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Abstract

Mitochondrial DNA (mtDNA) diseases are multi-systemic disorders
caused by mutations affecting a fraction or the entirety of mtDNA
copies. Currently, there are no approved therapies for the majority
of mtDNA diseases. Challenges associated with engineering mtDNA
have in fact hindered the study of mtDNA defects. Despite these dif-
ficulties, it has been possible to develop valuable cellular and animal
models of mtDNA diseases. Here, we describe recent advances in
base editing of mtDNA and the generation of three-dimensional
organoids from patient-derived human-induced pluripotent stem
cells (iPSCs). Together with already available modeling tools, the
combination of these novel technologies could allow determining
the impact of specific mtDNA mutations in distinct human cell types
and might help uncover how mtDNA mutation load segregates dur-
ing tissue organization. iPSC-derived organoids could also represent
a platform for the identification of treatment strategies and for
probing the in vitro effectiveness of mtDNA gene therapies. These
studies have the potential to increase our mechanistic understand-
ing of mtDNA diseases and may open the way to highly needed and
personalized therapeutic interventions.
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Introduction—mitochondria and mitochondrial
DNA diseases

Mitochondria are double-membrane organelles essential for the exe-

cution of key cellular functions including bioenergetics, redox bal-

ance, calcium homeostasis, and overall intercellular signal

transduction (Picard & Shirihai, 2022). The vast majority of genes

needed to produce more than 1,000 proteins important for mitochon-

drial activities are encoded in the nucleus (Pagliarini et al, 2008; Rath

et al, 2021). In addition, mitochondria harbor their own genome.

Mitochondrial DNA (mtDNA) is a small, circular molecule approxi-

mately 16,500 base pairs (bp) in size, encoding 13 proteins, 22 tRNAs,

and two rRNAs (Anderson et al, 1981). These 37 mtDNA genes are

vital to ensure proper oxidative phosphorylation (OXPHOS) function-

ality, which thus depends on the concerted action of both nuclear and

mitochondrial genomes. Unlike nuclear DNA, mtDNA is polyploid,

which means that within each cell there are multiple copies of

mtDNA (Magnusson et al, 2003; Gustafsson et al, 2016).

The number of mtDNA copies can vary greatly in different cell

types and organs (Filograna et al, 2021). For example, in mammals,

sperm may contain around 100 copies of mtDNA while oocytes con-

tain 150,000 copies (Chen et al, 1995; Wai et al, 2010). In humans,

blood leukocytes contain around 150–600 mtDNA copies (Picard,

2021; Rausser et al, 2021) and the heart around 4–6,000 (D’Erchia

et al, 2015). mtDNA content may even vary within the same tissue, as

in the case of mammalian brain, where region-specific variability can

be observed (Brinckmann et al, 2010; Fuke et al, 2011). Although tis-

sues with greater energy demands appear to contain more mtDNA

copies per cell (Picard, 2021), the underlying mechanisms are not fully

understood. It has been suggested that methylation of the

mitochondrial DNA polymerase gamma (PolG) may contribute to the

regulation of mtDNA copy number in tissues (Kelly et al, 2012). The

relation with cell cycle progression remains not clear, as contrasting

evidence exists with respect to the correlation between mtDNA

initiation/replication and cell cycle phases (Pica-Mattoccia & Attardi,

1972; Antes et al, 2010; Chatre & Ricchetti, 2013).

Mitochondrial diseases are genetic conditions caused by mutations

in either nuclear or mitochondrial genes, ultimately impairing

OXPHOS and mitochondrial function (Vafai & Mootha, 2012). Mito-

chondrial diseases are multi-systemic, but often affect tissues with

high energy demands, such as the nervous system, the heart, and

skeletal muscles (Wallace, 1999; Russell et al, 2020). In this review,

we focus on those mitochondrial diseases that are specifically caused

by mtDNA alterations, including point mutations and large-scale dele-

tions. Given the multi-copy nature of mtDNA, mtDNA point muta-

tions or large-scale deletions can affect a portion of mtDNA copies

(i.e. heteroplasmy) or virtually all mtDNA copies (i.e., homoplasmy).

mtDNA diseases comprise different clinical syndromes and are esti-

mated to occur in 1:5,000 individuals (Cree et al, 2009; Table 1).

Point mutations in mtDNA constitute a large part of mtDNA dis-

eases and result in various clinical entities. Leigh syndrome (LS,
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OMIM # 256000) is a pediatric progressive retardation of psychomo-

tor function associated with incoordination of eye movements,

recurrent vomiting, epilepsy, pyramidal and extrapyramidal signs,

central abnormalities of pulmonary ventilation, and lactic acidosis

(Baertling et al, 2014; Lim et al, 2022a). Magnetic resonance imag-

ing showing bilateral calcification in the basal ganglia region is par-

ticularly important and is pathognomonic of the disease. The most

common mtDNA mutations affect genes encoding for components

of Complex I (e.g., mutation m.3890G > A in gene MT-ND1 or

mutation m.13513G > A in gene MT-ND5) or components of Com-

plex V (e.g., mutation m.8993T > G or m.8993T > C in gene MT-

ATP6). Forms due to Complex V defects are also referred to as

maternally inherited Leigh syndrome (MILS; Ciafaloni et al, 1993).

Although the heteroplasmy can be highly variable in LS patients,

Complex I mutations have been reported to be causative of LS even

at a level of 20%, while MILS develops for heteroplasmy higher

than 90% (Thorburn et al, 1993; Stenton et al, 2022; Lim et al,

2022a). Neuropathy, ataxia, retinitis pigmentosa, and ptosis (NARP,

Table 1. mtDNA diseases.

