
RESEARCH ARTICLE
www.advancedscience.com

The Gut Microbiome Dynamically Associates with Host
Glucose Metabolism throughout Pregnancy: Longitudinal
Findings from a Matched Case-Control Study of Gestational
Diabetes Mellitus

Zhonghan Sun, Xiong-Fei Pan, Xiao Li, Limiao Jiang, Ping Hu, Yi Wang, Yi Ye, Ping Wu,
Bin Zhao, Jianguo Xu, Mengmeng Kong, Yanni Pu, Manying Zhao, Jianying Hu,
Jinfeng Wang, Guo-Chong Chen, Changzheng Yuan, Yongfu Yu, Xiang Gao,
Fangqing Zhao, An Pan,* and Yan Zheng*

Though gut microbiome disturbance may be involved in the etiology of
gestational diabetes mellitus (GDM), data on the gut microbiome’s dynamic
change during pregnancy and associations with gestational glucose
metabolism are still inadequate. In this prospective study comprising 120
pairs of GDM patients and matched pregnant controls, a decrease in the
diversity of gut microbial species and changes in the microbial community
composition with advancing gestation are found in controls, while no such
trends are observed in GDM patients. Multivariable analysis identifies 10
GDM-related species (e.g., Alistipes putredinis), and the integrated
associations of these species with glycemic traits are modified by habitual
intake of fiber-rich plant foods. In addition, the microbial metabolic potentials
related to fiber fermentation (e.g., mannan degradation pathways) and their
key enzymes consistently emerge as associated with both GDM status and
glycemic traits. Microbial features especially those involved in fiber
fermentation, provide an incremental predictive value in a prediction model
with established risk factors of GDM. These data suggest that the gut
microbiome remodeling with advancing gestation is different in GDM
patients compared with controls, and dietary fiber fermentation contributes to
the influence of gut microbiome on gestational glycemic regulation.
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1. Introduction

Gestational diabetes mellitus (GDM), one
of the major pregnancy complications, may
result in multiple disorders and diseases
for mothers and their offspring through
a transgenerational flow.[1,2] A prior his-
tory of GDM could lead to a 10-fold in-
creased risk of type 2 diabetes mellitus
(T2DM) for mothers and an 8-fold higher
risk of pre-diabetes for their offspring.[3–5]

The metabolic modifications during preg-
nancy prompt fetal development, while the
maladaptation of these modifications may
have a diabetogenic effect on maternal
metabolism and lead to the development
of GDM. However, the underlying complex
system of gestational adaptation or mal-
adaptation remains inadequately explored.

The gut microbiome has been impli-
cated in GDM pathogenesis.[6,7] Compared
to those with normal glycemic status, an
altered composition of the gut microbiota
has been found in GDM patients.[8–11] How-
ever, previous studies failed to characterize
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the dynamic remodeling process of the gut microbiome during
pregnancy due to single-sampling strategy. Hence, the longitudi-
nal associations of the gut microbiome with gestational glucose
metabolism are unclear. And most of the published results were
generated using 16S rRNA gene profiles, which lacked micro-
bial taxonomic and functional resolution. Furthermore, whether
diet could influence microbial associations with host glucose
metabolism during pregnancy remains to be explored.

In this prospective study, 120 pairs of GDM patients and
matched healthy pregnant controls were included, and their com-
prehensive clinical measurements, habitual dietary intakes, and
metagenomic profile of gut microbiome were recorded at each
trimester (T) (Figure 1), in order to achieve the objectives of: 1) de-
scribing the longitudinal adaptations in gut bacterial taxonomic
and functional features during pregnancy in women with and
without GDM; 2) estimating the dynamic associations of the mi-
crobial features with host glucose metabolism during pregnancy;
and 3) exploring whether and to what extent habitual food con-
sumption could modulate such associations.

2. Results and Discussion

2.1. Characteristics of the Study Participants during Pregnancy

A total of 120 pairs of GDM patients and matched controls from
the Tongji-Shuangliu Birth Cohort (TSBC) were included in this
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study (Figure 1). The mean (standard deviation) age at enrollment
of the participants was 27.4 (3.9) years. No difference was ob-
served in education level, smoking status, alcohol consumption,
or family history of T2DM between the GDM patients and con-
trols (Table S1, Supporting Information). Compared with con-
trols, GDM patients had a higher mean BMI (body mass index) in
pre-pregnancy, T1, and T2 and a higher mean gestational weight
gain (GWG) in T3 (all P < 0.05). Though not statistically sig-
nificant, GDM patients showed a trend to have a higher mean
GWG than controls (1.2 vs 0.7 kg, P = 0.18). In addition, GDM
patients were more likely to have higher levels of fasting plasma
glucose (FPG) and hemoglobin A1c (HbA1c) compared with con-
trols, though most of these differences (except for HbA1c) were
weakened in T3 (all P > 0.05, Table S1, Supporting Information).

