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Abstract
In recent years, the treatment of breast cancer has advanced dramatically and neoadjuvant chemotherapy (NAC)
has become a common treatment method, especially for locally advanced breast cancer. However, other than the
subtype of breast cancer, no clear factor indicating sensitivity to NAC has been identified. In this study, we
attempted to use artificial intelligence (AI) to predict the effect of preoperative chemotherapy from hematoxylin
and eosin images of pathological tissue obtained from needle biopsies prior to chemotherapy. Application of AI
to pathological images typically uses a single machine-learning model such as support vector machines (SVMs)
or deep convolutional neural networks (CNNs). However, cancer tissues are extremely diverse and learning with a
realistic number of cases limits the prediction accuracy of a single model. In this study, we propose a novel pipe-
line system that uses three independent models each focusing on different characteristics of cancer atypia. Our
system uses a CNN model to learn structural atypia from image patches and SVM and random forest models to
learn nuclear atypia from fine-grained nuclear features extracted by image analysis methods. It was able to pre-
dict the NAC response with 95.15% accuracy on a test set of 103 unseen cases. We believe that this AI pipeline
system will contribute to the adoption of personalized medicine in NAC therapy for breast cancer.
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Introduction

Neoadjuvant chemotherapy (NAC) is used for locally
advanced breast cancer, breast cancer with poor

prognosis (triple negative and HER2 positive, lymph
node metastasis, or high proliferation rate), or early
breast cancer that is amenable to systemic therapy.
The greatest benefit of NAC is that the reduction in
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tumor size allows for improved breast conservation
and lower staging, thereby increasing the number of
patients who are eligible for surgery. In addition, by
suppressing micrometastasis, recurrence and metastasis
can be prevented. Although NAC has many advan-
tages, it results in unnecessary chemotherapy for the
patients if the drug is ineffective. Therefore, it would
be of great significance if we can predict the efficacy
of NAC before it is given, and thereby guide treatment
selection. There have been several studies on the pre-
diction of response to NAC using MRI and ultrasound
[1–4], and on disease-free survival and overall survival
based on the effect of NAC [5,6]. However, at present,
there is no reliable system to provide decision support
for treatment choice.
In the field of digital pathology, artificial intelli-

gence (AI) techniques such as support vector machine
(SVM) and convolutional neural network (CNN) have
been used to assist in the diagnosis of various tumor
pathologies [7–11]. We have also applied AI to the
pathological diagnosis of gastric cancer and breast
cancer [12,13]. Another major advantage of AI is that
it can extract information from images beyond what
pathologists can determine in the support of pathologi-
cal diagnosis. To date, attempts have been made to
predict the immunophenotype [14] and molecular phe-
notype [15] of cells from hematoxylin and eosin
(H&E)-stained tissue images. We have also success-
fully developed a prognostic prediction system for
liver cancer and bladder cancer using SVM [16,17].
However, it has been difficult to predict the actual
prognosis with greater than 90% accuracy with those
methods. A major reason for this can be attributed to
the complex and multifaceted characteristics of cancer
atypia. In order to overcome this problem, solutions
such as simply increasing the number of AI training
cases or training more features have been attempted
with only limited success. Instead, we propose an AI-
based prognosis prediction system that uses a novel
multi-model pipeline analysis of H&E-stained sections
of breast cancer extracted prior to NAC treatment.
From our experience in AI pathology [16,18] we have
found that CNN can efficiently learn the patterns of
structural atypia, while SVM and random forest
(RF) combined with fine-grained nuclear feature
extraction are better at learning the patterns of nuclear
atypia. Therefore, we constructed an independent AI
model for each heteromorphic feature. With this novel
pipeline system of multiple AI models, we succeeded
in predicting NAC with 95.15% accuracy in a study of
103 unseen test cases. In the future, we believe that
such pipeline diagnostic systems that combine AI
models to learn the patterns of cancer atypia from

various views of a histological sample will become
mainstream in digital pathology.