Clinical syndromes caused by mtDNA point mutations

Disease Main clinical features

Frequent
genes
affected

Frequent
mutations

Gene
function Mutation load

Leigh Syndrome (LS) Psychomotor regression, seizures,
difficulty in breathing, hypotonia,
ataxia, lactic acidosis, and fatigue

MT-ND1
MT-ND2
MT-ND3
MT-ND4
MT-ND5
MT-ND6
MT-ATP6
MT-ATP8

m.3890G > A
m.13513G > A
m.8993T > C
m.8933T > G
m.9185T > C
m.9176T > G

Protein
subunits of
Complex I or
Complex V

Heteroplasmy >20% for Complex I
mutations; Heteroplasmy >90% or
homoplasmy for Complex V
mutations

Mitochondrial
Encephalopathy, Lactic
Acidosis, and Stroke-like
episodes (MELAS)

Seizures, stroke-like episodes with
encephalopathy, possible presence of
myopathy, cardiomyopathy, and
ataxia

MT-TL1
MT-TQ
MT-TH
MT-TK
MT-TS1
MT-TS2
MT-ND1
MT-ND5
MT-ND6

m.3243A > G
m.5541C > T

tRNAs and
protein
subunits of
Complex I

Heteroplasmy 50–90%

Myoclonic Epilepsy and
Ragged-Red Fibers
(MERRF)

Myoclonus, epilepsy, progressive
ataxia, muscle weakness seizures,
ataxia, and cardiomyopathy

MT-TL1,
MT-TH
MT-TK
MT-TS1
MT-TF
MT-TH
MT-TI
MT-TP
MT-TS2

m.8344A > G tRNAs Heteroplasmy 20–90%

Neuropathy, Ataxia, and
Retinitis Pigmentosa
(NARP)

Pigmentary retinopathy, ataxia, and
neuropathy

MT-ATP6
MT-ATP8

m.8993T > C
m.8933T > G

Protein
subunits of
Complex V

Heteroplasmy <90%

Leber’s Hereditary Optic
Neuropathy (LHON)

Subacute visual failure MT-ND1
MT-ND4
MT-ND5
MT-ND6

m.11778G > A
m.14484T > C
m.3460G > A
m.13513G > A

Protein
subunits of
Complex I

Homoplasmy

Clinical syndromes caused by mtDNA large-scale deletions

Disease Main clinical features
Type of mtDNA
deletions Mutation load

Chronic Progressive External
Ophthalmoplegia (CPEO)

Ptosis, ophthalmoparesis, and myopathy Single large-scale mtDNA
deletions (SLSMDs)

Variable
heteroplasmy (also
< 50%)

Kearns–Sayre Syndrome (KSS) Progressive External Ophthalmoplegia, ptosis, pigmentary
retinopathy, ataxia, sensorineural hearing loss, and myopathy

SLSMDs Variable
heteroplasmy
(usually > 50%)

Pearson Marrow–Pancreas
syndrome (PMPS)

Sideroblastic anemia, neutropenia and thrombocytopenia, diabetes,
and failure to thrive

SLSMDs Variable
heteroplasmy
(usually > 70%)
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OMIM #551500) includes epilepsy and mental decline in addition to

the clinical signs that make up the acronym, and usually occur in

adulthood (Holt et al, 1990). NARP is caused by the same mutations

that would cause MILS, but present at lower heteroplasmy (Thor-

burn et al, 1993). Mitochondrial encephalopathy, lactic acidosis,

and stroke-like episodes (MELAS, OMIM #540000) is defined by the

presence of stroke-like episodes, lactic acidosis, and ragged-red

fibers (Pavlakis et al, 1984). Other signs of central nervous system

involvement include mental decline, recurrent headaches, focal epi-

lepsy, and sensorineural deafness. The onset of the disease is vari-

able, ranging from early childhood to young adulthood. MELAS is

typically due to mtDNA mutations in tRNA genes; the most frequent

one is m.3243A > G in gene MT-TL1 (Goto et al, 1990; Nesbitt et al,

2013). The heteroplasmy in MELAS patients is variable but typically

around 50–90%, with higher levels in the central nervous system

compared to peripheral muscles (Scholle et al, 2020). Myoclonus,

epilepsy, and ragged-red fibers (MERRF, OMIM #545000) is charac-

terized by myoclonus, muscle hyposthenia, hypotrophy, cerebellar

ataxia, hearing loss, and mental deterioration (Shoffner & Wallace,

1992). The extent of clinical manifestations can vary widely even

within the same family. Like MELAS, MERRF is caused by muta-

tions in tRNA genes (e.g., m.8344A > G in gene MT-TK) with vari-

able heteroplasmy around 20–90% that is typically higher in the

central nervous system (Lertrit et al, 1992; Hameed & Tadi, 2022).

Leber’s hereditary optic neuropathy (LHON, OMIM #535000) is hall-

marked by acute or sub-acute loss of central vision with outcome in

optic atrophy, with onset in youth and higher prevalence in males

(Yu-Wai-Man et al, 2002). Visual impairment is usually the only

clinical manifestation of the disease. The three most frequent muta-

tions affect genes encoding for components of Complex I (i.e.,

m.11778G > A in gene MT-ND4; m.3460G > A in gene MT-ND1; and

m.14484T > C in gene MT-ND6) and are mainly present in the

patients at homoplasmic level (Wallace et al, 1988).

Single large-scale mtDNA deletions (SLSMDs) cause clinical syn-

dromes comprising three overlapping phenotypes that are rarely

observed in more than one member of the same family: chronic pro-

gressive external ophthalmoplegia (CPEO), Kearns–Sayre syndrome

(KSS), and Pearson marrow–pancreas syndrome (PMPS; Harding &

Hammans, 1992; Goldstein & Falk, 1993; Pitceathly et al, 2012;

Broomfield et al, 2015). CPEO is characterized mainly by weakness

or paralysis of the muscles that move the eye (ophthalmoplegia),

and myopathy may also be present. Besides SLSMDs, CPEO can also

be caused by single-nucleotide substitutions in specific transfer (t)

RNA genes (Moraes et al, 1993; Taylor et al, 2002) and pathogenic

mutations in nuclear genes leading to multiple mtDNA deletions

(Heighton et al, 2019). KSS (OMIM #530000) is characterized by a

combination of ophthalmoplegia, retinal pigmentary degeneration,

and cardiomyopathy (Tsang et al, 2018). PMPS (OMIM #557000)

presents as refractory sideroblastic anemia with vacuolization of

bone marrow precursors and exocrine pancreatic dysfunction (Rotig

et al, 1989). Affected patients, who recovered spontaneously from

infantile sideroblastic anemia, may later develop features of KSS

(Larsson et al, 1990). SLSMDs are usually around 5,000 bp long.

