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a b s t r a c t   

Background: To identify potential diagnostic and prognostic biomarkers of the early stage of sepsis. 
Methods: The differentially expressed genes (DEGs) between sepsis and control transcriptomes were 
screened from GSE65682 and GSE134347 datasets. The candidate biomarkers were identified by the least 
absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature 
elimination (SVM-RFE) analyses. The diagnostic and prognostic abilities of the markers were evaluated by 
plotting receiver operating characteristic (ROC) curves and Kaplan–Meier survival curves. Gene Set 
Enrichment Analysis (GSEA) and single-sample GSEA (ssGSEA) were performed to further elucidate the 
molecular mechanisms and immune-related processes. Finally, the potential biomarkers were validated in a 
septic mouse model by qRT-PCR and western blotting. 
Results: Eleven DEGs were identified between the sepsis and control samples, including YOD1, GADD45A, 
BCL11B, IL1R2, UGCG, TLR5, S100A12, ITK, HP, CCR7 and C19orf59 (all AUC > 0.9). Furthermore, the survival 
analysis identified YOD1, GADD45A, BCL11B and IL1R2 as the prognostic biomarkers of sepsis. According to 
GSEA, four DEGs were significantly associated with immune-related processes. In addition, ssGSEA de
monstrated a significant difference in the enriched immune cell populations between the sepsis and control 
groups (all P  <  0.05). Moreover, YOD1, GADD45A and IL1R2 were upregulated, and BCL11B was down
regulated in the heart, liver, lungs, and kidneys of the septic mice model. 
Conclusions: We identified four potential immune-releated diagnostic and prognostic gene markers for 
sepsis that offer new insights into its underlying mechanisms. 

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative

commons.org/licenses/by-nc-nd/4.0/).   

1. Introduction 

Sepsis is a state of severe organ dysfunction caused by a dis
proportionate immune and inflammatory response to infection [1]. 
The recent Global Burden of Diseases Report states that nearly 50 
million sepsis cases have occurred globally, and resulted in 10 mil
lion deaths [2]. It is also the most common cause of death in in
tensive care units (ICU) [3]. The pathophysiology of sepsis is 
complicated and involves numerous mechanisms, including pa
thogen invasion, cytokine release, microcirculation dysfunction, and 
immune imbalance [4]. Recently, sepsis has been defined as se
quential organ failure assessment (SOFA) score of 2 or more in the 
setting of suspected infection [1]. However, the diagnosis and 
treatment of sepsis can be delayed due to various limitations, such as 
etiologic diagnosis or laboratory examination [5]. 

Computational and Structural Biotechnology Journal 21 (2023) 2316–2331 

https://doi.org/10.1016/j.csbj.2023.03.034 
2001-0370/© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).  

Abbreviations: ML, machine learning; DEGs, Differentially expressed genes; LASSO, 
The Least Absolute Shrinkage and Selection Operator; SVM-RFE, Support vector ma
chine recursive feature elimination; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; DO, Disease Ontology; ROC, Receiver Operating Characteristic; 
AUC, Area under the curve; GSEA, Gene set enrichment analysis; ssGSEA, Single- 
sample gene set enrichment analysis; GAPDH, Glyceraldehyde-3-phosphate dehy
drogenase; qRT-PCR, Real-time quantitative PCR 

]]]] 
]]]]]] 

⁎ Correspondence to: Department of Critical Care Medicine, Zhongnan Hospital of 
Wuhan University, Wuhan 430071, Hubei, China. 

E-mail addresses: sunzhongyi@whu.edu.cn (Z. Sun),  
Pengzy5@hotmail.com (Z. Peng). 

1 These authors contributed equally. 

http://www.sciencedirect.com/science/journal/20010370
www.elsevier.com/locate/csbj
https://doi.org/10.1016/j.csbj.2023.03.034
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2023.03.034
https://doi.org/10.1016/j.csbj.2023.03.034
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2023.03.034&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2023.03.034&domain=pdf
mailto:sunzhongyi@whu.edu.cn
mailto:Pengzy5@hotmail.com


More than one hundred biomarkers have been investigated for 
sepsis so far [6], including acute-phase proteins, cytokines, chemo
kines, damage-associated molecular patterns (DAMPs), endothelial 
cell markers, leukocyte surface markers, non-coding RNAs, miRNA 
and soluble receptors, as well as metabolites and alterations in gene 
expression [7]. Several of these biomarkers can be used to detect 
sepsis onset and prognosis in the early stage. In the clinical setting, 
procalcitonin (PCT) and C-reactive protein (CRP) are the most 
common diagnostic biomarkers. Both increase transiently during 
sepsis but remain in circulation for sufficiently long duration for 
detection, and can reflect the real-time response. Nevertheless, PCT 
and CRP are not definitive tests for diagnosing sepsis since their 
levels also increase in other conditions [8], and they may be more 
helpful in excluding the possibility of sepsis [9–11]. Moreover, these 
biomarkers lack specificity and sensitivity, which limit their clinical 
use [12]. Therefore, it is crucial to identify novel diagnostic bio
markers that are easy to detect, inexpensive, and can be used to 
monitor the disease course and treatment response with high sen
sitivity and specificity. 