Materials and methods

NAC response criteria
Numerous methods of histopathological determination
of the therapeutic effect of preoperative chemotherapy
have been reported [19,20]. The common format of
these methods consists of two categories, no or little
effect and complete response, with subcategories in
between [21]. In addition, treatment efficacy can be
determined in four cases: invasive region only; inva-
sive and noninvasive regions; invasive region and
lymph nodes; and invasive and noninvasive regions
and lymph nodes. In this study, we decided not to col-
lect information on lymph node metastasis because the
target specimens were needle biopsy tissue samples
prior to NAC. In addition, we did not consider it nec-
essary to limit the therapeutic effect of NAC to the
invasive region. Based on the above conditions, we
used the response evaluation criteria of the Japanese
Breast Cancer Society (JBCS) 2007 [22], which have
been reported to be able to stratify prognosis according
to the degree of treatment effect [23,24]. These criteria
define four response grades: RG0/1/2/3 ranging from
no response to full response (see supplementary mate-
rial, Table S1).

Clinical information
In this study, a total of 310 female breast cancer
patients treated with NAC at Yamaguchi University
(26 cases), Tokyo Medical University (136 cases), and
Weill Cornell Medicine (148 cases) were included. All
cases used were invasive breast cancer, and NAC
treatment was chosen as the first-line treatment. To
train the AI models, 207 of the 310 cases (about 70%)
were randomly selected from each response grade
(RG). The remaining 103 cases were used for evalua-
tion. Details of tumor size, patient age, and cancer
subtypes are summarized in Table 1. Sixty percent of
the Japanese cases (Yamaguchi University and
Tokyo Medical University) occurred in patients aged
40–60 years and 45% of the American cases (Weill
Cornel Medicine) occurred in patients in the same age
range. Sixteen percent of the American cases occurred
in patients aged 30–39 years; therefore, a total of
61% of American cases occurred in patients aged
30–60 years. This study was conducted in accordance
with the principles of the Declaration of Helsinki and
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was approved by the ethics committees of Yamaguchi
University, Tokyo Medical University (SH4140), and
Weill Cornell Medicine (1404014987).

NAC drug regimens
The patients included in this study were treated with
an anthracycline (epirubicin or doxorubicin) plus
cyclophosphamide-based (EC or AC respectively)
therapy or EC plus 5-fluorouracil (FEC) and followed
by taxane (paclitaxel/docetaxel/Abraxane). For the
HER2 positive patients, treatment also included HER2
target drugs, trastuzumab/pertuzumab. For patients
treated at Weill Cornell Medicine, eight cases were
treated with CBDCA (carboplatin) followed by taxane
and six cases also received preoperative endocrine/
hormonal therapy (letrozole/anastrozole/exemestane).
Patients who were treated with hormonal therapy only
were not included in this study.

CNN analysis method
H&E-stained slide specimens were scanned using a
whole slide image (WSI) scanner (NanoZoomer;
Hamamatsu Photonics, Hamamatsu, Japan) at �20
image magnification. For CNN analysis, regions of
interest (ROIs) of 256 � 256 pixels were automati-
cally extracted at �20 magnification to cover the
entire needle biopsy specimen with 1 pixel
corresponding to 0.46 μm. The ROI images were first
color-normalized using the Macenko method [25]. The
image preparation process for CNN analysis is shown
in Figure 1B. As the CNN model, we used ResNeXt

[26], an improved version of ResNet-50, with a fully
connected head and five class outputs (RG0, RG1,
RG2, RG3, and cancer/noncancer). Although the final
output of the CNN for this study is only concerned
with the response grade (RG0…3), we added an extra
output (cancer/noncancer) to help the model learn
more relevant features from the data. It has been
shown in many studies that this type of multi-task
learning [27,28] can significantly improve the ability
of a deep model to learn by focusing it on more rele-
vant features of the image and avoid over-learning
irrelevant features. The determination of whether an
ROI was cancerous or noncancerous was made by a
pathologist (MK). For training the CNN model, we
used the Pytorch [29] toolset with the stochastic gradi-
ent descent optimizer and a learning rate of 1e�3,
momentum = 0.9, weight_decay = 1e�3, and cross
entropy as the loss function.
We stopped at 10 epochs when the loss on the vali-

dation set failed to improve.