The most frequent deletion is the so-called “common deletion”

which is 4,977 bp long and starts from position 8,470 until position

13,446 (Cortopassi & Arnheim, 1990). The level of heteroplasmy for

SLSMDs is variable and is typically higher in KSS and PMPS than in

CPEO (L�opez-Gallardo et al, 2009; Broomfield et al, 2015).

Here, we provide an overview of the challenges associated with

studying mtDNA diseases. In addition to clinical complexity,

mtDNA diseases have been hard to model due to specific difficulties

in mtDNA engineering, which have hampered the generation of a

vast repertoire of in vitro and in vivo models. We describe how

recent breakthrough findings could offer unprecedented opportuni-

ties for tackling mtDNA diseases. The possibility to perform base

editing of mtDNA and significant advances in induced pluripotent

stem cells (iPSCs) modeling using three-dimensional (3D) organoids

could lead to the development of innovative model platforms for

assessing the impact of specific mtDNA mutations in different

human tissues, and for evaluating the effectiveness of targeted treat-

ments or mtDNA gene therapy in vitro. We anticipate that the com-

bination of such technologies could pave the way to highly needed

disease-modifying and personalized interventional strategies for

families affected by mtDNA diseases.

Challenges in handling and treating mtDNA diseases

A major challenge in developing treatments for mtDNA diseases is

the extreme variability in the genotype–phenotype correlation (Wal-

lace, 1999; Gorman et al, 2016). Besides LHON, which only affects

the optic nerve, mtDNA diseases are clinically heterogeneous and typ-

ically involve multiple organs. Each defined clinical syndrome can be

caused by different mtDNA mutations (Table 1). At the same time,

certain individual mtDNA mutations can be associated with various

clinical presentations. For example, mutations m.8993T > G or

m.8993T > C in the gene MT-ATP6 can cause LS or NARP depending

on the heteroplasmy level, and mutation m.13513G > A in the gene

MT-ND5 can be associated with MELAS, LS, or LHON (Bannwarth

et al, 2013). Furthermore, individuals affected by the same clinical

syndrome might show distinct symptomatology and severity, irre-

spective of the underlying mtDNA mutation (Gorman et al, 2016).

Given this complexity, it has been challenging to identify treat-

ments that are effective for a defined clinical phenotype or a defined

causative genotype. Patients affected by mtDNA diseases may be

pharmacologically treated with a combination of vitamins and anti-

oxidants known as “mitochondrial cocktail,” although the efficacy

of such intervention appears to be limited and unspecific (Bottani

et al, 2020; Russell et al, 2020; Weissig, 2020). In addition, given

the variable organ impairment, different patients may require organ-

specific therapies.

One notable exception is LHON, which is a unique mtDNA dis-

ease with restricted symptomatology (i.e., degeneration of retinal

ganglion cells in the optic nerve). The antioxidant drug Idebenone

has been officially approved for the treatment of LHON patients by

the European Medicines Agency (EMA; Klopstock et al, 2011).

LHON is the first mtDNA disease treated with mtDNA-based gene

therapy. The allotopic expression of wild-type MT-ND4 through

intra-ocular delivery using adeno-associated viruses (AAV) has been

proposed as a means to ameliorate vision in LHON (Guy et al,

2017). Remarkably, a phase III trial based on this gene therapy

approach indeed reported improved eye function in treated LHON

patients (Yu-Wai-Man et al, 2020; Falabella et al, 2022). For other

mtDNA diseases, however, there are currently no approved thera-

pies. Nonetheless, several treatment strategies are being pursued

and different clinical trials are ongoing. These interventions include
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the modulation of mitochondrial biogenesis, NAD/NADH ratio,

mitochondrial turnover, redox balance, or hypoxia (Bottani et al,

2020; Russell et al, 2020; Weissig, 2020).

One positive recent development stemming from advances in in

vitro fertilization technologies is the possibility to prevent the trans-

mission of pathogenic mtDNA to offspring. This procedure, known

as mitochondrial replacement therapy (MRT), is based on transfer-

ring the nuclear DNA from an affected mother carrying mtDNA

mutations into an enucleated oocyte or zygote of a donor woman

with healthy mtDNA (Greenfield et al, 2017). In this way, the nuclear

DNA of the offspring comes from the actual mother, while the

mtDNA comes from the healthy female donor. There have been posi-

tive studies for MRT in rodents and primates (Tachibana et al, 2013;

Kang et al, 2016b). MRT has apparently already been successful in a

Mexican family (Zhang et al, 2017). However, this technology is cur-

rently only approved in a small number of countries, and some coun-

tries may never approve it because of ethical reasons. Moreover, it

has been shown that a reversion to pathogenic mtDNA heteroplasmy

can occur in some cases (Hudson et al, 2019). The reason for this

reversion is not clear and may be potentially linked to unwanted car-

ryover of the maternal mutated mtDNA taken up in the process of

extracting the nucleus, or to possible selection of some mutations or

mtDNA haplotypes (Chinnery et al, 2014). There are also concerns

related to the long-term consequences of MRT. Studies in mice and

flies implied that subtle nuclear–mitochondrial DNA mismatch could

cause late-onset cardiac defects or infertility (Latorre-Pellicer et al,

2016). Lastly, MRT cannot be used as a means to treat patients who

are already affected by mtDNA diseases.