In recent years, machine learning method has been used to de
tect and predict biomarkers [13]. A previous study showed that 
machine learning can accurately predict the onset of sepsis in an ICU 
patient 4–12 h prior to clinical recognition based on medical data  
[14]. Similarly, other studies have utilized several machine learning 
approaches to predict outcomes in patients with sepsis [15–17]. The 
aim of this study was to identify novel diagnostic and prognostic 
biomarkers, as well as potential therapeutic targets for sepsis using 
machine learning. 

2. Materials and methods 

2.1. Data acquisition and identification of differentially expressed genes 

The GSE65682 [18] and GSE134347 [19] datasets including a total 
of 916 sepsis patients and 125 healthy controls were downloaded 
from the GEO database. ‘‘Limma’’ package in the R was used to 
identify the differentially expressed genes (DEGs) between the 
sepsis and control samples, with adjusted P value <  0.05 and |log2- 
fold change (FC)| > 2 as the selection criteria. The volcano maps and 
heatmaps of DEGs were drawn using the ‘‘ggplot2′’ package and the 
‘‘pheatmap’’ package in R respectively. Next, two machine learning 
algorithms were used to identify significant predictors. LASSO is 
executed using the "glmnet" package in R, which assists in elim
inating irrelevant parameters, thus helping in the concentration of 
selection and regularizing the models. Regularization resolves the 
overfitting problem, affecting the model’s accuracy level. Lambda (λ) 
denotes the amount of shrinkage in the lasso regression equation. 
The best model is selected to minimize the binomial deviance loss. 
SVM-RFE algorithm was a widely used supervised machine learning 
protocol for classification and regression and was performed using 
the "e1071" package. The SVM-RFE algorithm was used to identify 
genes with high recognition power. The lower the root mean square 
error (RMSE), the higher the accuracy. A Venn diagram was drawn 
using the “venn” package to explore the overlapping genes between 
LASSO regression and SVM-RFE algorithm. Furthermore, feature 
importance methods, including mean decrease impurity (MDI) 
method and permutation importance method, were used to assess 
the contribution of DEGs identified by Lasso regression using 
Sklearn. SHapley Additive exPlanation (SHAP) method was used to 
assess the contribution of DEGs identified by the SVM-RFE algorithm 
using Sklearn. 

2.2. GO, KEGG and DO enrichment analysis 

The “clusterProfiler”, “enrichplot” and “ggplot2″ packages in R 
were used to perform GO (including Biological Process, Molecular 

Function, and Cellular Component), KEGG (including key related 
pathways) and DO analyses. P  <  0.05 and adjusted P  <  0.05 were set 
as the thresholds for GO analysis. P  <  0.05 was set as the threshold 
for KEGG and DO analyses. 

2.3. Validation of DEGs and ROC analysis 

The DEGs were evaluated by the student’s t-test and P  <  0.05 
was considered statistically significant. ROC analysis was performed 
using the "pROC" package in R. And the specificity at 0.85 sensitivity, 
positive predictive value (PPV), and negative predictive value (NPV) 
of DEGs was calculated. Area under the curve (AUC) was calculated, 
and any value greater than 0.7 was indicative of good diagnostic 
performance. 

2.4. Survival analysis 

Based on the expression levels of the DEGs, the sepsis patients 
were divided into the respective high- and low-expression groups, 
and Kaplan-Meier survival analysis was performed using the “sur
vival” package in R. P  <  0.05 was considered statistically significant. 

2.5. Construction and verification of nomogram 

A nomogram was designed to predict the probability of sepsis 
based on the expression levels of the DEGs. A calibration curve was 
constructed to present the association between the predicted 
probabilities and the observed outcome frequencies. The predictive 
ability of the nomogram was determined based on the distance 
between the standard curve (slope of 1) and the prediction curve. 

2.6. GSEA and ssGSEA 

Gene functional enrichment was performed by Gene Set 
Enrichment Analysis (GSEA) using data from http://www.gsea- 
msigdb.org/gsea/index.jsp. NOM P  <  0.05 was set as the threshold 
for significant enrichment. The immune cells associated with the 
candidate genes were further explored by single-sample GSEA 
(ssGSEA) using the " GSEABase " and " GSVA " packages. Wilcoxon 
rank sum test was used to compare the differences in the types of 
immune cells between sepsis and healthy control groups. 
Spearman’s analysis was used to evaluate the correlations between 
the DEGs and immune cells. P  <  0.05 was considered statistically 
significant. 