SVM, RF, and t-SNE analysis
For SVM and RF analysis, we extract ROI images of
2,048 � 2,048 pixels from WSI images at �40 magni-
fication. Noncancerous areas (stroma, fibrocystic
change areas, and lymphocytes) and cancerous areas
were first manually segmented by a pathologist
(MK) from the selected ROI images. Then, using com-
mercially available segmentation software, ilastik (ver-
sion 1.1.8) [30], we performed an automatic nuclear
segmentation in the cancerous areas. The image prepa-
ration process for SVM and RF analysis is shown in
Figure 1C. As a result, a total of 1,563,586 and
952,770 nuclei were segmented from the set of train-
ing and test cases, respectively (supplementary mate-
rial, Table S2). The features related to nuclear atypia
were measured with another commercially available
specialized cell analysis software: CellProfiler (version
2.1.1) [31]. We focused on identifying features of
nuclear atypia in cancer cells that would be helpful
in predicting the effect of NAC. In total, we
obtained 82 statistical features from the segmented
cell nuclei in each ROI. These features included:
(1) morphological information related to the shape
of the nucleus, such as size, contour length, major
axis length, roundness, robustness, and eccentricity,
and (2) nuclear texture-related features, such as sec-
ond angular momentum, uniformity, and entropy.
Finally, we expanded these 82 nuclear features into
a total of 960 features using a gray-level pixel
matrix co-occurrence method named cell feature
level co-occurrence matrix (CFLCM [18]).

Table 1. The details of sample information
Training Test Total

Number of cases 207 103 310 (100%)
By subtype
Triple negative 35 21 56 (18%)
Hormone receptor + 96 47 143 (46%)
HER2+ 27 13 40 (13%)
Hormone receptor/HER2+ 49 22 71 (23%)

By NAC response grade
0: No response 30 10 40 (13%)
1: Slight response 69 44 113 (36%)
2: Marked response 49 21 70 (23%)
3: Complete response 59 28 87 (28%)

Age
Average 53 53 53
Max 83 91 91
Min 26 27 26

Size before NAC (cm)
Average 4.1 3.7 3.9
Max 20 13 20
Min 1.3 1.3 1.3
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Figure 1. An overview of the dataset preparation and prediction model construction process. (A) Original datasets. (B) Image preparation
process for CNN analysis. (C) Image preparation process for SVM and RF analysis. (D) AI models development process. (E) Pipeline devel-
opment and performance check.
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For t-distributed stochastic neighbor embedding
(t-SNE) analysis, a tool for visualizing high-
dimensional datasets to confirm SVM results, we used
the R package tsne embedded in R software (version
3.6.1, R Project for Statistical Computing; https://
www.r-project.org). The parameter settings for this
analysis were set to 1 for perplexity and 300 for step.