Challenges in understanding mtDNA diseases

The diagnosis and clinical handling of mtDNA diseases are hindered

by the complexity of mtDNA genetics. mtDNA mutations (point

mutations and single large-scale deletions) are typically functionally

recessive. This means that in order to cause a biochemical and func-

tional impairment, they need to be present in a significant amount

of mtDNA molecules (Gorman et al, 2016). Higher heteroplasmy is

usually associated with more severe conditions, but the critical

threshold for pathogenicity is different for distinct mtDNA muta-

tions. For example, MT-ATP6 mutations cause NARP at low level of

heteroplasmy and MILS when the level is higher than 90% (Thor-

burn et al, 1993). The mutation load can also vary between individ-

uals carrying the same mtDNA defect and even among different

tissues in the same individual. For example, the mutation

m.3243A > G causative of MELAS can be present at higher levels in

the central nervous system than in the periphery, and with varying

heteroplasmy in different brain regions of the same patients (Scholle

et al, 2020). At the cellular level, increasing mutation load may lead

to progressive changes in transcriptional response (Picard et al,

2014). At the same time, it has been proposed that mtDNA mutation

load alone may not be sufficient to explain a defined clinical

phenotype, as the individual nuclear background could modulate

the presentation of mtDNA diseases (D’Aurelio et al, 2010; Pickett

et al, 2018).

How mtDNA mutations are inherited is a matter adding further

complexity to the study of mtDNA diseases. mtDNA mutations in

humans are considered to be almost invariably only maternally

inherited, as sperm mitochondria are degraded upon fertilization

(Stewart & Chinnery, 2015). However, there have been reports

suggesting bi-parental inheritance of mtDNA mutations (Luo et al,

2018). The occurrence of such paternal inheritance of mtDNA is

highly debated. One alternative explanation involves the transmis-

sion of nuclear-encoded mitochondrial sequences (NUMTs)

that may create the impression of mtDNA heteroplasmy (Wei &

Chinnery, 2020). Indeed, recent findings showed that NUMTs are

frequent in the general population (Wei et al, 2022a).

The difference in heteroplasmy observed among offspring of the

same mother is usually explained by the presence of a genetic bot-

tleneck taking place during oocyte development (Stewart & Chin-

nery, 2015). According to this hypothesis, there is a reduction in

mtDNA copies in the early oocytes, which can inherit a different

proportion of mutated mtDNA molecules from maternal mitochon-

dria. During oocyte maturation and cell division, the mutation load

can then increase, decrease, or remain the same, thereby leading to

the development of offspring with variable heteroplasmy (Zaidi

et al, 2019; van den Ameele et al, 2020). In addition, there is evi-

dence suggesting the presence of selection for or against defined

mtDNA variants (Wei & Chinnery, 2020). In particular, it has been

reported that non-synonymous changes in mtDNA protein-coding

genes are selected against in the germline, thereby preventing most

mtDNA mutations from reaching homoplasmy (Stewart et al, 2008).

A developmentally programmed mitochondrial degradation may be

instrumental for such mtDNA selection (Palozzi et al, 2022). The

mode of inheritance appears even more complex for large-scale

mtDNA deletions, as they seem to be rarely transmitted to offspring

in humans (Chinnery et al, 2004).

To further complicate the study of pathological mtDNA variants,

it has been reported that mtDNA defects also occur somatically in

different tissues and organs later in life (Payne et al, 2011). The

accumulation of mtDNA mutations may not be linked to oxidative-

mediated mtDNA damage (Kennedy et al, 2013). Conversely, as the

mitochondrial genome undergoes continuous replication even in

post-mitotic cells (Magnusson et al, 2003; Gustafsson et al, 2016),

mtDNA might accumulate mutations over time at higher rates com-

pared to nuclear DNA, despite the high fidelity of PolG (Nissanka

et al, 2018; Stewart & Chinnery, 2021). Among acquired mtDNA

defects, multiple large-scale mtDNA deletions have been found asso-

ciated not only with genetic defects in nuclear genes encoding for

proteins involved in mtDNA replication and mitochondrial dynam-

ics but also with physiological aging (Payne et al, 2011; Vincent &

Picard, 2018). Although the mechanisms underlying the tissue-

specific and temporal distribution of such somatic mtDNA muta-

tions remain unclear, it has been suggested that the diversity in

mtDNA heteroplasmy might contribute to the development of late-

onset disorders such as neurodegeneration, diabetes, and cancer

(Hahn & Zuryn, 2019). Since mtDNA heteroplasmy can be a com-

mon phenomenon even in healthy conditions (Payne et al, 2013;

Wei & Chinnery, 2020), it has been proposed that mtDNA mutations

observed in older individuals might have been present since birth

although at lower heteroplasmy and that they might have been clon-

ally expanded throughout life (Keogh & Chinnery, 2013). Hetero-

plasmic mtDNA mutations seen in multiple tissues may thus

represent a mixture of mutations that are germline inherited and

mutations accumulated somatically upon aging due to continuous

mtDNA replication (Stewart & Chinnery, 2021).
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Challenges in engineering mtDNA

A major obstacle in the study of mtDNA mutations has been the dif-

ficulty of engineering mtDNA. While the quickly evolving clustered

regularly interspaced short palindromic repeats, (CRISPR)/CRISPR-

associated proteins (Cas) field produces novel applications with

astonishing speed, enabling nowadays the introduction of virtually

any type of mutations in the nuclear DNA (Anzalone et al, 2020),

manipulation of mtDNA remained difficult to achieve until very

recently (Silva-Pinheiro & Minczuk, 2022).

