean 7.875 7.875 7.875 0.216 0.216 0.216
Pct change mean 1.854 1.867 1.886 4.251 4.407 4.437
Controls v v v v v v
County & State-by-week FEs v v v v v v
Days since first death v v
Cumulative cases 7 days prior v v
Cumulative cases 14 days prior v v
Observations 97,885 97,885 97,885 97,885 97,885 97,885

* p <01, * p<0.05 ** p< 00l Standard errors clustered at the county level in parentheses. Controls include state-level
and county-level policy adoption, wind speed, minimum and maximum daily temperature, precipitation, prior two-week social
distancing behavior, day-of-week, and two lagged wind direction-by-monitor cluster interactions. All regressions include county
and state-by-week fixed effects. Displayed output of sensitivity tests including three additional controls related to the county-level
severity of the pandemic. Columns (1) and (4) include a control for the number of days since the first reported death in a given
county. Columns (2) and (5) include a control for the cumulative number of cases or deaths, respectively, seven days prior to day
of the case or death incidence outcome in the same county. Columns (3) and (6) include a control for the cumulative number of
cases and deaths 14 days prior to the case or death outcome. F-statistics of the relevance test are computed assuming first-stage
standard errors are not serially correlated.

Mask-wearing behavior: We next test how the inclusion of survey measures of mask-wearing behavior affects our results. For this
sensitivity analysis, we use survey responses to the Understanding Coronavirus in America questions in the Understanding America
Study. Table C7 reports our primary results when including this variable as a control. The point estimates of interest are very
similar in magnitude although somewhat less precise, which we take as evidence that differential masking behavior is not driving
the relationship between pollution and COVID-19 severity. Rather, mask-wearing behavior may slightly attenuate the relationship
between pollution and COVID-19 case severity by limiting transmission and in some cases also protecting from air pollution. We
nevertheless note that these results should be interpreted with caution as mask-wearing behavior is not only self-reported, but also
endogenous to pandemic severity, potentially leading to endogenous self-reporting as well. Indeed, the second row of results in
Table C7 shows that recent mask-wearing behavior is strongly negatively correlated with case transmission, as we might expect,
but it is positively associated with mortality. This positive association likely reflects that individuals are more likely to wear masks,
or to report that they do, when mortality is high in the same state.

Controlling for ozone: We use PM 2.5 as our primary independent variable to represent air pollution. The main rationale is that
our empirical strategy, based on Deryugina et al. (2019), is very much geared towards capturing the causal effect of PM 2.5 on the
outcomes of interest. Yet, a variety of pollutants contribute to air quality. Several pollutants tend to be correlated with PM 2.5, but
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Table 8
Alternative specifications.
Cases Deaths
(€3] ) 3) @
Weighted PM 2.5 0.00968* 0.0589** 0.00468** —0.000800
(0.00495) (0.0260) (0.00211) (0.000770)
F Stat 14.28 14.28
Dep Var Mean 1.675 7.875 0.152 0.216
Pct change mean 0.968 0.748 0.468 -0.371
Controls v v v v
County & State-by-week FEs v v v v
Inverse hyperbolic sine v 4
Ordinary least squares v v
Observations 97 885 97 885 97 885 97 885

* p <01, * p<0.05 ** p< 00l Standard errors clustered at the county level in parentheses. Controls include state-level
and county-level policy adoption, wind speed, minimum and maximum daily temperature, precipitation, prior two-week social
distancing behavior, day-of-week, and two lagged wind direction-by-monitor cluster interactions. All regressions include county
and state-by-week fixed effects. Displayed output of alternative modeling specifications. Columns (1) and (3) apply the inverse
hyperbolic sine transformation to the incidence of cases or deaths. Columns (2) and (4) present the results of an Ordinary Least
Squares estimation procedure instead of the two-stage least squares model.

their measurement is much sparser, leaving us with a much smaller sample size (that is the case for instance for NO, and SO,).
Further, measures such as the EPA’s Air Quality Index (AQI) tend to be highly dependent on variation in PM 2.5, so that estimates
for PM 2.5 and AQI would tell a very similar story (as we report in Austin et al., 2020). However, as discussed in Isphording and
Pestel (2021), one pollutant, ozone, stands out for its negative correlation with PM 2.5 (see Jia et al., 2017). Further, ozone may
also be responsible for immediate, adverse health effects, in particular with respect to respiratory issues. As a result, in this section
we test the robustness of our results to controlling for ozone.

As with PM 2.5, we construct ozone variables by population-density weighting pollution measures when more than one ozone
monitor is present in a county. As mentioned, missing observations are an important issue for all pollutants other than PM 2.5, albeit
slightly less so for ozone than it would be for instance for NO, and SO,. Hence, we code our variable so as to isolate the effect of
a missing observation through a random number. The results are presented in Table C8. All columns indicate that our main results
for both cases and deaths are robust to the inclusion of ozone as a control variable. If anything, point estimates become slightly
larger, suggesting that our main estimates are rather conservative. The coefficients for ozone, instead, do not point to any particular
pattern in our sample.