2.7. Establishment of sepsis model 

Animal experiments were approved by Wuhan University and 
performed in ABSL-3 Lab (animal biosafety level-3 laboratory) of 
Wuhan University. Sepsis was induced by cecal ligation and punc
ture (CLP) surgery (n = 6). Briefly, C57BL/6 mice (male, 8 weeks) 
were anesthetized with pentobarbital sodium, and the cecum was 
ligated with a 5–0 silk suture at the juncture of the colon and cecum. 
The cecum was punched twice with a 22-gauge needle and the fecal 
material was partly squeezed out. The sham-operated mice (n = 6) 
only underwent laparotomy without cecal ligation and puncture. 
Finally, the abdominal cavity was closed and fluid resuscitation was 
performed by subcutaneous injection of preheated saline (37 °C, 
50 μl/g body weight). The heart, liver, lungs, and kidneys were har
vested 24 h after the operation and stored at −80 ℃ for further 
analysis. Blood was collected via intracardiac puncture. EDTA- 
treated blood was centrifuged at 4 ℃ in 1300 g/min to separate the 
serum and then wad stored at −80 °C for further measurements. In 
addition, IL-6 was measured to evaluate the CLP sepsis model using 
ELISA kit following the instructions. 
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2.8. Western blotting 

Western blotting was performed as per standard protocols using 
primary antibodies for YOD1 (25370-1-AP, Protein Tech, Wuhan, 
China), GADD45A (A11768, ABclonal, Wuhan, China), BCL11B 
(A19804, ABclonal, Wuhan, China), IL1R2 (60262-1-Ig, ProteinTech, 
Wuhan, China) and GAPDH (60004-1-Ig, ProteinTech, Wuhan, 

China), and an electrochemiluminescence detection system (Tanon, 
China). 

2.9. RT-PCR 

RNA was extracted from the tissues using the FastPure Plant Total 
RNA Isolation Kit (Vazyme, Nanjing, China) and reverse transcribed 

Fig. 1. Identification of DEGs in sepsis. (A) Volcano map of all DEGs in sepsis and healthy control groups. Red plots represent up-regulated mRNAs with P  <  0.05 and log2FC  >  2. 
Green plots represent down-regulated genes with P  <  0.05 and log2FC  <  −2. Black plots represent normally expressed mRNAs. (B) Heatmap of all DEGs. The horizontal axis 
represents the sample, and the vertical axis represents different genes; the red color indicates increased gene expression, and the blue indicates decreased gene expression. (C) λ 1 
standard error (λ.1 SE) usually optimizes regularization so that the error and minimum error remain within a standard deviation error. Optimal λ value identified by using 10-fold 
cross-validation via minimum and 1-SE criteria in the LASSO regression analysis. Two marked dashed lines indicate two special lambda values λ. min and λ.1SE, and the λ between 
the two values is considered appropriate. λ. 1SE builds the simplest model by using fewer genes. λ. min was more accurate with using a larger number of genes. (D) SVM-RFE 
algorithm. The horizontal axis represents the number of DEG variables. The vertical axis represents cross-validation RMSEs. The marked plot is the number of DEGs required to 
obtain the optimal value. (E) Venn diagram of overlapping genes selected by Lasso and SVM-RFE algorithms. 
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using the ReverTra Ace Kit (Toyobo, Osaka, Japan). The SYBR reaction 
mix was used for quantitative RT-PCR on the LightCycler96 Real- 
Time PCR Detection System (Hoffmann-La Roche Ltd., Shanghai, 
China). All experiments were repeated three times. The primer se
quences are listed in Table S1. 

2.10. Proteomics 

The sera of sham and CLP groups were analyzed by proteomics 
using the data-independent acquisition (DIA) method. According to 
the mass-charge ratio (m/z), the scanning range of the mass spec
trum was divided into several windows, and the parent ions in each 
window were broken up and detected. The fragment ion information 
of all mother ions was collected for qualitative and quantitative 
analysis. Protein extraction, protease dissociation, database estab
lishment, mass spectrometry, DIA, quality control and protein 
identification were performed as per routine procedures. DIA raw 
data files were analyzed by DIA-NN software (V 1.8). SignalP (https:// 
services.healthtech.dtu.dk/service.php?SignalP-5.0) was used to 
predict secretory proteins. 