Several peculiar features of the mitochondrion and its genome

complicate editing approaches. First, the organelle double mem-

brane represents an important barrier that is not easily crossed by

nucleic acids. This lack of efficient import into mitochondria repre-

sents a crucial challenge, as the delivery of a DNA template is essen-

tial for precise genome editing with CRISPR nucleases (Gammage

et al, 2018a). Furthermore, all CRISPR/Cas systems require guide

RNAs (gRNAs) in order to direct the genomic scissor to a specific

target site. Thus, impaired nucleic acid import precludes the applica-

tion to mtDNA editing even for CRISPR/Cas base editors that do not

require template DNA (Jinek et al, 2012).

Even if DNA delivery might be achieved, it appears quite difficult

for this DNA to integrate into the host mitochondrial genome. This

is because mtDNA does not exhibit the same repairing mechanisms

as nuclear DNA. Upon a DNA double-strand break, mtDNA does not

attempt to initiate a repair process, but rather undergoes degrada-

tion (Nissanka et al, 2018; Peeva et al, 2018). Although there is evi-

dence of base excision repair (BER) and single-strand break (SSB)

repair in mtDNA, mitochondria do not seem to possess efficient

double-strand break (DSB) repair mechanisms, such as homologous

recombination (HR) or non-homologous end joining (NHEJ; Kazak

et al, 2012). This lack of efficient recombination hampers the possi-

bility for exogenously delivered DNA to be readily integrated into

the host mtDNA (Hagström et al, 2014).

The multi-copy nature of mtDNA adds an additional layer of

complexity. In order to achieve effective correction, it is necessary

to find a way to select the desired mtDNA variant among a high

number of mtDNA molecules (Silva-Pinheiro & Minczuk, 2022). The

possibility of exogenously modifying the mutation load, known as

“heteroplasmy shift,” has been exploited by several groups using

different models (Jackson et al, 2020). The heteroplasmy shift is

achieved by selectively eliminating mutant mtDNA molecules and

allowing the remaining wild-type mtDNA molecules to repopulate

the mtDNA pool. Given the threshold effect of mtDNA diseases,

shifting mtDNA heteroplasmy toward the wild-type sequence could

allow restoration of proper mitochondrial functionality.

Heteroplasmy shift has been accomplished following different

strategies. First, scientists used mitochondrially targeted restriction

endonucleases (mitoREs) that specifically cut mutant mtDNA copies

and thereby induce their selective degradation (Srivastava &

Moraes, 2001; Tanaka et al, 2002; Bacman et al, 2012; Reddy et al,

2015). Although effective, the use of mitoREs is, however, limited

by the scarcity of unique restriction sites specific for pathogenic

mtDNA mutations. A more versatile heteroplasmy shift can be

obtained by employing mitochondrially targeted transcription

activator-like effector nucleases (mitoTALENs; Bacman et al, 2013;

Hashimoto et al, 2015; Yang et al, 2018) and mitochondrially

targeted zinc finger nucleases (mtZFNs; Minczuk et al, 2008;

McCann et al, 2018). These approaches can target both point muta-

tions and deletions by introducing a DSB. This targeted hetero-

plasmic shift was successfully demonstrated in various models

(Bacman et al, 2013; Gammage et al, 2014, 2018b; Hashimoto et al,

2015; Reddy et al, 2015). Variations of these techniques include

smaller-sized constructs to facilitate packaging into adeno-

associated virus (AAV) vectors, mito I-CreI homing endonuclease-

based designer meganuclease (mitoARCUS) that is smaller in size

but with relatively long recognition site (Zekonyte et al, 2021), and

mitoTALENickase that is capable of introducing single large-scale

mitochondrial deletions (Phillips et al, 2017).

Despite these progresses, heteroplasmy shift approaches cannot

be applied to cells carrying mtDNA mutations at homoplasmic level

or at very high levels of heteroplasmy, as they require the presence

of a sufficient number of wild-type mtDNA molecules to repopulate

and restore function (Silva-Pinheiro & Minczuk, 2022). Further-

more, none of the techniques described above are capable of intro-

ducing precise mitochondrial genome modifications.

Models of mtDNA diseases

The difficulty of engineering the mitochondrial genome significantly

hindered the development of animal and cellular models of mtDNA

diseases. Despite these challenges, relevant cellular and animal

models of mtDNA diseases have been generated (Fig 1).

Peripheral cells such as fibroblasts have been extensively used

for investigating the pathogenesis of mtDNA diseases. Peripheral

cells can be obtained with minimally invasive procedures, and can

maintain patient-specific mtDNA mutations (Bourgeron et al, 1993).

Patient-derived fibroblasts have been used to evaluate the function-

ality of the respiratory chain activity (Invernizzi et al, 2012; Saada,

2014), the integrity of the mitochondrial network (Caporali et al,

2020; Del Dotto et al, 2020), and to measure calcium metabolism or

oxidative stress (Venco et al, 2015; Granatiero et al, 2016). Nonethe-

less, their restricted proliferative capacity and inter-individual vari-

ability hamper the application of peripheral cells in mechanistic

disease-modeling studies.

A remarkable advance came with the development of transmito-

chondrial cytoplasmic hybrids (cybrids; King & Attardi, 1989).

Cybrids are produced by fusing enucleated donor cells (cytoplasts)

obtained from patients (e.g., fibroblasts or platelets) with recipient

cells devoid of mtDNA (q0). Cybrids have been instrumental in

dissecting the pathogenicity of individual mtDNA defects in vitro

(King & Attardi, 1989). Using cybrids, it is possible to verify the con-

sequences of mtDNA point mutations and large-scale deletions and

to correlate the heteroplasmy level of a specific mutation with the

biochemical impairment (Picard et al, 2014; Cavaliere et al, 2022).

Cybrids allow to determine the potential pathogenicity of any newly

identified mtDNA mutations in patients. This information could play

a role in genetic diagnosis: if the investigated mtDNA mutation does

not show defects in cybrids, it is then possible that the patient phe-

notype may be caused by an unknown nuclear DNA mutation.

