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Abstract

Summary: Haplotype Trend Regression with eXtra flexibility (HTRX) is an R package to learn sets of interacting fea-
tures that explain variance in a phenotype. Genome-wide association studies (GWAS) have identified thousands of
single nucleotide polymorphisms (SNPs) associated with complex traits and diseases, but finding the true causal
signal from a high linkage disequilibrium block is challenging. We focus on the simpler task of quantifying the total
variance explainable not just with main effects but also interactions and tagging, using haplotype-based associa-
tions. HTRX identifies haplotypes composed of non-contiguous SNPs associated with a phenotype and can naturally
be performed on regions with a GWAS hit before or after fine-mapping. To reduce the space and computational
complexity when investigating many features, we constrain the search by growing good feature sets using
‘Cumulative HTRX’, and limit the maximum complexity of a feature set. As the computational time scales linearly
with the number of SNPs, HTRX has the potential to be applied to large chromosome regions.

Availability and implementation: HTRX is implemented in R and is available under GPL-3 licence from CRAN
(https://cran.r-project.org/web/packages/HTRX/readme/README.html). The development version is maintained on
GitHub (https://github.com/YaolingYang/HTRX).

Contact: yaoling.yang@bristol.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Numerous single nucleotide polymorphisms (SNPs) associated with
human complex traits and diseases have been discovered by
genome-wide association studies (GWAS) (Buniello et al., 2019).
Strategies to manage GWAS results, i.e. include one or multiple
SNPs in a region, are realized either entirely by linkage disequilib-
rium (LD) considerations (Yang et al., 2012) or through fine-
mapping (Spain and Barrett, 2015). Haplotype-based association
studies, incorporating LD information and combining gene–gene
interaction into features, have the potential to be more powerful
than methods based on independent SNPs (Balliu et al., 2019).

Haplotype-based analysis, such as Haplotype Trend Regression
(HTR) (Zaykin et al., 2002) [reviewed by Schaid (2004) and Liu
et al. (2008)], is limited to investigating haplotypes, which interact
between all the specified SNPs, and they lose power if some of the
SNPs do not have interaction effects. We recently (Barrie et al.,
2022) proposed Haplotype Trend Regression with eXtra flexibility
(HTRX), which searches non-contiguous haplotypes, including sin-
gle SNP effects. As the number of haplotypes increases exponentially
with the number of SNPs, inferring true interactions at scale is un-
realistic (Guan and Stephens, 2011). Consequently, the goal of

HTRX is to make good predictions by selecting features, which have
the best predictive performance. By estimating the out-of-sample
variance explained (R2), HTRX quantifies whether a tagging SNP is
adequate, or whether interactions or LD with unobserved causal
SNPs are present. Further, by treating out-of-sample R2 as an un-
biased target of inference rather than a performance measure, we
provide a lower bound on the predictive power gained by haplotypes
compared to SNPs alone, informing the search for specific SNP
interactions.

Barrie et al. (2022) demonstrated the utility of this method by
detecting interactions between fine-mapped SNPs in the human
leukocyte antigen locus for Multiple Sclerosis. This note addresses
two important improvements: controlling computational complex-
ity, and ensuring that overfitting is controlled. We will control the
former by limiting the flexibility of haplotypes to be considered, and
the latter using penalization and cross-validation (CV). In addition
to Bayesian Information Criteria (BIC) (Schwarz, 1978) employed
to select candidate models by Barrie et al. (2022), we incorporate
other popular methods including Akaike’s information criterion
(AIC) (Akaike, 1974) and least absolute shrinkage and selection op-
erator (lasso) (Tibshirani, 1996) regularization in the R package
‘HTRX’.
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2 Methods

HTRX defines a template for each haplotype using the combination
of ‘0’, ‘1’ and ‘X’, which represent the reference allele, alternative al-
lele and either of the alleles, respectively, at each SNP. For example,
a four-SNP haplotype ‘1XX0’ only refers to the interaction between
the first and the fourth SNP. Each haplotype Hij takes a value of 0,
0.5 or 1 if a diploid sample i has 0, 1 or 2 copies of haplotype j. This
template creates 3u � 1 different haplotypes in a region containing u
SNPs, while only 2u � 1 of them are independent. The models and
methods that we quantify the variance explained are introduced in
Supplementary Method S1.1.