2.2. Different Adaptations of Microbial Composition During
Pregnancy in GDM Patients

Overall, the gut microbial 𝛼-diversity (i.e., Shannon index) and
microbial composition (i.e., eigenvalues of the principal coordi-
nates analysis) explained a significant amount of variation in ges-
tational glycemic traits (e.g., 1.6% of the variance in FPG, 2.1%
of the variance in HbA1c), which was comparable to that of es-
tablished clinical risk factors (e.g., gestational week and systolic
blood pressure, Figure 2A).

During pregnancy, an inverse association of Firmicutes to Bac-
teroidetes (F/B) ratio and microbial 𝛼-diversity (i.e., Shannon in-
dex) with host FPG was observed (both P < 0.05, Figure 2B). Fur-
thermore, the overall composition of gut microbiome was also
associated with FPG (P = 0.04, Figure 2C). With advancing gesta-
tion, decreasing trends in the F/B ratio and microbial 𝛼-diversity
were observed among controls (both P-trend < 0.05, Figure 2D
and Figure S1, Supporting Information) but not in GDM patients
(both P-interaction of GDM < 0.05, Figure 2D). Similarly, time-
dependent alterations in general microbial composition were ob-
served in controls but not in GDM patients (Figure 2E). Com-
pared with controls, GDM patients tended to have a reduced gut
microbiome diversity in T1 (P = 0.04, Figure S2A, Supporting In-
formation), while the differences in microbial composition were
consistently observed in T2 and T3 (both P < 0.05, Figure S2B,
Supporting Information).

2.3. Diet Modified the Associations between Species and Host
Glucose Metabolism

Among the 258 analyzed microbial species, 10 species from five
phyla were identified to be associated with GDM status in the
adjusted linear mixed models (joint association, false discovery
rate (FDR) corrected P < 0.25, Figure 3A), of which five species
were enriched in controls compared with GDM patients during
pregnancy (Figure S3, Supporting Information). For example,
compared with controls, a consistently lower relative abundance
of Ruminococcus bromii was observed in GDM patients through-
out three trimesters; Alistipes putredinis and Bacteroides ovatus re-
mained lower in T1 and T2 as well (FDR-corrected P < 0.25,
Table S2, Supporting Information). Among these GDM-related
species, six species were further associated with host glycemic
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Figure 1. Study design, measurements, and analysis strategy. To associate the gut microbiome with diet and glucose metabolism, we profiled stool
metagenomes and glycemic traits from a prospective case-control study nested in the Tongji-Shuangliu birth cohort. Blood and stool samples, dietary
records, and health-related information were collected, and taxonomic and functional profiling from stool shotgun metagenomes, fecal short chain fatty
acids (SCFAs), plasma biomarkers of glucose metabolism, and other covariates were measured at each trimester (n = 720). The joint associations
between microbial features and glycemic traits were estimated using linear mixed models with pooled data from three trimesters (n = 720). The delta
associations were estimated using the change values of microbial features between the first trimester (T1) and the second trimester (T2) and oral glucose
tolerance test (OGTT) measured in T2 (n = 240). Interaction analyses were performed to explore the potential interaction effect of dietary factors on the
associations between microbial features and host glucose metabolism. Random forest classification models were constructed to estimate the prediction
power of microbial data for the risk of gestational diabetes mellitus (GDM). The area under operating characteristic curve (AUROC) was used as a metric
to quantify classifiers performance. Icons representing the types of collected samples were created using Biorender.com.
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Figure 2. The gut microbiome composition among GDM patients and controls. A) The variance of glycemic traits explained by gut microbial compo-
sition, diet, and other covariates. The height of each bar represented the explained variance calculated using univariate linear regression. The color
bar represented significant associations between glycemic traits and host factors (P < 0.05), while the grey bars represented non-significant ones. The
explained variances of fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) were estimated with pooled data from three trimesters, while the
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traits, BMI, or GWG during pregnancy (joint association, FDR-
corrected P < 0.25, Figure 3A). For example, the relative abun-
dance of A. putredinis was inversely associated with FPG (𝛽 =
−0.01) and Eubacterium ramulus was positively associated with
FPG (𝛽 = 0.003). These two species’ changes between T1 and T2
were further associated with the glucose measurements during
the oral glucose tolerance test (OGTT) in T2 (delta association,
FDR-corrected P < 0.25, Figure 3A).