Alternative empirical specifications: Here, we present results for two alternative empirical specifications in Table 8. First, we
demonstrate the robustness of our findings to applying an inverse hyperbolic sine transformation to case and death incidence
variables in columns (1) and (3). A log transformation may help to eliminate skew in case or death incidence. We use the inverse
hyperbolic sine transformation as opposed to a simple natural logarithm due to the presence of many zeros for cases and deaths in
our data. The relationship between air pollution and hyperbolic-sine-transformed cases and deaths is statistically significant for both
case and death incidence, although the point estimates are somewhat smaller. We find that a one unit increase in fine particulate
matter increases case incidence by 1% and death incidence by 0.5% from the mean.*®

Next, we show reduced-form ordinary least squares (OLS) estimates of our relationship of interest. The previous literature has
identified measurement error of pollution exposure as an important issue when analyzing the effect of air pollution on health
outcomes, thus leading to the use of an instrumental variable approach (Luechinger, 2014; Deryugina et al., 2019; Anderson, 2020).
The instrumental variable approach can also tackle other non-random sources of variation in pollution exposure, which may limit
the extent to which naive OLS estimations approximate causality. To shed light on the potential biases of a naive regression, we
display estimates obtained via OLS in columns (2) and (4) of Table 8. We estimate these relationships with county and state-by-week
fixed effects as well as the same controls as in our baseline specifications. We find that an additional unit of PM 2.5 is statistically
significantly associated with 0.06 increased cases per 100,000 population. This is a 0.7% increase relative to the mean daily case
incidence in a county, which is slightly over one third the magnitude of our primary estimates for case incidence. In column (4), we
show that a one unit increase in PM 2.5 is negatively associated with daily death incidence in a county, although the association
is insignificant and the magnitude of the point estimate is a small 0.3% of the mean death incidence. We take the differences
in magnitude or sign of these OLS point estimates as evidence confirming the conclusions in Luechinger (2014), Deryugina et al.
(2019), and Anderson (2020) on the influence of measurement error and non-random pollution exposure in naive regressions.

38 We conducted an analysis of residuals to compare log-transformed and regular outcomes. The log-transformed model eliminated a small share of the upward
skew in our residuals. However, they also introduced some degree of bias. We noted a slight downward line of fit between the residuals and fitted values in
log-transformed models, while our main model displayed a flat relationship between fitted values and the residuals. We believe this analysis supports our use
of non-transformed case and death incidence variables as primary outcomes, a decision that is also in line with Isphording and Pestel (2021).
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Excluding specific geographies: We test how localities with unique characteristics or reporting practices may impact our primary
estimates in Table C9. In columns (1) and (4), we show results without New York City, the location of the first major outbreak of
COVID-19 in the United States. New York City may be considered an outlier in many respects, including population density, initial
outbreak intensity, COVID-19 policy response, and pollution levels. We also drop counties in the multi-state Kansas City region
in columns (2) and (5), as cases and deaths are reported for the entire city as opposed to by county in the CSSE COVID-19 Data
Repository. Lastly, Utah reports COVID-19 outcomes by collections of counties (i.e., health districts), and so in columns (3) and
(6) we show our primary results when dropping this state. These robustness checks mirror similar checks performed in Persico and
Johnson (2021). In all models, we see effect sizes of similar if not greater magnitude and statistical precision. Removing New York
City notably increases the magnitude and statistical precision of our point estimates for death incidence from 0.009 to 0.014 per
100,000 population. This represents an increase from 4% to 7%. Dropping Kansas City and Utah, conversely, barely changes the
point estimates in magnitude and precision in comparison to our baseline model. From these results, we conclude that our findings
are robust to the exclusion of geographies with unique characteristics or reporting practices. If anything, their inclusion may add
some statistical noise to our estimates, pointing once more to the conservativeness of our baseline estimates.

Next, because the inclusion of New York City seems to affect the precision of our point estimates, we test our results when
limiting the sample to counties in MSA regions in Table C10. Here we include the same controls as before and display estimates
with county-by-week and MSA-by-week fixed effects. One might expect counties constituting MSA regions to have different COVID-
19 transmission, policy adherence, aversion behavior, or other characteristics that might impact our relationships of interest. In all
regressions limited to MSA regions, we see statistically insignificant point estimates related to fine particulate matter. The magnitude
of the point estimate for cases is roughly two thirds as large as our primary estimates, at 0.9-0.1 cases per 100,000 instead of 0.15.
For death incidence, we see noisy point estimates with positive and negative signs. These results may largely reflect the smaller
sample size that is left when limiting to MSA regions. However, they may also be in part suggestive of a pattern by which more
urban regions may have experienced differential impacts from pollution exposure with respect to COVID-19 in comparison to the
rest of the country. We devote more attention to this heterogeneity of impacts in Section 5.5.

Alternative approaches to weather and wind: Wind and weather information is of crucial importance to our identification strategy.
We therefore test the sensitivity of our results to alternative methods of assigning wind directions as well as different configurations
of weather controls. To start with wind direction, we assign wind direction variables to air quality monitors by inverse-distance
weighting wind direction values of the four nearest weather stations, where the inverse distance weights are applied to directional
wind vectors as described in Section 4. These monitor-specific wind direction measurements are similarly population-weighted to
derive county-level measurements. We also present results under two alternative assignment mechanisms. First, we assign wind
direction based on only the closest weather station with non-missing wind information on a given day. Next, we assign wind
direction based on inverse-distance weighting wind direction values of the twelve nearest weather stations. We present our main
empirical specifications with these alternate wind direction assignments in Table C11. When assigning wind direction based on only
the closest weather station, in columns (1) and (4), point estimates for cases are slightly larger while our results for deaths are
marginally smaller in magnitude in comparison to our baseline findings, which are presented in columns (2) and (5). Statistical
precision is similar in either case. In columns (3) and (6), when taking the distance-weighted average of wind direction across the
nearest 12 weather stations, we note similar results for cases but a somewhat attenuated point estimate with respect to deaths at
0.008 instead of 0.009. These results suggest that our estimates are similar across different methods of aggregating wind direction
measurements to the county level.