2.11. Statistical analysis 

Data were presented as mean ±  standard deviation (S.D) or 
median with ranges based on the normal distribution of the data. 
Student’s t-test and Mann-Whitney U-test were used to compare the 

Fig. 2. The model's interpretation. (A) Feature importance ranked using mean decrease impurity (MDI) method. (B) Feature importance ranked using permutation importance. (C) 
The importance ranking of the DEGs according to the mean (|SHapley Additive exPlanations (SHAP) value|). (D) The importance ranking of the DEGs based on SHAP values. The 
higher SHAP value of a feature is given, the higher risk of death the patient would have. The red part in feature value represents higher value. and blue indicates that the value of a 
feature is low. 

Table 1 
Differentially expressed genes.    

Gene symbol Official full name  

YOD1 YOD1 deubiquitinase 
GADD45A Growth arrest and DNA damage-inducible alpha 
BCL11B BAF chromatin remodeling complex subunit 

BCL11B 
IL1R2 Interleukin 1 receptor type 2 
UGCG UDP-Glucose ceramide glucosyltransferase 
TLR5 Toll-like receptor 5 
S100A12 S100 calcium-binding protein A12 
ITK IL2 inducible T cell kinase 
HP Haptoglobin 
CCR7 C-C motif chemokine receptor 7 
C19orf59 Microtubule-associated protein 1S 

L. Ke, Y. Lu, H. Gao et al. Computational and Structural Biotechnology Journal 21 (2023) 2316–2331 

2319 

https://services.healthtech.dtu.dk/service.php?SignalP-5.0
https://services.healthtech.dtu.dk/service.php?SignalP-5.0


mean or median values of the CLP and sham-operated groups, as 
appropriate. GraphPad Prism version 8.0, R software version 4.2.0 
and Python version 3.11.2 were used for all statistical analyses and 
graph plotting. P value  <  0.05 was considered statistically significant 
for all the analyses. 

3. Results 

3.1. Identification of DEGs in sepsis 

The GSE65682 and GSE134347 datasets were downloaded from 
the GEO database, and the DEGs between sepsis and normal samples 
were screened based on |log FC= ≥2 and P  <  0.05. As shown in the 
volcano plot in Fig. 1A, there were 48 DEGs between the two groups, 
of which 37 genes were upregulated and 11 were downregulated in 
sepsis. The corresponding heatmaps are shown in Fig. 1B. As Fig. 1C 
showed, the LASSO algorithm identified 24 DEGs, with penalty 
parameter tuning conducted by 10–fold cross‐validation. As Fig. 1D 
showed, the SVM-RFE algorithms identified 25 genes when the 
RMSE was minimal. The DEGs obtained from the LASSO and 
SVM‐RFE models were intersected, as shown in the Venn diagram in  
Fig. 1E, and included YOD1, GADD45A, BCL11B, IL1R2, UGCG, TLR5, 
S100A12, ITK, HP, CCR7 and C19orf5. The official names of these 11 
DEGs are listed in Table 1. In addition, feature importance ranked 
using the MDI method and permutation importance method showed 
the importance of these DEGs screened by the Lasso algorithm 
contributing to sepsis ranked from highest to lowest were C19orf59, 
BCL11B, YOD1, CCR7, ITK, UGCG, IL1R2, TLR5, HP, and GADD45A 
(Fig. 2A–B). The SHAP summary plot was depicted to identify the 
DEGs screened by the SVM-RFE algorithm (Fig. 2C). This plot depicts 
how high and low genes’ values were in relation to SHAP values. The 
higher the SHAP value of a gene, the more likely sepsis becomes. And 
the mean SHAP values ranked from highest to lowest were C19orf59, 
S100A12, YOD1, CCR7, TLR5, HP, ITK, IL1R2, BCL11B, GADD45A, and 
UGCG (Fig. 2D). 

3.2. GO, KEGG and DO enrichment analysis 

The 11 DEGs were functionally annotated by GO, KEGG and DO 
enrichment analyses. The GO enrichment analysis showed that the 
DEGs were mainly enriched in immune-related functions, including 
T cell differentiation in the subset of biological process (BP), vesicle 
lumen in the subset of cell compartment (CC), and immune receptor 
activity in the subset of molecular function (MF) (Fig. 3A, Table S2). 
In addition, the significantly enriched KEGG pathways included 
transcriptional misregulation in cancer, chemokine signaling 
pathway, cytokine-cytokine receptor interaction, and thyroid cancer 
(Fig. 3B, Table S3). Finally, the DEGs were closely related to various 
diseases as per the DO analysis, including dermatitis, skin disease 
and bacterial infectious disease (Fig. 3C, Table S4). 