A composite microbial risk score calculated based on the pres-
ence of these 10 GDM-related species (see Experimental Section)
was consistently higher in GDM patients compared with con-
trols at each trimester as expected (P < 0.001, Figure 3B). Of
note, the associations between this GDM microbial risk score
and glycemic traits were significantly modified by habitual in-
take of fiber-rich plant foods. For example, positive associations
of the GDM microbial risk score with HbA1c or FPG were only
observed among participants with a lower intake of fruits, veg-
etables, and grains (P-interaction < 0.05, Figure 3C–E). Similar
modification effects of the fiber-rich plant foods were also ob-
served among some component microbial species, including Es-
cherichia coli, Fusobacterium mortiferum, Bacteroides massiliensis,
and Bifidobacterium dentium (Figure 3C–E).

2.4. Microbial Fermentation was Associated with Host GDM
Status and Glycemic Metabolism

With multivariable adjustment for covariates, 26 microbial func-
tional pathways had different abundances between GDM cases
and controls (joint association, FDR-corrected P < 0.25, Figure
S4, Supporting Information). Generally, the gut microbiome of
GDM patients showed a decreased capacity for fermentation,
biosynthesis of lipids, and nucleotides in T1 but an increased
capacity for degradation of carbohydrates and nucleotides in T2
and T3 (FDR-corrected P < 0.25, Figure S4 and Table S3, Sup-
porting Information). Furthermore, among 13 GDM-related mi-
crobial pathways involved in the microbial metabolism of carbo-
hydrates, significant associations were identified with glycemic
traits, BMI, or GWG during pregnancy (joint association, FDR-
corrected P <0.25, Figure S4A, Supporting Information). For ex-
ample, the mannan degradation pathway (PWY-7456) was in-
versely associated with FPG, HbA1c, BMI, and GWG (all FDR-
corrected P < 0.25, Figure S4A, Supporting Information). Man-
nan, an insoluble fiber embedded in almost all plant cell walls,
has been found to suppress lipid accumulation through micro-
bial degradation to short-chain fatty acids (SCFAs).[12] Accord-
ing to previous studies, the mannan degradation pathway (PWY-
7456) was enriched in people who adhered to the Mediterranean
Diet, which is a healthy plant-based dietary pattern.[13] Notably,
two downstream pathways of mannan degradation (i.e., glycoly-

sis [ANAGLYCOLYSIS-PWY] and CDP-diacylglycerol biosynthe-
sis [PWY0-1319]) also exhibited inverse associations with FPG
levels (FDR-corrected P < 0.25, Figure 4A and Figure S4A, Sup-
porting Information). Through mannan degradation, the gut bac-
teria produce D-glucopyranose and thus provide substrates for
the downstream microbial glycolysis, fermentation, and phos-
pholipid biosynthesis (Figure 4B). In addition, OGTT results
showed a significant inverse association with the key enzymes
in these pathways related to fiber fermentation, such as cytosolic
pyruvate kinase (EC 2.7.1.40), which is a key enzyme in the syn-
thesis of pyruvate and ATP, and glycerol-3-phosphate dehydro-
genase (EC 1.1.1.94), which is a key enzyme connecting carbo-
hydrate and lipid metabolism (Figure 4B).[14,15] These enzymes
were mainly encoded by SCFA-producing bacterial species, in-
cluding Bacteroides vulgatus, Bacteroides plebeius, and Faecalibac-
terium prausnitzii (Figure 4B).[16,17] Notably, Ba. plebeius ranked
second in total contribution to these enzymes, which was more
likely to have a lower relative abundance in GDM patients com-
pared with controls in T1 (Table S2, Supporting Information).

2.5. Temporal Changes of Fecal SCFAs were Different in
Participants with GDM

To further explore the potential mechanisms underlying the as-
sociation between gut microbiome and GDM, fecal levels of ma-
jor SCFAs (i.e., acetate, propionate, and butyrate) were measured
at each trimester. Although there were no significant differences
in the fecal levels of major SCFAs between GDM patients and
controls at each trimester (all P > 0.05), the temporal increase of
propionate during T1 and T2 was greater in controls than that
in GDM patients (P < 0.05, Figure S5, Supporting Information).
Furthermore, the temporal changes in fecal levels of propionate
and butyrate during T1 and T2 were inversely associated with
plasma glucose levels during OGTT in T2 (all P< 0.05, Figure S6,
Supporting Information). In addition, fecal levels of propionate
were positively associated with aforementioned fermentation-
related pathways (i.e., PWY−7456, ANAGLYCOLYSIS-PWY, and
PWY0-1319, all P < 0.05), and fecal levels of butyrate showed a
similar trend of such associations though only their association
of PWY0-1319 was significant (Figure 4C).