Cybrids have been used in countless of in vitro works (Bugiardini

et al, 2020; Hern�andez-Ainsa et al, 2022; Schaefer et al, 2022). In

addition, they have also been crucial for the derivation of animal

models (see below). Nonetheless, cybrids may hold some limita-

tions as in vitro models of mtDNA diseases. Recipient cells are often
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represented by immortalized cancer-like cells to enable effective

growth and expansion. Such cancer-like immortalized cells mainly

rely on glycolysis and not OXPHOS for energy production (Kondoh

et al, 2005; Giang et al, 2013; Wilkins et al, 2014). Hence, cybrids,

as well as peripheral fibroblasts, cannot faithfully reproduce the

functional features of OXPHOS-dependent neurons or cardiac cells,

which are the cell types typically impaired in patients affected by

mtDNA diseases (Pfeffer et al, 2013; Carelli & Chan, 2014).

Different mammalian animal models of mtDNA diseases have

been successfully developed (Stewart, 2021). One strategy to gener-

ate mtDNA mutant mice has been to manipulate the mitochondrial

replication machinery. By disrupting the catalytic subunit of the

nuclear-encoded PolG, it has been possible to obtain mice known as

“mtDNA mutator mice,” which accumulate high levels of multiple

mtDNA mutations that are transmissible in the germline (Trifunovic

et al, 2004; Kujoth et al, 2005). These mice did not show typical

signs of mtDNA diseases, but rather severe premature aging and

early death. In a similar manner, the disruption of the nuclear-

encoded mtDNA replication-associated helicase TWINKLE led to

mice with multiple mtDNA deletions, known as “mtDNA deletor

mice” (Tyynismaa et al, 2005). These mice developed features remi-

niscent of CPEO.

The first heteroplasmic mice harboring a pathogenic mtDNA

mutation were the “mito-mice” (Inoue et al, 2000; Nakada et al,

2001). They were generated by fusing cytoplasts carrying a patho-

genic 4,696 bp mtDNA deletion with mouse embryos. The mice had

a severe phenotype and died early because of renal failure. By

microinjecting cybrid embryonic stem cells (ESCs) carrying a single

mtDNA mutation in the gene MT-ND1 into mouse embryos, it was

then possible to generate mice carrying a homoplasmic pathogenic

mtDNA mutation (Kasahara et al, 2006). These mice displayed a

milder phenotype with no change in life span. A similar approach

was used to generate mice carrying a mutation in gene MT-ND6

associated with LS and LHON phenotypes (Yokota et al, 2010).

Figure 1. Modeling tools for mtDNA diseases.

Despite the challenges associated with mtDNA engineering, it has been possible to develop approaches for modeling mtDNA diseases. Comparison (pros and cons) of

these modeling strategies are presented here as a schematic drawing. See text for details. nDNA, nuclear DNA; mtDNA, mitochondrial DNA; iPSCs, induced pluripotent

stem cells.
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These latter mice showed Complex I deficiency and lactate overpro-

duction, but no other phenotype reminiscent of LS patients. Another

mouse model of this mutation developed visual problems and

degeneration of optic nerve cells (Lin et al, 2012). Heteroplasmic

mice were derived using cybrid ESCs carrying a pathogenic muta-

tion of a mtDNA-encoded tRNA known to cause MELAS-like clinical

phenotype (Shimizu et al, 2014). These animals showed skeletal

muscle defects and renal failure, thereby recapitulating some fea-

tures of the human disease (Shimizu et al, 2015). Recently, it was

possible to obtain mice showing metabolic defects carrying high

heteroplasmy level of the pathogenic tRNA mutation m.2748A > G,

which is orthologous to the human mutation m.3302A > G associ-

ated with MELAS (Tani et al, 2022).

As an alternative strategy, allotopic expression of mtDNA muta-

tions has been attempted. This led to the development of mice with

nuclear expression of the mitochondrial gene MT-ATP6 harboring a

mutation associated with NARP/LS syndromes (Dunn & Pinkert,

2012). These mice showed some behavioral defects. However, this

approach remains controversial, as other works in vitro demon-

strated that proteins expressed allotopically from the nucleus are not

properly imported into the mitochondria (Perales-Clemente et al,

2011).

Induced pluripotent stem cells (iPSCs) and mtDNA
modifications

Modeling mtDNA diseases can benefit from the development of cel-

lular models that not only carry specific pathogenic mtDNA muta-

tions but also exhibit the functional and metabolic properties of the

cells and tissues affected in the patients. A technology that allowed

establishing models with such features came in 2006–2007 with the

discovery of induced pluripotent stem cells (iPSCs; Takahashi &

Yamanaka, 2006; Takahashi et al, 2007).

iPSCs are obtained from somatic cells through forced expression

of transcription factors that are specific for ESCs. Like ESCs, iPSCs

acquire the ability to proliferate indefinitely (i.e., self-renewal) and

to generate cell progenies belonging to all three germ layers (i.e.,

pluripotency). Unlike ESCs, however, iPSCs do not require embryos,

and can be derived from the somatic cells of virtually every individ-

ual using a robust and relatively straightforward process known as

cellular reprogramming (Takahashi et al, 2007; Shi et al, 2017).

Effective reprogramming has been demonstrated using a number of

different techniques and diverse parental somatic cells (Shi et al,

2017). Nowadays, iPSCs are considered a remarkable platform not

only for investigating disease-related mechanisms but also for the

establishment of drug discovery pipelines (Shi et al, 2017; Rowe &

Daley, 2019).