Further, given the importance of weather conditions in potentially moderating the activity and infectivity of the COVID-19 virus
(see Sarkodie and Owusu, 2020), we explore alternative combinations of weather controls in Table C12. Columns (1) and (3) reflect
our base model with wind speed, temperature, and precipitation controls for day 7 only. In columns (2) and (4), we include additional
lagged weather variables representing day ¢, r — 1, and 7 — 2. Evidently, conditioning on these lagged weather variables improves
the magnitude and statistical precision of our point estimate for deaths, raising it from 0.009 to a statistically significant 0.01, or a
jump from 4.2% relative to the mean to 4.8%. The point estimate for cases, meanwhile, is slightly smaller in magnitude but very
similar to our baseline regressions. We take these results as suggesting that including more weather controls in our model would
not attenuate our estimated relationship between fine particulate matter and COVID-19 outcomes and, if anything, would lead to
larger estimates for death incidence.

Time horizons of reporting: In Section 3, we note uncertainties related to the time stamp of case and death reporting. In general,
the timestamp of cases and deaths reflects the date a state reported them on COVID-19 web-based dashboards. As such, our results
may be influenced by inconsistent, lagged, and lumpy reporting by states and corresponding healthcare institutions. In particular,
institutions may be less likely to report new data on holidays or weekends. To determine how inconsistent reporting across specific
days of the week may influence our results, we drop each day of the week one at a time in Table C13. In columns (3) through
(6), we observe that excluding week days that are less likely to have abnormal reporting typically leads to point estimates of lower
magnitude and statistical precision for deaths. Results for cases are mostly lower as well with the exception of Thursday. These lower
point estimates likely result from reducing the sample size and data signal without simultaneously improving accuracy of case and
death timing assignment. Conversely, excluding days that are more likely to have abnormal reporting, such as the weekend and
Monday, when recent weekend outcomes may be reported, results in point estimates that are generally larger and more statistically
precise, as one might have expected. For example, dropping any day from Saturday to Monday results in statistically significant
point estimates on death incidence in the range of 0.011 to 0.014, or a 5%-6% increase relative to the mean as opposed to our
base estimates of 4.2%. Our point estimates for case incidence over the weekend are split, with much larger estimates than our
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baseline when dropping Saturday but a smaller estimate when dropping Sunday. While these patterns are not perfectly uniform,
they generally suggest that lumpy or inaccurate timing issues may be an attenuation factor in our main findings. That is, while
these issues may not substantively alter the overall interpretation of our results, they also point to our baseline estimates as rather
conservative.

5.4. Mechanisms

In this section, we discuss the potential mechanisms driving the relationship between PM 2.5 and COVID-19 cases and mortality,
building upon the literature covered in Section 2. We proceed in two ways. First, we adjust our empirical approach to accommodate
COVID-19 Tracking Project data at the state-day level and test the relationship between PM 2.5 and hospitalizations, use of intensive
care units, and use of ventilators, with the goal of determining the causal chain potentially leading from air pollution exposure to
death from COVID-19. In related analyses, we consider viral testing counts and positivity rates as outcome variables. Second, we
use the restricted CDC case surveillance data, as described in Section 3, to analyze mechanisms at the individual level, aggregating
at the county level for case incidence in line with our main estimations and with an individual-level analysis for other outcomes.
The goal of this second set of analyses is to complement the first approach and shed further light on the mechanisms behind our
main relationship of interest. As mentioned in Section 3, while we possess information on the location of the individual records at
the county level, one downside of this approach relates to how we observe timing. In particular, we do not observe the timing of
hospitalization, admission to intensive care units, ventilator use, or mortality. We investigate how these eventual outcomes vary
with air pollution on the day of case confirmation, and in separate analyses we also incorporate longer time horizons of pollution
corresponding to the period after initial case confirmation. Yet, because the temporal match of our wind instrument is important to
our identification strategy, these results should be interpreted with this timing issue in mind. Hence, the two approaches, state-level
variables with the same timing as in our main estimations and county-level variables as in our main estimations but with unknown
timing of clinical outcomes, provide different but complementary views of the mechanisms underlying our findings.

COVID-19 Tracking Project state-level outcomes: We start with the empirical analysis of the relationship between PM 2.5 and
hospitalizations, use of intensive care units, and use of ventilators, all observed in the COVID-19 Tracking Project at the state-
day level. We also consider testing and positivity rates. Table 9 provides the main estimates in three panels, one for each outcome
variable: hospitalizations, use of intensive care units, and use of ventilators. The first three columns provide same-day estimates with
fixed effect specification changes that parallel our approach in Section 5, while columns (4) and (5) examine effects over three and
seven days, respectively, where the outcome variable is represented by total patient-day use of these services over the corresponding
period at the state level. The first panel of Table 9 shows that changes in PM 2.5 lead to more hospitalizations or longer hospital
stays, in the order of about 10 to 16 additional hospitalization-days per state per county pg/m’ increase. This contemporaneous
relationship suggests that changes in pollution can affect the clinical course of severe COVID-19 patients, leading to increased risk
of hospitalization or longer hospitalizations. Point estimates tend to be larger, although not statistically significantly so, over three
and seven days, with the latter specification being more imprecisely estimated.

If the clinical course of a COVID-19 patient does not improve with hospitalization, or if the symptoms are very concerning at the
time of hospitalization, a move to an intensive care unit may be necessary. The second panel of Table 9 indicates that a same-day
increase in PM 2.5 leads to higher use of intensive care units, in the order of about 3 to 4 additional intensive care units used per
day per state for each pg/m?> increase, depending on the specification. Hence, a contemporaneous relationship between PM 2.5 and
patient outcomes is identified for both hospitalizations and intensive care unit use. As mentioned, patients may be exposed to such
higher levels of pollution while already hospitalized, or be immediately given a spot in an intensive care unit when transported to
the hospital. We are unable to disentangle these two channels. Still, we discuss in Section 6 potential interventions to improve air
quality in hospital rooms and indoor pollution in general. Estimates over three and seven days tend to be less precisely estimated.
The coefficient for the seven-day period tends to be substantially larger than the ones in previous columns, pointing to a potential
ramping up of the relationship, but the relatively large standard errors limit our ability to confirm such interpretation. Comparing
estimates for hospitalizations and use of intensive care units, we observe that the identified relationship is about three to four times
stronger for hospitalizations than it is for use of intensive care units. Recall that, as shown in the summary statistics provided in
Table 1, state-level hospitalizations average 1646 while state-level use of intensive care units averages 640. Hence, on average, only
1 in 3 patients entered intensive care.