2.6. Microbial Features in Early Pregnancy Improved the
Prediction of GDM

At early pregnancy (T1), the model of microbial species per-
formed better in predicting the risk of GDM compared to the
model of microbial functional pathways (area under the receiver

explained variances of OGTT glucose were estimated with data collected at T2. B) Distributions of Firmicutes to Bacteroidetes (F/B) ratio, microbial
𝛼-diversity, and host FPG among all participants during pregnancy. The microbial 𝛼-diversity was represented by the Shannon index. C) Principal co-
ordinate analysis of the gut microbiome of all samples was conducted using species-level Bray-Curtis distance. The color gradient of dots represented
matched host FPG. D) The temporal change of microbial F/B ratio (left) and 𝛼-diversity (right) among participants with GDM and controls. The boxes
in red represented samples from women with GDM and those in blue represented samples from controls. The inter-group differences in F/B ratio and
𝛼-diversity at each trimester were tested using the student’s t-test. The intra-group change trends in F/B ratio and 𝛼-diversity between trimesters were
tested using linear regression. An interaction term of GDM status and trimester was further included to evaluate the effect of GDM status on these
temporal changes. E) The temporal change of gut microbial composition among women with GDM (left) and controls (right) during the pregnancy. The
intra-group differences in 𝛽-diversity between trimesters were calculated using permutational multivariate analysis of variance (PERMANOVA).
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Figure 3. The associations of GDM microbial risk score and species with host glucose metabolism during pregnancy. A) The associations of GDM-
related species with host glucose metabolism and body weight. Asterisks represented FDR-corrected P <0.25. B) The distribution of GDM microbial risk
score in GDM patients and control at each trimester. C–D) The association between microbial features and HbA1c was modified by vegetable intake (C)
and fruit intake (D). E) The association between microbial features and FPG was modified by grain intake.
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operating characteristic curve [AUROC] for species model [95%
CI]: 0.62 [0.45–0.78], and that for pathway model: 0.48 [0.31–0.65],
P-difference = 0.04, Figure 5A). An addition of microbial features
into a comprehensive well-known model including traditional
risk factors (see Experimental Section, AUROC: 0.69 [0.56–0.82])
significantly improved the prediction performance (AUROC of
the combined model: 0.81 [0.68–0.95], P = 0.01, Figure 5A). The
aforementioned pathways related to fiber fermentation (i.e., gly-
colysis, mannan degradation, and CDP-diacylglycerol biosynthe-
sis) and Ba. plebeius (a carrier of key enzymes in fiber fermenta-
tion) were all listed among the most important features in the
combined model (Figure 5B). Furthermore, random forest re-
gression showed that microbial features in T1 were able to predict
the OGTT glucose in T2, especially in the models with both mi-
crobial species and functional pathways (range of the Pearson’s
correlation coefficient between predicted values and observed val-
ues: 0.28–0.41, all P < 0.05, Figure 5C).

2.7. Discussion

By integrating serial measurements across different trimesters,
our study is the first to report different microbial remodeling
patterns between GDM patients and controls during their preg-
nancy. We identified a series of microbial species and metabolic
potentials associated with gestational glycemic dysregulation, es-
pecially those involved in fiber fermentation (e.g., A. putredi-
nis, and pathways related to fiber fermentation), and found that
GDM-related microbial species’ associations with glycemic traits
were modulated by habitual intakes of fiber-rich foods. Further-
more, we found that the gut microbial features at early preg-
nancy significantly increased the predictive power of an empirical
model for GDM risk.

Although previous studies have reported the gut microbial al-
terations in GDM, the temporal change in the microbiome dur-
ing pregnancy and its association with the development of GDM
remains unclear.[11,18,19] In our study, the composition of the gut
microbiome altered before the diagnosis of GDM and remained
so throughout pregnancy. Significant time-dependent changes in
microbial composition were observed in both GDM patients and
controls; however, only in controls, the microbial diversity de-
creased with advancing gestation. Our observations were consis-
tent with previous evidence, reporting the decreased microbial di-
versity with advancing gestation.[20–22] This phenomenon might
be due to the metabolic modifications occurred during preg-
nancy, including increased levels of blood glucose and hormone,
which could change the internal environment of the human
body.[22,23] In addition, the F/B ratio, a biomarker of gut microbial
homeostasis,[24] showed a different temporal trend among GDM
patients compared to controls. By revealing changes in the tem-
poral remodeling pattern of gut microbial composition in GDM
patients, our study suggested that the gut microbiome might re-
flect the development and prognosis of GDM.