One relevant issue to take into consideration before applying the

iPSC system for modeling mtDNA diseases is to determine whether

the mtDNA profile can be effectively retained during the reprogram-

ming process. In 2011, we investigated this aspect and found that

human iPSCs carried mtDNA variants that were not observed in the

parental fibroblasts (Prigione et al, 2011). Numerous works later

confirmed these initial observations (Perales-Clemente et al, 2016;

Kang et al, 2016a; Zambelli et al, 2018; Deuse et al, 2019; Palombo

et al, 2021; Wei et al, 2021). Detected mtDNA mutations affected var-

ious mtDNA genes (encoding for mRNAs, tRNAs, or rRNAs) as well

as mtDNA haplogroup-specific regions, and encompassed both syn-

onymous and non-synonymous modifications. Overall, it was esti-

mated that in human iPSCs, the mutation rate for mtDNA is about

8.62 × 10�5 per base pair (Wei et al, 2021), while the mutation rate

for the nuclear genome is about 1 × 10�9 per base pair (Kuijk et al,

2020). Importantly, the heteroplasmy of these mtDNA mutations

could differ greatly among iPSC lines generated from the same donor

cells. mtDNA mutations in iPSCs may have consequences on bioen-

ergetics, redox balance, and overall cellular functions, and may also

encode neoantigens potentially responsible for eliciting immune

responses (Chen et al, 2018; Deuse et al, 2019). Hence, differences in

mtDNA profiles might contribute to behavioral heterogeneity among

iPSC clones (Kelly et al, 2013; Carelli et al, 2022). Several groups

have, therefore, argued that screening for mtDNA modifications

should become part of the routine quality control of all newly gener-

ated iPSC lines, in a similar manner as nuclear chromosomal rear-

rangements are currently monitored (H€am€al€ainen, 2016; Lorenz &

Prigione, 2016; Carelli et al, 2022; Rossi et al, 2022).

The mechanisms underlying mtDNA changes upon reprogramming

of somatic cells into iPSCs are not known (Sercel et al, 2021). During

the generation of iPSCs, there is a reduction in the mtDNA copy num-

ber that can in turn increase upon differentiation (Facucho-Oliveira &

St John, 2009; Prigione et al, 2010; St John, 2016). For this reason, we

initially interpreted changes in mtDNA mutation profile in iPSCs as a

“genetic bottleneck” (Prigione et al, 2011), a phenomenon reminiscent

of the events occurring during germ line development where a restric-

tion in the mtDNA amount can cause a different distribution of

mutated mtDNA to the daughter cells (Stewart & Chinnery, 2015).

This interpretation still holds true, but it remains to be determined

whether it is a pure random phenomenon or whether there are mecha-

nistic drivers (Sercel et al, 2021; Carelli et al, 2022).

To simplify this phenomenon, we could imagine two potential

scenarios underlying the mtDNA heteroplasmy shift in iPSCs repro-

grammed from fibroblasts (Fig 2). The first possibility is that the

mtDNA changes seen in iPSCs are a consequence of the mtDNA het-

erogeneity of the starting somatic cell population (Young et al,

2012). Since iPSCs are clonally derived from reprogramming one

fibroblast cell, it is possible that this particular cell may be different

from the rest of the fibroblast population and could carry rare

mtDNA variants (Fig 2 left, yellow mitochondria). The derived iPSC

lines will thus carry these rare mtDNA variants and not variants

expressed by other fibroblast cells that were not reprogrammed (Fig

2 left, blue and red mitochondria). The rare mtDNA variants present

in iPSC lines could also vary in heteroplasmy due to changes in

mtDNA content that may lead to different ratios of mtDNA mutation

load. The result will be that some of the mtDNA variants contained

in the original fibroblast population are lost, while some are

retained with similar or increased levels of heteroplasmy. The sec-

ond possibility is that mtDNA mutations may occur de novo during

iPSC reprogramming (Fig 2). Hence, in addition to rare mtDNA vari-

ants present in the original parental cell, iPSCs could harbor mtDNA

mutations that were not present in the parental samples (Fig 2 right,

purple mitochondria). These de novo mtDNA modifications could

also show various heteroplasmy levels in different iPSC lines due

the mentioned bottleneck effect.

Overall, it remains to be determined whether the mtDNA bottle-

neck effect and related heteroplasmy shift in iPSCs are simply sto-

chastic or rather driven by biological mechanisms, for example, due
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to altered PolG activity or redox imbalance. Some mtDNA variants

might have a selective advantage (Yoneda et al, 1992; Russell et al,

2018) or may promote the metabolic–epigenetic reconfiguration

associated with cellular reprogramming (Shakiba et al, 2019; Sercel

et al, 2021). During the generation of iPSCs, in parallel to epigenetic

changes leading to the establishment of an embryonic-like gene

expression program, there are modifications occurring at the mito-

chondrial and metabolic levels (Prigione et al, 2010; Folmes et al,

2011; Agathocleous & Harris, 2013; Lisowski et al, 2018). iPSCs

acquire a glycolytic-driven metabolic state that is then converted to

OXPHOS upon differentiation. Hence, specific mtDNA modifications

might potentially be needed to support this metabolic reconfigura-

tion. However, multiple groups demonstrated that mtDNA muta-

tions were retained without significant heteroplasmic changes

during subsequent cultivation and differentiation of the iPSC lines

(Perales-Clemente et al, 2016; Kang et al, 2016a; Palombo et al,

2021; Wei et al, 2021). Furthermore, mtDNA modifications includ-

ing point mutations and large-scale deletions have been observed

also in human ESCs (Maitra et al, 2005; Van Haute et al, 2013).

Thus, it remains unclear how reprogramming-associated and

differentiation-associated metabolic reconfigurations could influence

the heteroplasmy shift in iPSCs. Understanding these processes will

likely have important implications for the application of iPSCs in

biomedical research (Box 1).

iPSCs and 3D organoids as next-generation models for
mtDNA diseases

iPSCs hold great potential for modeling mtDNA diseases given their

ability to generate virtually any tissue of the human body. mtDNA

diseases particularly affect tissues and cells that are highly depen-

dent on mitochondrial energy production, such as neuronal cells,

muscle, and cardiac cells (Pfeffer et al, 2013; Carelli & Chan, 2014).