The third panel in Table 9 considers ventilator use by patients whose clinical course is more severe. While most coefficients
suggest a positive and large, if not statistically significant, relationship between PM 2.5 and use of ventilators, the estimates tend
to be noisy. As shown in the summary statistics provided in Table 1, the state average in ventilator use per day is around 208, so
the number of observations from which to derive inference is relatively limited, given also the more spatially aggregate variable
compared to our main specifications in Section 5. Further, it is possible that with ventilators the fraction of always-takers, in causal
jargon, is larger, and thus the fraction of compliers from whom to infer smaller, contributing to the above-mentioned noise. Hence,
the observed statistical imprecision prevents us from making any conclusive statements regarding ventilator use using these data
alone.

We also consider how PM 2.5 affected viral testing and positivity rates. PM 2.5 may increase testing if people experience new
symptoms associated with COVID-19 or more severe COVID-19 symptoms. While our fixed effects specifications are designed to
hold statewide infection rates roughly constant within a given week, PM 2.5 may nevertheless increase positivity rates if more
individuals with COVID-19 experience symptoms and get tested compared to a counterfactual where a larger fraction of tests is
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Table 9
Wind and PM 2.5 IV — Regressions over alternative outcomes: Hospitalizations, use of ICUs, and use of ventilators.
@ ) 3 @ )
Same-day Same-day Same-day 3-day 7-day
Hospitalizations
Weighted PM 2.5 13.18%** 10.15%** 16.41%** 22.31%* 22.27
(3.495) (3.672) (4.902) (10.08) (25.15)
F Stat 9.65 9.88 9.98 9.60 9.59
Dep Var Mean 1646.36 1647.19 1647.18 4962.06 1.2e+04
Pct change mean 0.800 0.616 0.996 0.450 0.191
Controls v v v v v
County & State-by-week FEs v v v
County and MSA-by-week FEs 4
County and CBSA-by-week FEs v
Observations 70,875 70,823 70,801 70,757 70,587
Intensive care units
Weighted PM 2.5 3.260%* 3.192%* 4.433%%* 3.892 9.823
(1.430) (1.446) (1.641) (3.914) (7.771)
F Stat 13.09 13.14 13.06 13.05 13.03
Dep Var Mean 639.95 640.08 640.22 1925.66 4507.23
Pct change mean 0.509 0.499 0.692 0.202 0.218
Controls v v v v v
County & State-by-week FEs v v v
County and MSA-by-week FEs v
County and CBSA-by-week FEs v
Observations 42,307 42,276 42,266 42,207 42,064
Ventilators
Weighted PM 2.5 —0.0993 0.333 0.0985 0.0935 2.396
(0.477) (0.581) (0.556) (1.190) (2.617)
F Stat 18.07 17.40 17.54 18.43 17.84
Dep Var Mean 207.99 207.99 208.00 615.11 1392.01
Pct change mean —0.048 0.160 0.047 0.015 0.172
Controls v v v v v
County & State-by-week FEs v v v
County and MSA-by-week FEs v
County and CBSA-by-week FEs v
Observations 30,614 30,591 30,580 30,561 30,484

* p <01, * p<005 ** p< 00l Standard errors clustered at the county level in parentheses. Controls include state-level
and county-level policy adoption, wind speed, minimum and maximum daily temperature, precipitation, prior two-week social
distancing behavior, day-of-week, and two lagged wind direction-by-monitor cluster interactions. The table displays regressions
over three different outcomes: hospitalizations, use of Intensive Care Units (ICU), and use of ventilators, at the state-day level.
All outcomes represent the number of patients using these healthcare resources on a given day. Columns (1) through (3) analyze
these outcomes on the same day over three types of geography-by-week fixed effects. Column (4) and column (5) display the
relationship between fine particulate matter and summed daily outcomes over three days and seven days, respectively. Regressions
employ county population weights. F-statistics of the relevance test are computed assuming first-stage standard errors are not

serially correlated.

taken by asymptomatic individuals, either because of testing requirements or because they might have been in contact with an
individual who then tested positive. PM 2.5 could also potentially increase the positivity rate if PM 2.5 accelerates transmission of
COVID-19 as hypothesized by Setti et al. (2020) and Zhang et al. (2020). However, as mentioned, there is little evidence in favor of
this latter channel. Lastly, we note the possibility that elevated exposure to PM 2.5 could even decrease the positivity rate if many
individuals seek testing after mistaking symptoms of air pollution exposure with COVID-19 infection.

Table C14 shows our results for viral testing and positivity rates. First, we observe that air pollution shocks increase the number
of new viral tests, in columns (4) and (5), on the order of 450 new tests per state over the following three-day period. This is a
1% increase relative to the mean viral tests conducted daily. For context, in Table 5 we show that a one unit of additional PM 2.5
increases case incidence by 1.5% over a three-day period, suggesting that individuals seeking out testing due to new or worsening
symptoms could be an important mechanism driving the increase in COVID-19 cases. For the positivity rate, we see uniformly
positive point estimates, but these coefficients are imprecisely estimated and statistically indistinguishable from zero.