Our study identified a series of microbial signatures for GDM
status. Five species were found to be enriched in GDM pa-
tients, among which Bacteroides massiliensis has been reported
to be associated with the status of GDM, and E. ramulus and
Anaerostipes hadrus were associated with an impaired glucose
tolerance.[25,26] These GDM-enriched species might participate
in the development of GDM by influencing host immune sta-
tus. For example, B. massiliensis could influence the expression
of the RAC1 pathway and thus disturb gut epithelial homeostasis
and host immune response.[27] We also identified several species
depleted in GDM patients, including R. bromii and A. putredi-
nis, and Bi. dentium, which showed beneficial effects on human
metabolic health.[28–30] Consistent with our results, lower rela-
tive abundances of R. bromii and A. putredinis have been re-
ported in GDM patients.[19,31] As a keystone species for starch
degradation,[32] R. bromii and A. putredinis could produce SC-
FAs, especially butyrate, and thus prevent inflammation and in-
sulin resistance.[33,34] These species could be significantly in-
fluenced by diet, for example, the relatively lower dietary fiber
and higher fat intakes among GDM patients might lead to their
decreased abundances and thus further influence host glucose
metabolism.[35,36] Together with previous findings, we identified
several shared and specific microbial associations across differ-
ent metabolic diseases. For example, the relative abundance of
A. putredinis was inversely associated and that of E. coli was pos-
itively associated with the risk of both GDM and T2DM,[29,37,38]

while other species showed different associations between the
two diseases. The association between R. bromii and host HbA1c
level has been reported in T2DM,[39] while no associations with
host glycemic traits were observed in our study. The incon-
sistency in such microbe-host interaction might be due to the
unique physical adaptations during pregnancy other than insulin
resistance, such as elevated hormones.[1]

Our data suggested that the fiber fermentation of gut micro-
biome might play a role in influencing the gestational glucose
metabolism and development of GDM. We found that the in-
take of fiber-rich foods could modify the associations of microbial
features with host glucose metabolism and the microbial fiber
fermentation capacity was inversely associated with gestational
glucose. Our observations were supported by recent evidence
that dietary fibers could alleviate T2DM development by modu-
lating the gut microbiome.[40] Therefore, the microbial fiber fer-
mentation pathway may be beneficial to the glycemic regulation
in both T2DM and GDM. In addition, we also observed a de-
creased metabolic capacity of gut microbiome to degrade dietary
fiber among GDM patients and were inversely associated with
gestational glucose. For example, the mannan degradation path-
way (PWY-7456), which could digest polysaccharides and provide
substrates for the downstream microbial metabolism like glycol-
ysis and phospholipids biosynthesis,[41] had lower relative abun-
dance among GDM patients and showed an inverse association
with the FPG in our study. Consistent with our results, a recent

Figure 4. A) The associations of microbial fiber fermentation related pathways with host glucose metabolism during pregnancy (Revised part). B)The
associations of changes in key enzymes from T1 to T2 within the pathways of polysaccharide degradation (green), glycolysis (blue), and phospholipid
biosynthesis (purple) with host OGTT glucose. The scatter plots showed the associations of these enzymes’ temporal change (from T1 to T2) with the
area under OGTT glucose curve in T2. Red and blue dots indicated GDM patients and controls, respectively. The stack plots showed the proportions
of enzymes encoded by specific species, whose colors were shown in the top legend. C) The associations of fermentation pathways and fecal levels of
propionate and butyrate.
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Figure 5. Performance of the random forest predictive models of GDM and OGTT glucose based on microbial features. A) Random forest classification
models of GDM based on microbial features and traditional risk factors in T1. The predictive power of classification models was shown by the area under
the receiver operating characteristic curve. The colors of the curves represented the data used to generate the predictive model. B) The most important
factors in the combined prediction model for GDM. The width of each bar represented the importance of the corresponding variable, estimated by the
mean decrease in the Gini index of random forest models. C) Random forest regression models of OGTT glucose based on microbial features. The
predictive power of regression models was shown by the correlation between predicted values and observed values. Asterisks represented P < 0.05.

study also reported the beneficial effect of PWY-7456 on human
health, which was driven by adherence to a Mediterranean diet
rich in plant fiber.[13] Notably, two downstream pathways of PWY-
7456 (i.e., ANAGLYCOLYSIS-PWY and PWY0-1319) and their
key enzyme were also depleted in GDM patients and were as-
sociated with host glucose metabolism. The joint involvement of
these pathways in the biosynthesis of SCFAs and glycerophos-
pholipids might underlie the GDM pathophysiology through in-
sulin resistance.[42,43] We also identified the positive associations
between the aforementioned fiber-related microbial features and
major SCFAs, which could maintain the gut environment, miti-
gate inflammation, and regulate host glucose.[44] These pieces of
evidence jointly suggested that the gut microbiome could digest
dietary fiber into SCFAs and thus help maintain normal glucose
metabolism during pregnancy and prevent the development of
GDM.