Results

CNN model that predicts NAC response included
structural atypia
Morphological atypia of cancer can be broadly classi-
fied into two categories, structural atypia and nuclear
atypia. Structural atypia manifests itself in the way the
cancer cells arrange themselves into structures such as
glands. Breast cancer is also a cancer that exhibits a
variety of glandular structures, and therefore structural
atypia is unique in each case. Therefore, we first
trained a CNN model to learn the structural variations
in breast cancer tissue that predict the effect of NAC.
The cases used in the training and evaluation of the
CNN were obtained from cases spanning four NAC
therapy response grades (RG0/1/2/3, Supplementary
Table S1), as well as four cancer subtypes. The num-
ber of cases in each class and set are listed in Table 1.
We trained the CNN model with 530,173 ROIs from
the cancer areas and 76,585 ROIs from the noncancer
areas for a total of 606,758 ROIs obtained from the
training set of 207 cases (supplementary material,
Table S2). The ratio of training set to validation set is
8:2. Then we evaluated the performance of the trained
model on the test set of 103 cases (169,533 ROIs in
cancer areas and 82,572 ROIs in noncancer areas,
252,105 ROIs in total). The ROI-level accuracy was
88.8% with a strong-to-perfect kappa agreement of
0.85 (the 4-class confusion matrix is shown in supple-
mentary material, Table S3B). Then, the ROI results
were aggregated into case-level results by averaging
the class scores of the ROIs in a case. The results, by
case, still showed a strong-to-perfect kappa agreement
of 0.81 (Table 2A). A visual rendering of the ROI
classification (RG0…3 and noncancer) by the CNN
model of a representative case is shown in Figure 2.
To further explore the performance of the trained
model, we used IBM SPSS Statistics for windows
(version 28.0) to perform the receiver operating char-
acteristic (ROC) analysis (Figure 3), and calculated the
values for area under the curve (AUC) of ROC. This
showed that the AUC values of the CNN model on
each RG were higher than 0.9 (Figure 3A).

SVM predicts NAC response via nuclear atypia
We next analyzed the nuclear atypia of the cancers.
Nuclear atypia is reflected by changes to the shape of
the cell’s nucleus (enlarged size, irregular contour, etc)
and to its texture (condensed chromatin and other vari-
ations). Therefore, we first sampled 3,366 ROIs from
cancer regions of cases segmented by pathologists and
trained a linear SVM model. The model was then eval-
uated on 1,545 ROIs sampled from the cancer regions

Table 2. CNN, SVM, and RF model analyses summarized into
case-based results
(A)

Prediction

RG0 RG1 RG2 RG3 Total

Truth RG0 9 0 0 1 10
RG1 0 34 1 9 44
RG2 1 0 19 1 21
RG3 1 0 0 27 28
Total 11 34 20 38 103

(B)

Prediction

RG0 RG1 RG2 RG3 Total

Truth RG0 5 3 1 1 10
RG1 0 41 0 3 44
RG2 1 5 13 2 21
RG3 0 2 0 26 28
Total 6 51 14 32 103

(C)

Prediction

RG0 RG1 RG2 RG3 Total

Truth RG0 6 0 2 2 10
RG1 0 43 0 1 44
RG2 0 4 14 3 21
RG3 0 3 0 25 28
Total 6 50 16 31 103

(D)

Prediction

RG0 RG1 RG2 RG3 Total

Truth RG0 9 1 0 0 10
RG1 0 42 2 0 44
RG2 0 0 21 0 21
RG3 0 0 0 28 28
Total 9 43 23 28 103

(A) CNN model analysis result of test cases (accuracy: 86.4%; 95%
CI: 78.3–92.4%; κ = 0.81). (B) SVM model analysis (only RG information was
used) result of test cases (accuracy: 82.5%; 95% CI: 73.8–89.3%; κ = 0.74).
(C) SVM model analysis (RG and subtype information was used) result of test
cases (accuracy: 85.4%; 95% CI: 77.1–91.6%; κ = 0.78). (D) RF model analysis
(RG and subtype information was used) result of test cases (accuracy: 97.1%;
95% CI: 91.7–99.4%; κ = 0.96).
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of test set cases. The ROI-level accuracy was found to
be 72.6% with a moderate-to-strong kappa agreement
of 0.6 (see the confusion matrix in supplementary
material, Table S4B). Aggregating the results at the
case level shows an accuracy of 82.5% and a strong
kappa agreement of 0.74 (Table 2B). A visual render-
ing in Figure 4 shows the SVM model-predicted RG
grade for each selected ROI of a representative case.