CDC case surveillance records: As described in Section 3, the CDC case surveillance records provide information on COVID-19
patients collected by hospitals, healthcare providers, and laboratories, with details of illness progression and socio-demographic
characteristics. In Section 5, we implement our main model specification on these records collapsed to the county-day level, as
shown in Table 10, and we report that these results are very similar to those seen with the John Hopkins data in Table 3 and Table 4.
In this section, we take advantage of the patient-level structure of these records to explore the mechanisms behind our main results
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Table 10
County case and mortality incidence using CDC case surveillance records.
Cases Deaths
@ (2) 3 @ 5) (6)
Weighted PM 2.5 0.240%** 0.272%** 0.261%** 0.00602 0.00721* 0.00494
(0.0906) (0.0879) (0.0905) (0.00432) (0.00425) (0.00420)
F Stat 11.23 11.50 11.63 11.23 11.50 11.63
Dep Var Mean 9.880 9.893 9.895 0.305 0.305 0.305
Pct change mean 2.425 2.746 2.641 1.977 2.364 1.621
Controls v v v v v v
County & State-by-week FEs v v
County and MSA-by-week FEs v v
County and CBSA-by-week FEs v 4
Observations 76,111 75,973 75,919 76,111 75,973 75,919

* p<0.1,* p<0.05 ** p< 0.0l Standard errors clustered at the county level in parentheses. Outcomes are daily case or
mortality incidence per 100,000 population at the county-day level. Controls include state-level and county-level policy adoption,
wind speed, minimum and maximum daily temperature, precipitation, prior two-week social distancing behavior, day-of-week,
and two lagged wind direction-by-monitor cluster interactions. Displayed output of a two-stage least squares regression model
with county and state-by-week, MSA-by-week, or CBSA-by-week fixed effects in which wind direction and air quality monitor
cluster interactions are used to predict PM 2.5 levels in a county on a given day. F-statistics of the relevance test are computed
assuming first-stage standard errors are not serially correlated.

Table 11
Mortality, Hospitalization, Mechanical ventilation, and ICU entry propensity using CDC case surveillance records.
Deaths Hospitalization
@ (2) 3 4 5) ©
Weighted PM 2.5 0.00154** 0.00137** 0.00133** —0.000754 —0.000214 —0.0000299
(0.000597) (0.000535) (0.000537) (0.000909) (0.000793) (0.000792)
F Stat 115.00 121.70 122.74 137.67 142.05 142.68
Dep Var Mean 0.114 0.114 0.114 0.235 0.235 0.235
Pct change mean 1.343 1.203 1.167 -0.321 -0.091 -0.013
Controls v v v v v v
County & State-by-week FEs v v
County and MSA-by-week FEs v v
County and CBSA-by-week FEs v v
Observations 311,591 311,456 311,380 382,686 382,597 382,557
Mechanical ventilation Intensive care unit
@™ ) 3 @ ) (6)
Weighted PM 2.5 0.00171** 0.00125* 0.00131* 0.00149 0.000955 0.00115
(0.000808) (0.000719) (0.000713) (0.00101) (0.000940) (0.000935)
F Stat 79.28 83.81 92.88 74.86 75.99 84.15
Dep Var Mean 0.061 0.061 0.061 0.107 0.107 0.106
Pct change mean 2.786 2.038 2.148 1.395 0.896 1.079
Controls v v v v v v
County & State-by-week FEs v v
County and MSA-by-week FEs v v
County and CBSA-by-week FEs v v
Observations 177,336 177,224 177,179 177,356 177,211 177,091

* p <01, * p<0.05 *** p< 0.0l Standard errors clustered at the county level in parentheses. Outcomes are a binary indicator for whether an individual
confirmed case resulted in mortality, hospitalization, mechanical ventilation, or ICU entry. Controls include state-level and county-level policy adoption, wind
speed, minimum and maximum daily temperature, precipitation, prior two-week social distancing behavior, day-of-week, and two lagged wind direction-by-
monitor cluster interactions. Individual-level controls include sex, age, race and ethnicity, and pre-existing medical conditions. Displayed output of a two-stage
least squares regression model with county and state-by-week, MSA-by-week, or CBSA-by-week fixed effects in which wind direction and air quality monitor
cluster interactions are used to predict PM 2.5 levels in a county on a given day. F-statistics of the relevance test are computed assuming first-stage standard
errors are not serially correlated.

regarding COVID-19 cases and mortality. Specifically, we adjust the two-stage approach in Eq. (1) to model individual-level adverse
clinical outcomes including a patient’s likelihood of mortality, hospitalization, ICU admittance, and mechanical ventilation. Since
the unit of observation is the individual, we also add controls for individual characteristics that might relate to COVID-19 illness
severity including sex, race and ethnicity, age group, and pre-existing medical conditions, which are summarized in Table C2. There
are two limitations of this specification, as mentioned previously in this section as well as in Section 3. First, clinical outcomes are
frequently missing in the case surveillance records. Second, we expect additional noise because the date of clinical transitions is not
observed. As such, these results should be interpreted as the effect of an additional random shock of air pollution exposure on the
day that a patient has their case confirmed via testing.
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Table 11 displays regressions of the individual-level outcomes of mortality, hospitalization, admission to intensive care units,
and mechanical ventilation on daily wind-fitted PM 2.5 levels in the same county. These results again confirm that additional air
pollution exposure, even if only at the start of a COVID-19 illness, worsens the severity of illness and increases the likelihood of
mortality. Columns (1) through (3) in the first panel of Table 11 indicate that an additional unit of air pollution on the day of
case confirmation increases the likelihood of eventual mortality by 0.13 to 0.15 percentage points, or a 1.1 to 1.3 percent increase
from the mean mortality rate of 11.4%. Recall that this mortality outcome is only for cases where eventual mortality is known, and
missing values may be more likely to reflect no mortality. This percent change in likelihood of mortality is roughly one fourth the
percent increase reported in Table 3, which may be because air pollution exposure at the start of an illness has less of an impact
on mortality likelihood than air pollution exposure when a case is more advanced. Similarly, columns (1) through (3) of the second
panel of Table 11 show that an additional unit of air pollution exposure on the day of case confirmation increases the likelihood
of eventual mechanical ventilation by 0.12 to 0.17 percentage points, or a 2%-3% increase from the mean likelihood of ventilation
of 6% for cases where this outcome is known with certainty. This effect is much more precise than the estimates based on state
outcomes observed in Table 9, which were generally positive but not statistically significant. We see no statistically significant
relationship between air pollution shocks at the start of an illness and hospitalization, while the relationship between air pollution
at the start of illness and later admission to intensive care units is positive and close to statistical significance. Results for admission
to intensive care units and hospitalization are noisier than those observed for state outcomes in Table 9, where hospitalization and
admission to intensive care units were generally significant.