In the current study, the microbial features measured at early
pregnancy showed robust predictive values in predicting GDM
diagnosis in T2. When added to a well-known clinical model of
risk factors, they provided an incremental predictive value as well.
As a non-invasive diagnostic approach, the gut microbiome mea-
surement at early pregnancy may help to identify the population
at high risk, which is of great public health importance. How-
ever, further validation studies and experimental research are
warranted for future clinical applications and implementation.
Notably, since the microbial species and pathways involved in
fiber fermentation were among the most important features con-
tributing to the full prediction model, this finding further empha-
sized the crucial roles of dietary fiber’s microbial fermentation in
gestational glucose regulation.

To our knowledge, this is the largest study that has profiled the
temporal change of the gut microbiome during pregnancy in par-
ticipants with and without GDM. In addition, it is also the first
study that demonstrated the importance of microbial fermenta-

tion of dietary fiber in maintaining normal glucose adaptation
throughout pregnancy. These observations will contribute to the
understanding of the interplay between the gut microbiome and
gestational metabolic adaptation and provide new strategies for
early GDM prevention as well as glucose management during
pregnancy. With the longitudinal design, we closely observed the
intra-individual physiologic adaptation during pregnancy, which
is predominant in the context of the gut microbiome.[45] Never-
theless, our study also has limitations. First, because of the obser-
vational design, our study cannot make a causal inference. The
specific impact on the gut microbiome from the general manage-
ment of GDM could not be estimated because we did not have a
direct measurement of this management. Despite adjusting for
multiple covariates, the residual influence of BMI, lifestyles, and
other potential confounding factors during pregnancy cannot be
fully eliminated. Second, we did not measure the circulating lev-
els of SCFAs and were not able to explore its role in the host-
microbiome interactions. Third, since the food questionnaire
only covered major food groups, it prevented us from conduct-
ing further nutrient-based (e.g., plant fiber) analysis. Finally, our
participants were mostly residents of western China, which lim-
ited the extrapolation of our results. Though the cross-validation
strategy was used to avoid overfitting, the random forest models
were not externally validated due to the lack of validation pop-
ulation in the research area of the gut metagenome and GDM.
Further intervention studies or larger-scale population-based ob-
servational studies are needed to validate our findings.

3. Conclusion

Our study demonstrated a different gut microbiome remodel-
ing pattern with advancing gestation in GDM patients compared
with controls. Several microbial features, especially those related
to dietary fiber fermentation, were identified to be associated with
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GDM status and host glucose metabolism. These findings may
help understand the etiology of GDM from the perspectives of the
interplay between the gut microbiome and host glycemic regula-
tions.

4. Experimental Section
Study Design and Population: This case-control study was conducted

within the TSBC, an ongoing prospective study conducted in the Shuan-
gliu District of Chengdu, China, since 2017.[46] The inclusion and exclu-
sion criteria of participants was described previously.[47] Briefly, pregnant
women aged 18–40 years who attended initial prenatal care clinics during
early pregnancy (≤15 weeks of gestation) at Shuangliu Maternal and Child
Health Hospital were invited to participate. In each trimester of pregnancy
(T1: <15+6, T2: 24+0–28+0, and T3: >29+0 weeks+days of gestation),
enrolled participants attended the antenatal clinic, provided blood and fe-
cal samples, completed a lifestyle questionnaire, and were interviewed by
trained staff to record the dietary information for the recent three months
using a food questionnaire of major food groups (i.e., grain, fruit, vegeta-
bles, meat, egg, and dairy product). GDM was diagnosed in T2 using 75-g
OGTT according to IADPSG criteria (blood glucose thresholds for GDM
diagnosis: fasting 5.1 mmol/l, 1-h 10.0 mmol/l, and 2-h 8.5 mmol/l).[48]

By June 2019, 346 GDM patients were documented in the TSBC.
In the current analysis, women were excluded who: 1) had a prior di-

agnosis of T2DM; 2) used antibiotics or anti-diabetic medication during
pregnancy (e.g., Metformin and insulin); 3) failed to finish a complete food
questionnaire; 4) failed to provide one fecal sample in each trimester. In
total, 120 GDM patients were included and one pregnant woman was ran-
domly matched who had normal glucose tolerance during pregnancy (1:1)
with controlled age (±3 years), gestational weeks (±3 weeks), and date of
baseline fecal sample collection (±4 weeks) (Figure 1). The basic charac-
teristics and clinical measurements at baseline were not different between
the included and excluded GDM cases (P > 0.05, Table S4, Supporting In-
formation).