3.3. Expression analysis of DEGs 

We analyzed the expression levels of the 11 candidate genes in 
the GSE65682 and GSE134347 datasets. As shown in Fig. 4, YOD1, 
GADD45A, IL1R2, UGCG, TLR5, S100A12, HP and C19orf59 were 
significantly upregulated in the sepsis group, whereas BCL11B, ITK 
and CCR7 were downregulated in the sepsis group compared to the 
healthy control group (P  <  0.05). 

3.4. ROC analysis 

The diagnostic values of the candidate genes were analyzed by 
plotting ROC curves. As shown in Table 2, when the sensitivity was at 
0.85, the specificity, PPV, and NPV of YOD1 in detecting sepsis were 
0.912, 0.986, and 0.452, respectively. The specificity, PPV, and NPV of 
GADD45A were 1, 1, and 0.475, respectively. The specificity, PPV, and 
NPV of BCL11B were 0.960, 0.994, and 0.467, respectively. The spe
cificity, PPV, and NPV of IL1R2 were 0.976, 0.996, and 0.469, re
spectively. The specificity, PPV, and NPV of UGCG were 1, 1, and 
0.477, respectively. The specificity, PPV, and NPV of TLR5 were 0.984, 
0.997, and 0.471, respectively. The specificity, PPV, and NPV of 

Fig. 3. GO, KEGG and DO enrichment analysis. (A) GO enrichment analysis of the 11 
DEGs. (B) KEGG enrichment analysis of the 11 DEGs. (C) DO enrichment analysis of the 
11 DEGs. 
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Fig. 4. Expression analysis of the 11 candidate DEGs in the GSE65682 and GSE134347 datasets between sepsis and healthy control groups. The relative expression levels of (A) 
YOD1, (B) GADD45A, (C) BCL11B, (D) IL1R2, (E) UGCG, (F) TLR5, (G) S100A12, (H) ITK, (I) HP, (J) CCR7 and (K) C19orf59 mRNAs are shown. 
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S100A12 were 1, 1, and 0.477, respectively. The specificity, PPV, and 
NPV of ITK were 0.984, 0.997, and 0.471, respectively. The specificity, 
PPV, and NPV of HP were 0.992, 0.999, and 0.473, respectively. The 
specificity, PPV, and NPV of CCR7 were 0.936, 0.990, and 0.459, re
spectively. The specificity, PPV, and NPV of C19orf59 were 1, 1, and 
0.475, respectively. Furthermore, the AUC values of YOD1 (0.928), 
GADD45A (0.961), BCL11B (0.962), IL1R2 (0.947), UGCG (0.952), TLR5 
(0.953), S100A12 (0.976), ITK (0.946), HP (0.959), CCR7 (0.940) and 
C19orf59 (0.986) were all above 0.9 (Fig. 5A-K). Taken together, 
these 11 DEGs had excellent diagnostic power for sepsis. 

3.5. Survival analysis 

To further verify the prognostic value of the 11 genes, we de
marcated 468 sepsis patients in the GSE65682 dataset into the high- 
and low-expression groups of the respective genes. High expression 
levels of YOD1 (P = 0.009), GADD45A (P = 0.036) and IL1R2 (P = 0.007) 
were associated with poor prognosis (Fig. 6A, B and D), whereas 
higher BCL11B levels was correlated to favorable prognosis 
(P = 0.007; Fig. 6C). Thus, YOD1, GADD45A, BCL11B and IL1R2 were 
identified as potential prognostic biomarkers for sepsis. 

3.6. Nomogram for the prediction of sepsis 

Based on the findings above, we constructed a prognostic no
mogram based on the gene expression levels of YOD1, GADD45A, 
BCL11B and IL1R2 for risk assessment of sepsis patients (Fig. 7A). The 
scores calculated for each gene predicted the probability of sepsis. 
The overall calibration was reduced, but the apparent calibration 
curve and the bias-corrected curve did not deviate too far from the 
ideal curve. The predicted incidence of sepsis was slightly lower than 
the actual incidence, when the prediction probability was between 
30 % and 70 %. The maximum difference in the predicted and actual 
incidence was seen at 60 % auxiliary diagnostic probability, and the 
predicted incidence was about 10 % lower (Fig. 7B). 

3.7. GSEA 

GSEA showed that YOD1 is associated with severe infection, 
macroautophagy, immunological synapse, impaired antigen specific 
response, hematopoiesis mature cell and T cell receptor signaling 
(Fig. 8A–F). GADD45A is primarily involved in mechanisms re
garding antigen processing, T cell receptor signaling pathway, pri
mary immunodeficiency, intestinal immune network, endoplasmic 
reticulum tubular network organization and B cell proliferation 
(Fig. 9A–F). Furthermore, BCL11B showed significant association 
with T cell receptor signaling pathway, antigen processing and pre
sentation, T cell morphology, cellular defense response and T cell 

differentiation (Fig. 10A–F), and IL1R2 was associated with included 
T cell receptor, primary immunodeficiency, antigen processing and 
presentation, abnormal eosinophil morphology, immunological sy
napse and T cell differentiation in thymus (Fig. 11A–F). 