Fitting models using all possible haplotypes which we refer to as
‘Direct-Fit’ result in overfitting (Hawkins, 2004). To address this,
HTRX considers AIC, BIC and lasso penalization. AIC and BIC pen-
alize the number of features in the model through forward regres-
sion, while lasso uses L1 norm to regularize parameters, and retains
only the features whose parameters do not shrink to 0. Model per-
formance is evaluated using the out-of-sample variance explained by
haplotypes within a region, which assesses the model’s ability to
generalize to new datasets. To evaluate the model’s predictive abil-
ity, we use k-fold CV, an ensemble learning method (k � 3 for all
the algorithms below) as a natural score function:

In Algorithm 1 and throughout, we use a linear regression or lo-
gistic regression model for training and testing. Other models could
be applied to HTRX features as they are applied to SNP-based fea-
tures. The ‘Generate haplotype features’ step involves enumerating
the possible templates.

Although Algorithm 1 reduces overfitting, it generates an ensem-
ble of feature sets due to variation in the training data. To choose a
fixed feature set, a more complicated ‘Two-stage CV’ algorithm
(Algorithm 2) is required. In the first stage, we generate a set of can-
didate models using penalization through simulations, the number
of which is denoted by B. For each simulation, a fraction D of the
available data is sampled for model training, and a total of q candi-
date models are selected. Following the simulations, we count the
number of unique candidate models selected, denoted by z, which
are subsequently passed to the second stage for the evaluation of
their out-of-sample performance via k-fold CV.

We provide a rigorous justification of the validity of Algorithm 2
in Supplementary Method S1.2. In addition, we demonstrate that
the within-CV average out-of-sample R2, as adopted by the ‘Two-
stage CV’ approach, accurately estimates the out-of-sample R2 per-
formance when tested on a completely independent dataset.
However, this algorithm scales badly with u and is limited to around
u � 6.

To consider more features as commonly found in genetic LD
blocks, ‘Cumulative HTRX’ (Algorithm 3) controls the space and
computational complexity. In specific, ‘Cumulative HTRX’ extends
‘Two-stage CV’ by initially sampling L out of the total u SNPs at
each simulation, instead of generating the complete set of possible
templates. From the templates generated exhaustively using L SNPs,
the best M features are identified through a forward regression ap-
proach without penalization, which aims at retaining more ‘suffix’
of longer haplotypes. Subsequently, another SNP is sampled to cre-
ate 3Mþ 2 possible haplotypes, and the top M features are selected
through another forward regression with no penalization. Once all
SNPs have been accounted for by repeating the above process, pen-
alization is employed to choose the best q models. After simulating

B times, the optimal model is determined using a k-fold CV process
similar to that of Algorithm 2, and its out-of-sample performance is
evaluated.

We refer to the HTRX Algorithm as using ‘Two-stage CV’ when
L � 6 and ‘Cumulative HTRX’ for L>6. ‘Cumulative HTRX’ acts
as a lower bound of the out-of-sample variance explainable by
HTRX because the ‘suffix’ of significant longer haplotypes may be
missed when extending haplotypes, which is the sacrifice of the con-
siderably reduced computational cost. Figure 1 illustrates that
‘Cumulative HTRX’ brings ‘HTRX’ significant memory saving
compared to ‘Direct-Fit’, which implements all-feature multivariate
regression and occupies the same memory space as ‘Two-stage CV’.
Larger L, M and B may slightly improve the predictive performance,
but they significantly increase complexity both spatially and
computationally.

It is rare that many features are involved in an interaction, and
such interactions are statistically hard to identify. Because of this,
we consider constraining the maximum number of SNPs permitted
in a haplotype template. This reduces the computational and space
complexity, and enforcing a strict limit (specifically for restricting
the interaction between at most two or three SNPs) enables ‘Two-
stage CV’ to be performed on longer regions (Fig. 1). Additionally,
we implement the comparison of the computational cost of HTRX
in regions containing different number of SNPs in Supplementary
Method S1.3, which indicates that ‘Cumulative HTRX’ can be

Algorithm 2 Two-stage CV (function ‘do_cv’)

Generate haplotype features;

for b  1 to B do " Stage 1: Generate candidate models

Sample a fraction of data D;

Select the best q candidate models using penalization;

Count the number of different candidate models z;

Split data into k folds; " Stage 2: Model fit via k-fold CV

for i  1 to k do

for j  1 to z do

Train model j in k – 2 folds, without penalization;

Validate in one fold, compute R2
vij;

Test in remaining one fold, compute R2
tij;

Compute R
2

vj  1
k

Pk
i¼1 R2

vij; so j�  arg max
j

R
2

vj;

Compute R
2

2�stage  1
k

Xk

i¼1
R2

tij� .