This study was approved by the Ethics Committee of Tongji Medical Col-
lege, Huazhong University of Science and Technology, Wuhan, China, and
carried out following the principles of the Declaration of Helsinki. Written
informed consent was obtained from each participant before enrollment.

Laboratory Measurements and Clinical Data Collection: Glycemic traits
(i.e., FPG and HbA1c) and anthropometrics were measured in each
trimester. Plasma glucose was measured using the Glucose Assay Kit
(Sichuan Maccura Biotechnology, China) via the GOD-PAP (glucose
oxidase-phenol and 4 aminophenazone) method. HbA1c was measured
using a DCA Vantage Analyzer (Siemens Healthcare Diagnostics, Ger-
many). The measurements of anthropometrics and covariates (i.e., BMI,
blood pressure, physical activity, reproductive factors, and disease his-
tory) were described previously.[47] GWG were calculated the difference
between weight at each trimester and pre-pregnancy weight.

Fecal Sample Collection and Shotgun Metagenomic Profiling: Fecal sam-
ples were collected using sterile containers with ice boxes at the clinic and
stored at −40 °C within 2 h after collection. Frozen fecal samples were
transported with dry ice to the central laboratory and stored at −80 °C un-
til processing. A total of 720 stool samples were collected for the following
metagenomic sequencing in the current study. Details on fecal sample col-
lection were described previously.[11]

Fecal DNA was extracted using the TIANamp Stool DNA kit (TIANGEN,
Beijing, China) according to the experimental protocols. Illumina sequenc-
ing libraries (paired-end, insert size: 350 bp) were prepared using the Tn5
DNA Library Prep Kit for Illumina (APExBIO, Boston, USA) according to
the manufacturer’s protocols.[49] All libraries were sequenced on the Illu-
mina Novaseq6000 platform (read length: 150 bp).

The quality control process of whole-genome shotgun sequencing data
was performed by KneadData (version 0.7.2), Trimmomatic (version 0.33),
and Bowtie2 (version 2.3.4.3).[50,51] Human reads and rDNA reads were
filtered by mapping the reads to the human reference genome (GRCh37)
and SILVA 128 database. The trimmed nonhuman reads shorter than
75 bp were also removed. After quality control, an average of 33.4 mil-

lion (min: 11.7 million, max: 51.0 million) high-quality reads were obtained
for each sample. The taxonomic profiles were determined by MetaPhlan
(version 3.0.3),[52] and the microbial functional profiles including Meta-
Cyc pathways and Enzyme Commission gene families were determined
by HUMAnN (version 3.0.0.alpha.3).[53] Microbial species with a relative
abundance < 0.01% in over 90% of all samples were excluded from the
downstream analyses. The filtration of microbial pathways were described
elsewhere.[6] In brief, the pathways were excluded with a lower median
abundance (< median abundance of all identified pathways) or with a rel-
ative abundance < 0.001% in over 90% of all samples, clustered the re-
maining pathways at the height of 0.6 using the R function “cutree”, and
finally selected the representative pathways for each cluster (defined as the
pathways with the median mean abundance). Eventually, a total of 258 mi-
crobial species and 138 pathways were included in the following analyses
(Tables S2 and S3, Supporting Information).

To assess the overall association of gut microbial species with GDM, a
composite microbial risk score for GDM was calculated based on the pres-
ence of 10 GDM-related microbial species identified in the multivariate lin-
ear mixed model (for each of the 5 GDM-depleted species [i.e., they were
potential beneficial]: absent 0, present -1; for the GDM-enriched species
[i.e., they were potential harmful]: absent 0, present 1; ranged from −5 to
5).