Additional subtype information increased accuracy
of SVM and RF model
The test results showed that the prediction accuracy of
the SVM was lower than that of the CNN. To visual-
ize the robustness of the classification results, we
performed a t-SNE analysis using the training data. As
a result, it was found that several groups of RGs were
mixed in one cluster, both in terms of ROI results and
cases, as shown in Figure 5A,B. This result suggests
that the SVM prediction model is not able to suffi-
ciently separate features in the training phase. To
improve the accuracy of the SVM prediction model,
we added class information based on the four subtypes
of breast cancer, (i.e. triple negative [TN], hormone
receptor positive [H+], HER2 positive [HER2+], and

hormone receptor positive plus HER2 positive [H+
HER2+]), to the initial RG class information. Since
there were no HER2+ cancers in RG0, we obtained a
total of 15 classes. Retraining the SVM model using
these 15 classes, the test set results improved. We
obtained a ROI-based classification accuracy of 63.7%
with a moderate-to-strong kappa agreement of 0.58
(supplementary material, Table S5B) and a case-based
classification accuracy of 85.4% with a strong kappa
agreement of 0.78 (Table 2C). The AUC values of the
SVM model using additional subtype information
(AUC = 0.919–0.949) (Figure 3B) were higher than
the SVM model using RG information only
(AUC = 0.860–0.931) (Figure 3C). To visualize the
improved ability of the features to classify the data,
we performed the t-SNE analysis using the expanded
classes and the same cases from the training set. While
the separation of classes was not perfect when using
4 classes (ROI level Figure 5A and case level
Figure 5B), when using 15 classes, all classes are well
separated (ROI level Figure 5C and case level
Figure 5D), showing that adding the subtype helps
classification. Subsequently, we obtained the subtype
prediction results of the retrained SVM model. As the
subtype information of breast cancer is reflected

Figure 2. Results of CNN prediction on representative cases. (A) Case #62 is predicted as RG0 by CNN model; 2,646 ROIs are predicted
as RG0 among all 3,056 ROIs in the cancer areas, and their average likelihood score is 16.921, which is higher than other RG groups.
(B) Case #12 is predicted as RG1 by CNN model; 1,860 ROIs are predicted as RG1 among all 2,317 ROIs in the cancer area, and their
average likelihood score is 15.655, which is higher than other RG groups. (C) Case #10 is predicted as RG2 by CNN model; 1,511 ROIs
are predicted as RG2 among all 2,208 ROIs in the cancer areas, and their average likelihood score is 17.123, which is higher than other
RG groups. (D) Case #15 is predicted as RG3 by CNN model; 2,468 ROIs are predicted as RG3 among all 2,523 ROIs in cancer areas, and
their average likelihood score is 24.058, which is higher than other RG groups. The details of the CNN analysis results of these cases are
shown in supplementary material, Table S9.
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Figure 3. Performance check using ROC analysis on each RG. (A) The ROC curves of CNN prediction model. (B) The ROC curves of SVM
prediction model used RG information only. (C) The ROC curves of SVM prediction model used RG and subtype information. (D) The ROC
curves of RF prediction model.
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mostly by the characteristics of the cell nucleus
[14,15], we did not use it for the CNN analysis of
structural atypia.
In addition to the linear SVM, we also trained a RF

model, which is a nonlinear classification method. For
RF experiments, we used the same setting as for the
SVM and predicted 15 classes. On the test set, we
obtained a ROI-level accuracy of 72.3% with a strong
kappa agreement of 0.66 (supplementary material,
Table S6B) and a case-level accuracy of 97.1% with a
perfect kappa agreement of 0.96 (Table 2D). To con-
firm the potential accuracy of the RF model, the out-
of-bag (OOB) error was calculated. The results
showed that the OOB error rate using the training data
was 17.76% (supplementary material, Table S7D),
indicating a potential accuracy of the RF model of
82.24%, which is in line with our empirical findings.