We run two sensitivity analyses for these outcomes. First, in Table C18, we test whether any of these results are sensitive to
the inclusion or exclusion of specific individual-level covariates such as sex, age, ethnicity, or pre-existing medical conditions.
These covariates do not substantially affect the results. Next, given the high proportion of missing clinical outcomes, we run
these regressions with weights for the likelihood of missing clinical observations.>* These weights are intended to emphasize the
informational value of records in states and counties where this information is more likely to be known with a higher degree
of confidence. In Table C19, we present individual-level regressions of likelihood of adverse clinical outcomes on air pollution
with weights for the inverse likelihood of an observed case having non-missing clinical outcomes. In these regressions, the weights
employed vary depending on the clinical outcome because different outcomes have a different share of missing observations. For
each clinical outcome, point estimates are larger and more statistically precise than without weights. In particular, the relationship
between an air pollution shock at the start of an illness and the likelihood of mortality is twice as large as the estimate observed in
Table 11. We take this sensitivity test as evidence that our primary results are conservative.

To determine the extent to which the differences between individual-level and state-level clinical progressions reflect differing
observed timing of each event in each dataset, we test the relationship between longer-term pollution and the likelihood of more
severe clinical outcomes in Table C20. For these results, we modify our primary regressor of interest, PM 2.5, by replacing it with the
average concentration over a 3, 7, 10, or 14-day period after the day of case confirmation. This change ensures that cases resulting in
mortality or hospitalization are being regressed on air pollution concentrations that may be more relevant to the dates surrounding
clinical progression compared to the time of case confirmation, as used in Table 11. This procedure temporally separates wind
direction variables from the relevant air pollution measurements to an extent. As such, we observe declining F-statistics from 115 to
66, 72, 45, and 35 as we progress from panel (a) to (e) of Table C20 and to longer PM 2.5 time horizons. The impact of air pollution
over longer time horizons does appear larger for mortality. Average PM 2.5 concentrations in the same county over a 10- or 14-day
period result in twice as large an impact on mortality as the air pollution shock on the day of case confirmation, increasing risk
of mortality by roughly 0.3-0.4 percentage points or 3%. We see similar results for mechanical ventilation but only over a shorter
time horizon of three days, with average PM 2.5 concentration over the 3-day period following case confirmation increasing risk
of mechanical ventilation by 0.4 percentage points, which is over twice as high as the same-day impact. For hospitalizations, we
observe that pollution is positively associated with hospitalization for periods from 3 to 14 days, unlike the same day effect observed
in Table 11. The point estimate is generally stable around a 0.1 percentage point increase in likelihood of hospitalization, but it is
not statistically significant in any specification. For admission to intensive care units, we see no clear pattern in Table C20, with
values that are positive and suggestive over 3-day and 14-day periods but that are essentially zero over 7-day and 10-day periods.

Overall, the COVID-19 Tracking Project information and the restricted CDC case surveillance data provide complementary views
of the mechanisms by which air pollution impacts severity of COVID-19 illnesses. The COVID-19 Tracking Project data, which has
accurate timing of clinical progression information at the state level, shows that air pollution increases the number of cases resulting
in hospitalization and admission to intensive care units. The CDC case surveillance data, meanwhile, which is county-level but does
not have time stamps for clinical progression outcomes, suggest that individuals exposed to worse air pollution at the time of case
confirmation are more likely to require mechanical ventilation and ultimately succumb to COVID-19 illness.

39 We assume that missing clinical information can be described as missing at random, in which case weighting is a method for improving statistical precision
(see Raghunathan, 2004 and Kennedy et al., 2019 for further details). Observations from states or counties that are more likely to have missing clinical information
are weighted less than observations in areas that are more frequently non-missing. To estimate likelihood weights, we capture the predicted values from a logit
regression of the case count, county population, and state dummies on a binary indicator for whether a case observation is dropped from our primary CDC case
surveillance regressions.
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5.5. Heterogeneity

In this section, we focus on potential heterogeneity in the relationship between PM 2.5 and COVID-19 cases, mortality, and
measures of clinical progression such as use of mechanical ventilation. We use two sources of data for the analysis of heterogeneity.
First, we rely on the restricted CDC case surveillance data and leverage individual characteristics to conduct regressions over subsets
of the population by age, gender, and race and ethnicity categories. Second, we rely on our primary dataset of COVID-19 cases and
deaths and consider dimensions of heterogeneity at the county level such as the fraction of essential workers, urbanization rates,
population density, vaccination rates as of May 2021 as proxy for risk attitudes with respect to COVID-19, vaccine hesitance, and
self-reported mask-wearing behavior. Our empirical approach still relies on the identification strategies presented in Section 4, and
a detailed description of this analysis is provided in Appendix A.