3.8. Immune cell enrichment analysis 

To further explore the immune functions that might involve the 
four sepsis biomarkers, we performed ssGSEA to analyze the re
lationship of these four genes with multiple immune cell popula
tions. The sepsis group had a greater abundance of activated 
dendritic cells (DCs), gamma delta T cells, macrophages, mast cells, 
natural killer (NK) cells, neutrophils, serum cytoid DCs, regulatory T 
cells (Tregs) and type 17T helper (Th17) cells compared to the 
healthy controls. The latter had greater abundance of activated B 
cells, activated CD4 T cells, activated CD8 T cells, CD56bright NK 
cells, CD56dim NK cells, eosinophils, immature B cells, immature 
DCs, MDSCs, NK T cells, T follicular helper cells, type 1T helper (Th1) 
cells, type 2T helper (Th2) cells, effector memory CD4 T cells, 
memory B cells, central memory CD4 T cells, central memory CD8 T 
cells, and effector memory CD8 T cells compared to the sepsis group 
(all P values < 0.001) (Fig. 12). Furthermore, BCL11B showed a sig
nificant positive correlation with the abundance of Th1 cells, NK T 
cells, memory B cells, MDSCs, immature B cells, effector memory 
CD8 T cells, effector memory CD4 T cells, central memory CD8 T cells, 
central memory CD4 T cells, activated CD8 T cells, activated CD4 T 
cells and activated B cells. On the other hand, GADD45A was nega
tively correlated with the abundance of NK T cells, MDSCs, effector 
memory CD4 T cells, central memory CD4 T cells and activated CD8 T 
cells. IL1R2 showed a negative correlation with effector memory CD4 
T cells, central memory CD4 T cells and activated CD8 T cells, and 
YOD1 with Th17 cells (all P values ＜0.001) (Fig. 13). 

3.9. Levels of YOD1, GADD45A, BCL11B and IL1R2 in septic mice 

ELISA results showed that IL-6 was upregulated in sepsis group, 
indicating that the sepsis model was successfully constructed (P 
values < 0.05) (Fig. S1). In addition, the relative expression levels of 
YOD1, GADD45A and IL1R2 mRNAs were all significantly higher and 
that of BCL11B mRNA were down-regulated in the heart, liver, lung 
and kidney of the CLP group (all P values < 0.05) (Fig. 14A-D). Similar 
results were observed with western blotting (all P values < 0.05) 
(Fig. 14E–H). Furthermore, proteomics analysis showed that IL1R2 
was significantly elevated in septic serum (P values < 0.05; Fig. S2). 
However, YOD1, GADD45A and BCL11B were not been detected in 
the sepsis group, most likely since these proteins are secretory as 
validated using SignalP [20]. 

4. Discussion 

We identified 11 potential sepsis biomarkers by screening the 
DEGs between healthy controls and sepsis patients in two GEO da
tabases. While all genes showed high diagnostic sensitivity and 
specificity in the ROC curve analysis, only YOD1, GADD45A, BCL11B 
and IL1R2 were associated with patient survival, and were used to 
construct a predictive nomogram. GSEA showed that YOD1 is mainly 
involved in severe infection, macroautophagy and immune-related 
mechanisms, GADD45A plays a key role in endoplasmic reticulum 
stress (ERS) and immune-related mechanisms, and BCL11B and 
IL1R2 are mainly involved in immune-related processes. 
Furthermore, ssGSEA revealed that the four genes are closely asso
ciated with immune cells. Finally, YOD1, GADD45A and IL1R2 mRNA 

Table 2 
Specificity at 0.85 sensitivity, PPV, and NPV of these 11 DEGs.      

gene specificity PPV NPV  

YOD1  0.912  0.986  0.452 
GADD45A  1.000  1.000  0.475 
BCL11B  0.960  0.994  0.467 
IL1R2  0.976  0.996  0.469 
UGCG  1.000  1.000  0.477 
TLR5  0.984  0.997  0.471 
S100A12  1.000  1.000  0.477 
ITK  0.984  0.997  0.471 
HP  0.992  0.999  0.473 
CCR7  0.936  0.990  0.459 
C19orf59  1.000  1.000  0.475    