NMR-Based Measurements of Major Fecal Short Chain Fatty Acids: Each
fecal sample (about 50 mg) was extracted twice with 500 μL of phosphate
buffer (0.15 M, K2HPO4/NaH2PO4 = 4:1, 0.001% w/v TSP, 0.01% w/v
NaN3, 50% v/v D2O, pH 7.42), according to an optimized protocol.[54–56]

Then 500 μL of the final supernatant was transferred into a 5 mm NMR
tube for NMR analysis, performed at 298 K on a Bruker AscendTM 600 MHz
NMR spectrometer (600.13 MHz for 1H frequency) (Bruker Biospin,
Germany). 1D 1H NMR spectra were acquired and processed as previ-
ously described using TopSpin 3.5 (Bruker Biospin, Germany) with ≈13
μs 90° pulses and 0.3 Hz exponential line broadening.[54] Metabolites
were assigned via 2D NMR spectra of pooled samples, with reference
to literatures.[57–59] For a target metabolite, one characteristic peak was
chosen for curve fitting and integration using MestReNova (version 9.0.1,
Mestrelab Research S. L., Spain),[60] i.e., 𝛿 0.90 (t) for butyrate, 𝛿 1.92 (s)
for acetate, and 𝛿 2.19 (q) for propionate. The integral area of each metabo-
lite was normalized by the number of protons corresponding to the peak
and by the weight of feces used for extraction, which was utilized as the
relative concentration for subsequent data analysis. The relative concen-
tration of total SCFAs was calculated by summing up three major SCFAs,
and the molar ratios of each SCFA were also calculated by dividing the
relative concentration of single SCFA by that of total SCFAs.

Statistical Analysis: The 𝛼-diversity of gut microbiome was represented
by Shannon index calculated using species-level relative abundance ma-
trix for each sample. The 𝛽-diversity of gut microbiome between samples
was calculated using species-level Bray-Curtis distance and was visualized
using principal coordinate analysis (PCOA). The differences in microbial
composition between different groups or trimesters were calculated us-
ing permutational multivariate analysis of variance (PERMANOVA) with a
permutation of 9999 times via the R package “vegan” (version 2.5-6). The
variation of glycemic traits explained by microbial features and host fac-
tors was calculated using univariate linear regression. The first two eigen-
values of PCOA, which jointly explained more than 90% of the variation of
the microbial community, were used to represent the 𝛽-diversity of the gut
microbiome in the above linear models.

A two-step analysis was performed to explore the longitudinal associ-
ations between microbial features (i.e., microbial species and functional
pathways) and host phenotypes (e.g., GDM status, FPG, HbA1c, BMI, and
GWG) according to a framework described previously.[61] First, based on
a combination of data collected from three trimesters, the overall associ-
ations were estimated using MaAsLin2 (version 1.8.0) with linear mixed
models (joint association). All models included each participant’s identi-
fier as the random effect and adjusted for potential covariates including
maternal age, gestational age, pre-pregnancy BMI, physical activity level,
and smoking status as fixed effects. Second, the dynamic associations
were estimated based on the temporal changes in microbial features from
T1 to T2 and the OGTT results in T2 (i.e., glucose values at fasting, 1 h, and
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2 h, and the glucose area under the curve [AUC]) with adjustment of ma-
ternal age and pre-pregnancy BMI (delta association). Before association
analyses, the relative abundance of microbial species and functional path-
ways was transformed using the arc-sin square root transformation,the
fecal levels of SCFAs were transformed using inverse normal transforma-
tion, and the host phenotype data were scaled into Z-scores. All P values
for multiple hypothesis testing were adjusted for multiple comparisons us-
ing the Benjamini-Hochberg method, and a FDR-corrected P < 0.25 was
considered statistically significant.

Given the physiological links among diet, fecal microbiome, and host
metabolism, interaction effects between diet and fecal microbiota were
estimated by adding an interaction term into the regression model. The
term consisted of dietary levels (categorical: lower or higher classified by
median intake amount of each food group) and microbial features (contin-
uous: relative abundance). The linear mixed models and covariates used
in the interaction analysis were the same as those used in the aforemen-
tioned joint association analysis. A P < 0.05 of the interaction term was
regarded as statistically significant.

To explore the value of differential microbial features in T1 in predict-
ing the risk of GDM, we constructed random forest classifiers for GDM
diagnosis and random forest regression models for glycemic traits mea-
sured in T2. We also assessed the ability of the microbial parity features
to increase the power in predicting GDM in addition to the traditional
risk factors in T1 (i.e., maternal age, BMI, physical activity levels, FPG,
HbA1c, blood pressure, history of polycystic ovary syndrome, family his-
tory of T2DM, and parity).[62] The random forest models were constructed
using a 5-fold cross-validation algorithm. The parameters of random forest
models were tuned using the R package “caret”. The AUROC was used as
a metric to quantify classifiers’ performance. The significance of the com-
parison between model performances was assessed using the Delong test
via the “roc.test” function of the R package “pROC” (version 1.0-11). The
correlation between the predicted value and the observed value was used
to estimate the performance of the regression model. All data analyses
were conducted in R (version 4.1.1).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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