Before summarizing the main findings, we note that the purpose of this analysis is descriptive and subject to important caveats.
To start, the CDC case surveillance regressions infer from noisier estimates because of smaller sample sizes. This is particularly true
for results regarding Native American communities. These regressions also have a high proportion of missing clinical outcomes and
uncertainty in timing as discussed previously. Next, with regards to the analysis of heterogeneity across county-level characteristics,
the interaction terms should be understood as correlational and not causal links. Several of the variables that we include as
interactions are correlated, and there may be additional characteristics that we do not observe.

The heterogeneity analysis using CDC case surveillance data, described in detail in Appendix A, provides evidence that population
groups with increased potential social vulnerability are also more likely to see larger increases in reported case numbers related to air
pollution exposure. As shown in Table C21, individuals aged 60 and over see twice the percent increase in confirmed case incidence
from a unit of PM 2.5 in comparison to individuals under the age of 20. Individuals aged 80 and over see the largest increase in
case incidence per unit of PM 2.5; the point estimate of 1 case per 100,000 is over four times as large as the population-level effect
observed in Table 10. In the same table, we also observe that Black and Hispanic communities see a greater increase in case incidence
per unit of PM 2.5 than White populations, suggesting disparate cumulative risks from pollution exposure and COVID-19 for people
of color and the elderly. We also observe that males see larger increases in mortality and mechanical ventilation in comparison to
females, as shown in Table C22. The heterogeneity analysis with respect to age and sex are very much in line with Isphording and
Pestel (2021), who find the largest impacts of air pollution on COVID-19 mortality accrue to male patients over the age of 80.

We report findings from the heterogeneity analysis of county characteristics in Table C16. The interaction terms suggest a stronger
relationship between PM 2.5 and COVID-19 cases in counties with a higher fraction of essential workers. We also observe a weaker
relationship between air pollution and cases and deaths in counties with higher population density, urbanization rates, and eventual
vaccination in 2021. Population density and urbanization rates correlate positively with propensity to seek vaccination once it
becomes available after the time frame of our study, as shown in Table C15. Thus, these results could suggest that differential
cautionary behavior may have moderated the relationship between PM 2.5 and COVID-19 morbidity and mortality in more urbanized
areas. We explore the potential role of differential cautionary behavior with a separate analysis of heterogeneity across vaccine
hesitance in Table C17, discussed further in Appendix A. Additional sensitivity analysis with respect to self-reported mask-wearing
behavior, which protects against COVID-19 and may also directly mitigate exposure to air pollution, is reported in Table C7 and
described in Section 5.3. Finally, we note that the inclusion of interaction terms with PM 2.5 and each dimension of heterogeneity
increases the precision and generally increases the magnitude of our estimated relationship between PM 2.5 and cases or mortality
at the mean level of the interacted variable, as reported at the bottom of Table C15.

6. Policy relevance

Our findings indicate that higher contemporaneous exposure to PM 2.5 leads to higher COVID-19 morbidity and mortality. These
findings are relevant for the current pandemic as well as future ones. As mentioned in Section 2, local air pollution has been linked
to more severe outcomes in previous outbreaks. Further, pollution levels have been shown to increase the severity of the regular flu
(Graff Zivin et al., 2020). Our results add to this established literature assessing the causal relationship between local air pollution
and health outcomes, which often calls for additional measures to mitigate such adverse effects (see Currie et al., 2014 for a review).

In what follows, we provide a set of policy implications starting with actions that policymakers could undertake in the context of
the ongoing pandemic and then expanding to levers affecting pollution over a longer time frame. These lessons tend to be valid for
ensuing variants of COVID-19 as well as potential future pandemics. They may also be used in the context of especially problematic
variants of the regular flu, including localized outbreaks. The severity of a given winter’s flu may for instance depend on the ability
of vaccines to prevent it, which varies from year to year, a plausibly random feature that Graff Zivin et al. (2020) exploit for
identification purposes.

While concentrations of PM 2.5 may have been lower in 2020 than in previous years for some U.S. cities in the early days
of the COVID-19 outbreak (see Berman and Ebisu, 2020; Zhang et al., 2021), we document in Section 3 little change in PM 2.5
or AQI levels nationwide over the course of the pandemic, a finding consistent with Bekbulat et al. (2020). Further, Persico and
Johnson (2021) report an increase in particulate matter in counties with TRI sites at the start of the pandemic, suggesting that
environmental deregulation may have offset decreases in air pollution from less motorized traffic in many regions. Fig. 6 shows a
pattern consistent with these elements. Meanwhile, the cumulative number of COVID-19 cases and deaths increased in the United
States as well as globally during the duration of the pandemic. It follows from our findings that there is a rationale for limiting
pollution levels while managing a pandemic. There exist several policy levers to accomplish this goal. Private companies may also
contribute to keep contemporaneous pollution down as part of their corporate social responsibility strategies by letting employees
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telework whenever appropriate. As suggested in Persico and Johnson (2021), hospitals may consider using air purifiers in rooms with
COVID-19 patients, or influenza patients, to limit exposure to indoor air pollution and prevent the need for ventilators. Individuals
are indeed exposed to pollution not only outdoors but also indoors, an issue that is especially severe in emerging countries but also
in developed countries, especially for the most vulnerable individuals (Jeuland et al., 2015).

Regulations can limit the extent with which people move for non-essential activities and encourage continued teleworking, in
case voluntary efforts by companies are deemed insufficient. Local governments can also regulate traffic and pollution directly. For
instance, adjusting speed limits on highways to traffic conditions can reduce pollution (Bel and Rosell, 2013). Temporary policies
using alternate license plates can be enforced for non-essential movements, for instance allowing individuals with an even final digit
on the license plate number to circulate only on even days of the month (Davis, 2008; Gallego et al., 2013; Li, 2018). Retrofitted
public transit vehicles can be used whenever possible (Beatty and Shimshack, 2011; Austin et al., 2019), especially where the number
of routes and the frequency of service may be adjusted downward during an outbreak.