Algorithm 1 Direct CV (function ‘do_direct_cv’)

Generate haplotype features;

Split data into k folds;

for i  1 to k do

Train in k – 1 folds (i0 6¼ i) using penalization;

Test in fold i, compute R2
i ; " Out-of-sample R2

Compute score: R2
cv  1

k

Pk
i¼1 R2

i .

Algorithm 3 Cumulative HTRX (function ‘do_cumulative_

htrx’)

for i  1 to B do " Stage 1: Extend haplotypes

Sample a fraction of data D;

Sample L features (from u) to generate all possible

haplotypes;

Retain best M features using forward regression with no

penalization;

for j  Lþ1 to u – 1 do

Sample another SNP from the remaining u� jþ 1 to

generate all possible haplotypes;

Retain best M features using forward regression with no

penalization;

Add the last SNP to M to generate all possible haplotypes; "
Stage 2: Generate a set of candidate models

Select the best q candidate models using penalization;

Count the number of different candidate models z;

Apply Algorithm 2 Stage 2. " Stage 3: Constrained CV
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applied to larger regions with only linearly increasing processing
time (Fig. 2).

3 Results

We perform a simulation to compare the performance of different
algorithms, penalization and feature sets. To generate a realistic

dataset, we simulate data with the following features:

1. LD is strong within the region;

2. main SNP effects are large and sparse;

3. SNP interactions are also sparse, are weaker and may involve

SNPs with and without a main effect;

4. there is confounding from an observed variable correlated with

the genetic structure;

5. power is relatively low.

In detail, we simulate six biallelic SNPs Gij (i ¼ 1; . . . ; 100 000
denotes samples and j ¼ 1; . . . ; 6 denotes SNPs) with frequency
about 20% for the alternative allele ‘1’ from an LD block, leading
to a correlation between each pair of SNPs of around 97.8%. We as-
sume each sample is haploid, and the effect size of two SNPs G�2
and G�4 are bG2

¼ 0:5
sdðG�2Þ and bG4

¼ 0:5
sdðG�4Þ, respectively. Two haplo-

types have real effects: a two-SNP interaction H�1 (‘X0XX1X’) with

effect size bH1
¼ 0:3

sdðH�1Þ and a three-SNP interaction H�2 (‘1XX0X1’)

with effect size bH2
¼ 0:3

sdðH�2Þ. A confounder C ¼ 0:5G�2 � 0:8G�4

with effect size bC ¼ 1
sdðCÞ, a random error with large variance ei �

Nð0; 4Þ and an intercept term k ¼ �4 are also generated.
We investigate both continuous and binary phenotypes using lin-

ear and logistic regression models. The model is:

f ðYc
i Þ ¼ bG2

Gi2 þ bG4
Gi4 þ bH1

Hi1 þ bH2
Hi2 þ bCCi þ k; (1)

where for linear regression the phenotype Yc is continuous, simulat-
ing from Yc

i � f ðYc
i Þ þ ei. For a binary phenotype, we sample Yb

i �
Binð1; piÞ where log pi

1�pi

� � ¼ f ðYc
i Þ.

The algorithms, penalization methods, and feature sets are then
compared in terms of their out-of-sample performance under models
with fixed parameters k ¼ 10, D ¼ 50%, B¼10 and q ¼ 3 (Fig. 3). In
linear models, there is little variation in out-of-sample performance re-
gardless of the approaches above. However, for logistic regression
models with binary phenotype, direct fitting the model using all fea-
tures (‘Direct-Fit’) and using Algorithm ‘Direct-CV’ lead to significant
overfitting, particularly when the feature set contains haplotypes with
at least three SNPs (‘3SNP_hap’). This is because HTRX separates tem-
plate selection as a validation step given fresh training data, which
avoids overfitting, whereas ‘Direct-Fit’ does not.

The simulation for logistic regression models also reveals that
under HTRX, AIC and BIC slightly outperform lasso, indicating
that lasso may fail to select the correct features. Moreover, the aver-
age out-of-sample R2 reaches the maximum when the feature set
includes three SNP interactions as simulated in the data. This indi-
cates that reducing the number of allowed interactions not only
speeds up computation, but may also avoid power loss.
Furthermore, adding the ‘X’ to the template, i.e. enabling the search
for non-contiguous haplotypes including single SNPs, increases per-
formance, as HTRX outperforms HTR when both are selected using
either ‘Direct CV’ or ‘Two-stage CV’.