Development of integrated pipeline system
As shown above, we established three independent
models for predicting the effects of NAC based on the
characteristics of morphological variants of cancer. To
further improve the prediction accuracy, we combined

these models into a pipeline system consisting of four
stages (Figure 6).
For the first stage of the pipeline, we decided to use

the CNN model because it had the highest potential
accuracy among the three models, as supported by the
OOB error. If the CNN can reliably classify a sample,
the pipeline system returns the CNN result. On the
other hand, when the difference in class output score
is small between the top two classes, it means that the
model hesitates between two classes and therefore can-
not reliably classify the sample. In that case, the pipe-
line continues into the second stage. The threshold for
the score difference is obtained empirically by using a
value that allows all training examples correctly classi-
fied by the CNN to be classified by the first stage of
the pipeline.
In the second stage of the pipeline, the SVM model

trained with 15 classes is applied. The subtype predic-
tion results (TN, H+, HER2+, H+ HER2+) of the
SVM model are used to compare with the original
results to assign to subsequent stages. If the SVM
model predicts the wrong cancer subtype we decide to
use the RF model instead and go to stage 4. If the
SVM predicts the correct cancer subtype, we move to

Figure 4. Results of SVM prediction on representative cases. (A) Case #41 is predicted as RG0 by SVM model. Fourteen ROIs are
predicted as RG0 among all 15 ROIs selected in the cancer areas, and their average likelihood score is 0.48, which is higher than other
RG groups. (B) Case #83 is predicted as RG1 by SVM model. Twenty ROIs are predicted as RG1 among all 26 ROIs selected in the cancer
areas, and their average likelihood score is 0.72, which is higher than other RG groups. (C) Case #10 is predicted as RG2 by SVM model.
Eighteen ROIs are predicted as RG2 among all 21 ROIs selected in the cancer areas, and their average likelihood score is 0.82, which is
higher than other RG groups. (D) Case #65 is predicted as RG3 by SVM model. Fourteen ROIs are predicted as RG3 among all 18 ROIs
selected in the cancer areas, and their average likelihood score is 0.78, which is higher than other RG groups. The details of the SVM
analysis result of these cases are shown in supplementary material, Table S10. The red numbers near the ROIs indicate the location of
the ROIs.
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stage 3, where the class score is tested for its confi-
dence level. If the confidence is high (score ≥ 0.5) the
pipeline system returns the SVM result.
If the fourth stage of the pipeline is reached, the RF

model is applied, and its result is returned by the
pipeline.

Prognosis prediction using the pipeline system
We used the test data of 103 cases to verify the accu-
racy of the pipeline system (Figure 6). The results of
the first stage analysis showed that for 38 of

103 patients the CNN model was able to make a final
decision. There were no prediction discrepancies in
those cases. The remaining 65 cases were then ana-
lyzed in the second stage, and the cases were assigned
to subsequent stages. As a result, 51 cases were dis-
tributed to the third stage, and 14 cases were distrib-
uted to the fourth stage. In the third stage, 43 of
51 cases were confirmed by the SVM model, and
8 cases below the threshold of 0.5 were left to be
determined in the fourth stage by the RF model. Of
the 43 cases with final results in the third stage, there
were 3 cases in which the prediction did not match the

Figure 5. t-SNE analysis of SVM likelihood score. Two-dimensional map visualization by t-SNE to confirm the prediction accuracy of the
classification results of training cases. (A) The visualization is based on the prediction result of all cancer region ROIs. SVM prediction
model used RG information only. (B) The visualization is based on the prediction result of each case. SVM prediction model used RG
information only. (C) The visualization is based on the prediction result of all cancer region ROIs. SVM prediction model used RG and
subtype information. (D) The visualization is based on the prediction result of each case. SVM prediction model used RG information and
subtype information.
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results. Of these three cases, two were RG0 H+ cases,
and the third stage incorrectly predicted RG2. One
case was an RG1 H+ case and the third stage incor-
rectly predicted RG2. Finally, using the RF model in
the fourth stage, we analyzed 14 cases distributed from
the second stage and 8 cases judged to be pending in
the third stage. As a result, among those 22 cases,
2 cases did not match the results. Of these two cases,
one was an RG0 H+ case, which the fourth stage
incorrectly predicted as RG1. The other case was RG2
HER2+, and the fourth stage incorrectly predicted
RG3. Overall, the fusion pipeline predicted 98 of
103 cases correctly, with an accuracy of 95.15% (95%
confidence interval [CI]: 89.03–98.41%). This fusion
pipeline was able to improve the accuracy by approxi-
mately 10% over each single model. Detailed results
of the integrated pipeline system are shown in supple-
mentary material, Table S8.
Finally, we compared our pipeline system with a

simple majority voting method. Using the majority
voting, we were able to successfully predict 97 of
103 test cases with an accuracy of 94.17% (95% CI:

87.75–97.83%) (supplementary material, Table S8).
The superior performance of the pipeline system can
be explained by a multi-redundancy safety mechanism
that takes advantage of the characteristics of the com-
bined systems, and minimizes the effects of errors in
each system, leading to improved prognostic accuracy.
On the other hand, the majority voting approach still
provides excellent result, is more general and does not
require empirical thresholds.

Discussion

In this study, we successfully developed a system to
predict the effect of NAC on breast cancer by combin-
ing multiple machine learning models into a pipeline
system. We used a CNN model in the first stage of the
pipeline to predict the RG based on the tissue struc-
ture, which follows the diagnostic process of patholo-
gists, where the entire slide is viewed at low
magnification. Then, cases that could not be confirmed

Figure 6. Prognosis prediction pipeline system using three AI models. The pipeline consists of a CNN model as the first step, a distributor
as the second step, an SVM model as the third step, and an RF model as the fourth step. Of the 103 cases, 38 cases were determined in
the first pipeline and 65 cases for which determination was withheld in the first pipeline were moved to the second pipeline. Of the
65 cases, the second pipeline distributed 51 cases to the third pipeline and 14 cases to the fourth pipeline.

191AI pipelines to predict breast cancer NAC response

© 2023 The Authors. The Journal of Pathology: Clinical Research published by The Pathological Society
of Great Britain and Ireland and John Wiley & Sons Ltd.

J Pathol Clin Res 2023; 9: 182–194



in the first stage of the pipeline were analyzed using
only nuclear information by the SVM and RF models.
This approach is similar to the process by which
pathologists definitively confirm a diagnosis at high
magnification. We measured model confidence from
its output scores to decide whether a model’s result
was to be trusted and used or whether another model
would be applied. The linear SVM model was used
before the RF model, which is nonlinear and has the
possibility of overfitting. In the end, the pipeline sys-
tem developed in this study achieved approximately
10% higher accuracy than any of the single model. In
recent years, ensemble learning, in which multiple
independent models are developed and the results of
each model are combined by majority vote, has
become a popular method for AI learning and we
show that this approach also works very well in our
setting, reaching a slightly lower performance than the
pipeline system. The use of a CNN model greatly con-
tributes to the overall accuracy, being able to learn the
many structural variants of breast cancer. We show
that combining deep learning CNN models and classic
machine learning SVM/RF models closely matches the
histological characteristics of cancer by focusing on
both structural patterns and precise nuclear features,
and leads to improved accuracy.
In SVM and RF models, the prediction accuracy

of RG was remarkably improved by adding the infor-
mation of the four subtypes of breast cancer. We
confirmed this finding with a t-SNE visual analysis
that showed an improved and clearer clustering of
the classes when adding cancer subtype information.
This result shows that there may be common factors
that define the subtype of breast cancer and nuclear
characteristics. In both SVM and RF models, it is
possible to rank the input features in order of impor-
tance for classification. We plan to perform such
analysis in the future to understand which particular
nuclear phenotypes are expressed by each RG or
cancer subtype.
Considering future clinical applications, the automa-

tion of the entire system is a very important point.
While the CNN model was trained and evaluated from
ROIs sampled automatically from the training images,
the SVM and RF models were trained and evaluated
using ROIs that were manually sampled from the
annotated cancer regions. Considering a fully auto-
matic system for clinical use, we would need to apply
the SVM and RF classifier to all the ROIs classified
by the CNN as cancerous but which RG class predic-
tion is deemed unreliable by the pipeline. Based on
the promising results of this study, we plan to evaluate
such a fully automated system in a future work.
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