These policy implications apply globally. For instance, cities with congestion charges already in place, such as Gothenburg,
London, Milan, Singapore, or Stockholm, may consider adjusting the price level to reflect pollution levels and the spread of COVID-
19 or any other disease increasing the marginal damage of pollution through more severe health outcomes (Coria et al., 2015).
Congestion charges have indeed been shown to reduce overall traffic and pollution (Leape, 2006; Gibson and Carnovale, 2015;
Tang, 2021). Several cities around the world also limit access to city centers or entire regions to some vehicles, depending on
vintage, fuel type, and efficiency (e.g., Barahona et al., 2019). The use of low emission zones can contribute to reduce air pollution
in urban areas and improve health outcomes (Wolff, 2014; Gehrsitz, 2017; Pestel and Wozny, 2021). Such regulations may also be
adjusted during a pandemic.

Finally, reducing actual pollution may not be the only lever available to policymakers. Governments could also try to reduce
exposure to local air pollution. Many jurisdictions around the world provide their citizens with air quality information (or “smog
alerts”), which have been shown to increase avoidance behavior (Neidell, 2009). Combining information on COVID-19 cases and
deaths with air quality information, while informing the public of the relationship between the two, could be an inexpensive
approach to reducing cases and deaths.

Over the longer run, pandemic-related deaths could be used as an additional impetus to internalize known externalities from local
air pollution (e.g. Parry and Small, 2005; Muller and Mendelsohn, 2009), also in consideration of the relationship between local air
pollution and flu outcomes. Besides pollution pricing, complementary policies that have been shown to reduce local air pollution
may include expanding current public transit infrastructure to limit local air pollution (Lalive et al., 2018; Li et al., 2019) and
expanding subsidies for electric or hybrid vehicles and charging stations (Beresteanu and Li, 2011; Li et al., 2017; Muehlegger and
Rapson, 2018), although in the latter case local contextual factors may need to be taken into account (Holland et al., 2016). Finally,
it is important to acknowledge the potentially important recessionary forces related to pandemics. While economic downturns may
justify some relaxation of environmental policies based on costs and benefits, such relaxation should in principle never be arbitrary,
as discussed in Annicchiarico et al. (2021). That is, environmental policies should ideally include from their implementation rules
that relate to business cycles, so that regulators tie their hands and potentially arbitrary rollbacks, as observed following the onset
of the COVID-19 outbreak, can be avoided. Such rules may also need to account for the fact that pandemic-related recessions may
be different from other recessions since, as this paper shows for COVID-19, local air pollution increases the pandemic’s severity.

7. Conclusion

The novel Coronavirus has caused millions of deaths and severe economic damage across the world. The common experience of
many countries showed that a trade-off exists between the speed at which economic activity is relaunched and the risk of further
cases and deaths. This trade-off is usually described as between two important but conflicting goals: jobs and economic recovery
on one side, and limiting cases and deaths on the other. Our paper adds one dimension to this trade-off, pointing to an untapped
potential to limit severe cases and deaths while sustaining economic recovery. Our study shows that the observed trade-off between
the two aforementioned desirable goals can be relaxed by keeping contemporaneous air pollution at low levels, contributing to a
recent stream of causal studies pointing to similar relationships between local air pollution and COVID-19 outcomes, such as Persico
and Johnson (2021) and Isphording and Pestel (2021).

In particular, our study finds strong evidence that contemporaneous air quality almost immediately affects the severity of COVID-
19 illness. According to our results, a one pg/m’ increase in PM 2.5 (about 15% of the average concentration of PM 2.5) increases the
number of confirmed cases by roughly 2% and deaths by 4% from the mean daily incidence in a county. Our results rely on arguably
exogenous variation in wind direction and are robust to a wide variety of specifications. Furthermore, we estimate a positive and
significant relationship between PM 2.5 and COVID-19-related hospitalizations, intensive care unit use, and ventilator use. Overall,
our study implies a role for policies aimed at lowering pollution in addressing pandemics. Further, our findings speak to the general
relationship between exposure to PM 2.5 and human health, in particular concerning respiratory issues. They provide additional
justification for optimally regulating local air pollution.

Finally, our study also paves the way for additional causal research in this space. First, while our analysis provides evidence of
a relationship between PM 2.5 exposure and COVID-19 cases, hospitalizations, use of intensive care units, use of ventilators, and
mortality, estimates obtained with our model are sometimes statistically imprecise. This is especially true for demographic breakouts
such as age, sex, and race or ethnicity groups. It is also often difficult to ascertain the timeline of air pollution’s impact on COVID-19
case progression. Future research may combine data from many countries and longer periods to shed more light on this question.
Such research may also make use of more-complete individual health records to explore issues of inconsistent reporting, disease
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progression, or environmental justice concerns in the extent to which pollution drives inequity in COVID-19 mortality. Such research
may also explore the role of long-term exposure to pollution, which our study does not analyze and the epidemiological literature
assesses in correlational terms. Doing so would add to a recent stream of research on the role of place on health (Banzhaf et al.,
2019; Deryugina and Molitor, 2021). Further, there seems to be room for randomized interventions to improve air quality in hospital
rooms in the context of pandemics. Second, while our study provides descriptive evidence on potential interesting dimensions of
heterogeneity, the role that additional factors such as mask wearing, vaccine uptake, and compliance with social distancing may
have in potentially mitigating the relationship between PM 2.5 and COVID-19 outcomes largely remains to be explored. Third,
the above-mentioned strand of literature applying causal models to examine the relationship between air pollution and COVID-19
outcomes has so far focused on developed countries only. However, such relationship may be even stronger in contexts where
pollution levels tend to be higher and very volatile as well as where healthcare systems may be unable to offer the same quality
and quantity of services. Consistently, the scope for randomization may be even larger in such contexts.
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