Fig. 1. ‘Cumulative HTRX’ bounds space complexity. Comparison of space complexity for Algorithm ‘Direct-Fit’ (all-feature multivariate regression) and ‘HTRX’ on different

feature sets for both linear and logistic regression models. Feature set specifies the maximum number of features that can interact using ‘SNP’, ‘2SNP_hap’, ‘3SNP_hap’, etc.,

and ‘all_hap’ represents the all the possible haplotypes, while ‘HTR’ uses templates that interact between all features with no ‘X’ in the template. The space complexity for lin-

ear and logistic regression models is approximately proportional to the number of the input features, which is suggested to be below 1000 for ‘HTRX’. Algorithm ‘Direct-Fit’

and ‘HTRX’ begin with the same number of features L � 6. When the number of SNPs increases, the number of features increases exponentially. ‘HTRX’ uses Algorithm 3

‘Cumulative HTRX’ to reduce the space complexity significantly. When using haplotypes with at most two or three SNPs (‘2SNP_hap’ and ‘3SNP_hap’), or all the SNPs

(‘HTR’), ‘HTRX’ allows the region spanning more SNPs while keeping the relative space complexity below 1000

Fig. 2. ‘Cumulative HTRX’ has linear Computational Complexity. Computational

time as a function of the number of SNPs, for which HTRX uses Algorithm 2 if

there are no more than six SNPs and Algorithm 3 for 7–20 SNPs. Two fixed covari-

ates are included, and the phenotype is either continuous or binary, for 2000 sam-

ples. The details are described in Supplementary Method S1.3
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4 Discussion

We show in a simulated dataset of six interacting features that sepa-
rating validation from feature selection using ‘Two-stage CV’ sig-
nificantly outperforms ‘Direct CV’, especially when the phenotype is
binary (Fig. 3). Also, penalization using AIC or BIC produces signifi-
cantly better out-of-sample performance than lasso. ‘Two-stage CV’
uses a validation step to select a subset of all possible models to re-
duce computational cost and better estimate the out-of-sample pre-
dictive performance.

Out-of-sample prediction is wasteful of scarce data, and for R2

prediction using less data creates a downward bias as well as
increased variance. Whilst results throughout are shown for true
out-of-sample prediction, for real data, we implement k-fold CV,
which introduces a negligible bias compared to the variance
(Supplementary Fig. S1).

‘Cumulative HTRX’ as currently implemented can be deployed
on LD blocks containing all SNPs in principle, as the compute time
scales linearly (Fig. 2). A natural question after conducting fine-
mapping is whether some signals are lost due to interactions or the
variation can totally be explained by SNPs only. It is appropriate to
follow fine-mapping SNPs with a HTRX analysis to evaluate the po-
tential for SNP interaction. Running HTRX before fine-mapping is
also possible because of the linearly scaled computational cost, al-
though power is the limiting factor in such an analysis. In both
cases, it is important to remember that HTRX is limited by the
power in the data, i.e. absence of evidence of interaction is not evi-
dence of absence.

More generally, these algorithms efficiently search features for
interactions. One approach is reducing the number of interactions

permitted, and another is growing the most promising interaction
sets. Both exploit the diminishing marginal returns of complexity for
prediction to quantify the total out-of-sample variance explained,
which tests for the presence of feature interaction. It has general ap-
plication in regression, but is specifically important for determining
whether a single SNP is an adequate description of the effect of a
genetic region on a phenotype.

Software and data availability

The source code for R package HTRX is publicly available from GitHub at:

https://github.com/YaolingYang/HTRX and a tutorial for HTRX is available

in the ‘vignette’ folder. The data underlying this article are available in the art-

icle and in its online supplementary material.
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(a) (b)

Fig. 3. HTRX is accurate and necessary for Logistic Regression. Comparison of the

average out-of-sample R2 through 10-fold CV for linear and logistic regression mod-

els in a simulated dataset. Feature set specifies the maximum number of features (of

6) that can interact using ‘SNP’, ‘2SNP_hap’, ‘3SNP_hap’, etc., and ‘all_hap’ repre-

sents the all the possible haplotypes, while ‘HTR’ uses templates that interact be-

tween all SNPs with no ‘X’ in the template. D ¼ 50%, B ¼ 10 and q ¼ 3 are used

for ‘Two-stage-CV’ (Algorithm 2). ‘Direct-Fit’ refers to all-feature multivariate re-

gression. ‘Direct CV’ is the implementations of Algorithm 1. (a) Linear Models. (b)

Logistic Regression Models
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