L. Ke, Y. Lu, H. Gao et al. Computational and Structural Biotechnology Journal 21 (2023) 2316–2331 

2322 



Fig. 5. Diagnostic value of DEGs for sepsis in the GSE65682 and GSE134347 datasets. The ROC curves of (A) YOD1, (B) GADD45A, (C) BCL11B, (D) IL1R2, (E) UGCG, (F) TLR5, (G) 
S100A12, (H) ITK, (I) HP, (J) CCR7 and (K) C19orf59 are shown. 
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Fig. 6. Prognostic value of DEGs for patients in the GSE65682 dataset. The Kaplan-Meier survival curves of the high- and low-expression groups of (A) YOD1, (B) GADD45A, (C) 
BCL11B, (D) IL1R2, (E) UGCG, (F) TLR5, (G) S100A12, (H) ITK, (I) HP, (J) CCR7 and (K) C19orf59 are shown. 
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Fig. 7. Nomogram prediction model. (A) Nomogram to predict the sepsis rate based on the GSE65682 and GSE134347 datasets. (B) Calibration curve for the predictive ability of 
the nomogram. 

Fig. 8. GSEA results of YOD1. (A) Severe infection. (B) Macroautophagy. (C) Immunological synapse. (D) Impaired antigen specific response. (E) Hematopoiesis mature cell. (F) T 
cell receptor and costimulatory signaling. 
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and protein were elevated in a mouse model of sepsis, whereas 
BCL11B was downregulated. 

There are currently no specific biomarkers for detecting sepsis, 
and diagnosis largely relies on clinical data. Serum procalcitonin 
(PCT) and C-reactive protein (CRP) are the common biomarkers for 
the clinical diagnosis of sepsis [12]. However, the accuracy and va
lidity of these biomarkers need to be further explored. A meta- 
analysis of 77 individual PCTS for the diagnosis of sepsis showed 
sensitivity and specificity of 75–85 % and 31–83 % respectively  
[21,22]. Two meta-analyses (78 pure adult trials) did not consistently 
demonstrate the value of a single CRP assay in patients with sus
pected sepsis, which indicated a range of sensitivity and specificity 
of 60 %−80 % and 31 %−61 % respectively [21,23]. In addition, some 
recent studies also found potential gene biomarkers for sepsis from 
GEO datasets. Li et al. [24] identified key genes (SLC2A6, C1ORF55, 
DUSP5 and RHOB) from GSE54514 and GSE25504 datasets by per
forming LASSO regression and ROC analyses. Gong et al. [25] iden
tified nine genes (LRG1, ELANE, TP53, LCK, TBX21, ZAP70, CD247, ITK 
and FYN) as potential new biomarkers from three datasets 
(GSE95233, GSE57065, and GSE28750) by developing ROC analyses, 
and validated their results with RT-qPCR. Huo et al. [26] identified 
BCL11B and CEACAM6 as promising biomarkers for sepsis risk as
sessment from three GEO datasets (GSE36809, GSE37069, GSE74224, 
and GSE65682) by performing weighted gene co-expression net
work analysis (WGCNA). In addition, Lang et al. [27] had verified that 

IL1R2 as a diagnostic marker for sepsis. In our study, we identified 
YOD1, GADD45A, BCL11B and IL1R2 as biomarkers for sepsis from 
two datasets (GSE65682 and GSE134347) by performing machine 
learning methods such as LASSO regression and SVM-RFE algorithm, 
as well as ROC analysis and survival analysis. The prognostic genes 
were validated in murine sepsis model. While BCL11B and IL1R2 
have also been reported elsewhere in the context of sepsis, the role 
of YOD1 and GADD45A in sepsis has not been studied so far. 
Therefore, this is the first time to study the function of YOD1 and 
GADD45A in sepsis, and demonstrate that the combination of these 
four genes can effectively diagnose sepsis and predict the prognosis. 

YOD1 is a deubiquitinase [28] that binds to p97 or valosin-con
taining protein (VCP/p97, Cdc48 in yeast), an abundant and con
served type II ATPase [29], to clear damaged lysosomes by autophagy  
[30]. Furthermore, VCP/p97 and YOD1 also participate in en
doplasmic reticulum-associated degradation (ERAD) [31]. However, 
the specific function of YOD1 in sepsis is still unknown. Our findings 
indicate that YOD1 expression increases significantly in sepsis and is 
associated with macroautophagy. 

GADD45A gene belongs to the GADD45 family and encodes a 
ubiquitously expressed protein in normal adult and embryonic tis
sues. It is often induced by DNA damage and other stress signals, and 
regulates genes involved in growth arrest and apoptosis [32]. Acti
vation of transcription factor-4 (ATF-4) plays a central role in cellular 
stress responses, such as arsenic exposure, leucine depletion, 

Fig. 9. GSEA results of GGADD45A. (A) Antigen processing and presentation. (B) T cell receptor signaling pathway. (C) Primary immunodeficiency. (D) Intestinal immune network 
for IgA production. (E) Endoplasmic reticulum tubular network organization. (F) B cell proliferation. 
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proteasome inhibition and ERS, via GADD45A induction [33–35]. 
Furthermore, GADD45A promotes apoptosis by upregulating p38 
and JNK, and its levels increase significantly during apoptosis. 
Knocking down GADD45A can reduce DNA damage-induced apop
tosis [36,37]. A recent study showed that ERS mediates apoptosis in 
the kidneys of septic mice, and that promoting ERS can reduce 
apoptosis and sepsis-associated acute renal injury [38]. Other stu
dies showed that GADD45A inhibited autophagy in tumor cells by 
influencing the interaction between BECN1 and PIK3C3, and induced 
cell death [39]. In this study, GADD45A was significantly elevated in 
sepsis, and associated with ERS and apoptosis in sepsis. Thus, 
GADD45A might play an essential role in sepsis by regulating ERS 
and apoptosis. 

BCL11B is a transcription factor belonging to the zinc finger 
protein family (Cys2-His2), and regulates gene expression by indu
cing chromatin rearrangement and inhibiting the elongation factor B 
(P-TEFb) complex [40]. Previous studies have shown that BCL11B 
inhibited apoptosis, and knocking out the gene activated the apop
totic pathway via loss of mitochondrial membrane potential and 
elevation of BclxL, Caspase8 and Caspase9 [41]. BCL11B is a critical 
regulator of T cell differentiation, and aberrant allele-specific de
regulation of BCL11B can promote leukemic development of am
biguous lineage. BCL11B is also aberrantly expressed in AIDS, cancer, 
cardiac hypertrophy and sepsis [42]. One study reported that BCL11B 
is a promising biomarker for estimating the risk of sepsis, and its 

high expression is associated with improved survival of sepsis pa
tients regardless of age and endocrine type [26]. Another study 
showed that BCL11B repression by has-miR-150 affected the pa
thogenesis of neonatal sepsis [43]. In this study, high BCL11B ex
pression indicated better survival in patients with sepsis prognosis, 
and functional enrichment analysis showed that BCL11B is related to 
the T cell immune process in sepsis. 

IL1R2 (interleukin 1 receptor 2) is a decoy receptor of the inter
leukin 1 (IL1) receptor family that can competitively bind to IL1β and 
prevent its binding to IL1R1, thereby blocking IL-1β signals trans
duction in inflammatory diseases [44]. IL1R2 expression is restricted 
under normal conditions but increases rapidly during inflammation. 
Previous studies have shown that IL1R2 is correlated with the se
verity of infection in critically ill patients with sepsis, tuberculosis, 
acute Neisseria meningitides infection, experimental endotoxemia, 
surgical trauma, acute respiratory distress syndrome and necrotizing 
enterocolitis in premature infants [27,45–47]. In addition, IL1R2 was 
reported to be a more effective marker of sepsis with Gram+ or 
Gram- bacterial infection compared to PCT [27]. Our results are 
consistent with these previous reports. 

However, our study has certain limitations that ought to be 
considered. First, we did not study the molecular mechanism of the 
DEGs in sepsis. Second, all data presented in this paper are based on 
public datasets and were only validated in mice. Further verification 
is required on clinical cohorts. 

Fig. 10. GSEA results of BCL11B. (A) O glycan biosynthesis. (B) Starch and sucrose metabolism. (C) Glycerophospholipid metabolism. (D) Allograft rejection. (E) T cell receptor 
signaling pathway. (F) Antigen processing and presentation. 
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Fig. 11. GSEA results of IL1R2. (A) T cell receptor signaling pathway. (B) Primary immunodeficiency. (C) Antigen processing and presentation. (D) Abnormal eosinophil. (E) 
Immunological. (F) T cell Differentiation. 

Fig. 12. Comparison of immune cell proportions between healthy control and sepsis groups.  
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Fig. 13. Correlation between immune cells and the biomarker genes. Red represents a positive correlation and blue represents a negative correlation.  

Fig. 14. Validation of biomarkers in a mouse model of sepsis. (A-D) YOD1, GADD45A, BCL11B and IL1R2 mRNA levels in the heart, liver, lungs and kidneys (n = 3, compared with 
the Mann-Whitney test); (E-H) YOD1, GADD45A, BCL11B and IL1R2 protein levels in the heart, liver, lung and kidney tissues (n = 6, *p  <  0.05, **p  <  0.01, ***p  <  0.001). 
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5. Conclusion 

We identified YOD1, GADD45A, BCL11B and IL1R2 as potential 
diagnostic and prognostic biomarkers of sepsis, which likely regulate 
sepsis-related immune processes. Our findings provide new insights 
into the mechanisms of sepsis, as well as potential therapeutic tar
gets that are worth further investigation. 
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