Differentiated cells from iPSCs do in fact show reliance on OXPHOS

metabolism (Chung et al, 2007; Zheng et al, 2016b; Cliff & Dalton,

2017; Tanosaki et al, 2021). Hence, by using differentiated cells from

patient-derived iPSCs, it may be possible to obtain model systems

that carry patient-specific mtDNA mutations and exhibit appropriate

metabolic and functional properties. Such models could shed light

on the mechanisms underlying mtDNA diseases and could help iden-

tify targets of intervention (Inak et al, 2017; McKnight et al, 2021).

In addition to two-dimensional (2D) differentiation of iPSCs, it is

now possible to obtain three-dimensional (3D) organized tissues

known as organoids. Several organoid models have been obtained

from human iPSCs, including brain, gut, liver, blood vessels, kid-

ney, and retina (Nakano et al, 2012; Lancaster et al, 2013; Takebe

et al, 2013; Taguchi et al, 2014; Workman et al, 2017; Wimmer

et al, 2019; Cowan et al, 2020; Lewis-Israeli et al, 2021). Organoids

recapitulate features of human organs with respect to cellular orga-

nization and architectures. Their formation in vitro is accomplished

by modulating signaling pathways that are known to guide and gov-

ern patterning and tissue morphogenesis in vivo (McCauley & Wells,

2017). In the context of mtDNA diseases, organoids might thus help

address the impact of mtDNA mutations in different human tissues

and organs.

Given the strong impact that mtDNA defects typically have on

cells of the nervous system, for investigating mtDNA diseases it

may be particularly interesting to employ 3D structures recapitulat-

ing features of the human brain (Chiaradia & Lancaster, 2020; Le

et al, 2021). These organoids, defined as brain organoids or neural

organoids, can be obtained to reproduce features of different brain

Figure 2. mtDNA bottleneck and heteroplasmy shift in human iPSCs.

During reprogramming of somatic fibroblasts to induced pluripotent stem cells (iPSCs), the cells acquire a glycolytic metabolism and reduce their number of mtDNA

copies. Upon differentiation of iPSCs into energy-demanding progenies, the metabolism shifts toward oxidative phosphorylation (OXPHOPS) and the mtDNA copy number

increases. These processes are accompanied by changes in the mtDNA profile that are not fully understood. mtDNA profile changes could be due to clonal expansion of

rare mtDNA variants (left, yellow mitochondria) or to de novo introduction of mtDNA alterations (right, purple mitochondria). In the first case, the heterogeneity of the

somatic cell population may play a role. Since iPSCs are clonally derived, it could be that the fibroblast cell from which iPSCs are generated would carry mtDNA variants

that are different from the rest of the fibroblast cell population. In the second case, there may be mtDNA alterations arising as a consequence of reprogramming (e.g.,

because of errors in mtDNA polymerase gamma). In all cases, the rare variants derived from the parental cells (left, yellow mitochondria) or introduced during reprogram-

ming (right, purple mitochondria) could acquire different heteroplasmy in various iPSC clones. The mtDNA profile of each iPSC line appears to be overall maintained dur-

ing differentiation, despite changes in metabolism and mtDNA copy number (Perales-Clemente et al, 2016; Kang et al, 2016a; Palombo et al, 2021; Wei et al, 2021).
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regions, including spinal cord, midbrain, cortex, striatum, or cere-

bellum (Pașca et al, 2022). Such brain region-specific organoids can

then be mixed into so-called “assembloids” that can be used to

address the communication between different brain regions (Miura

et al, 2022). Brain organoids typically consist of cells belonging to

the neuro-ectodermal lineage. For this reason, several groups are

working on strategies to incorporate into brain organoids also

endodermal-derived blood vessel cells and mesodermal-derived

microglia. The presence of vasculature structure is necessary in vivo

to enable effective neuronal commitment and maturation (Lange

et al, 2016) and would be crucial for distributing oxygen and nutri-

ents throughout the organoids. The incorporation of microglia into

cerebral organoids would not only provide support for neuronal

development but may also help unveil the impact of immune-

mediated mechanisms in the modeled diseases.

In the past few years, several groups employed iPSCs derived

from patients affected by mtDNA diseases to generate 2D and 3D

models (McKnight et al, 2021; Table 2). The iPSC-based modeling

works have so far mainly focused on diseases caused by single

mtDNA mutations.

Several studies focused on MELAS, particularly, on the common

mtDNA mutation m.3243A > G in the tRNA-encoding MT-TL1 gene.

In agreement with the heteroplasmy shift and bottleneck effect of

iPSC generation, MELAS iPSC lines were found to carry the muta-

tion at variable heteroplasmy (Folmes et al, 2013; H€am€al€ainen et al,

2013; Kodaira et al, 2015; Gunnewiek et al, 2020). Mutation-low or

mutation-free iPSC lines could be obtained and used as isogenic con-

trols (i.e., carrying the same nuclear DNA background).

Differentiated neurons with high m.3243A > G mutation load

showed defective mitochondrial complex activity and mitophagy

(H€am€al€ainen et al, 2013), and aberrant neuronal network function-

ality and synchronicity (Gunnewiek et al, 2020). The MELAS muta-

tion m.5541C > T in MT-TW gene caused defective neuronal

differentiation without apparent impairment of neural progenitors

or skeletal muscle cells (Hatakeyama et al, 2015). Other cell types

were investigated as MELAS models, including endothelial cells that

exhibited pro-atherogenic properties (Pek et al, 2019) and retinal

pigment epithelium cells that showed dysfunctional phagocytosis

(Chichagova et al, 2017). Lastly, by using 3D spinal cord organoids

carrying the mutation m.3243A > G at high heteroplasmy, it was

possible to uncover neurogenesis delays and impaired neurite out-

growth as mechanistic disease features of MELAS (Winanto et al,

2020).

LS iPSCs have been obtained from patients harboring homo-

plasmic mutations in gene MT-ATP6. Neural cells differentiated

from these LS iPSCs exhibited defects in bioenergetics (Ma et al,

2015) and calcium homeostasis (Lorenz et al, 2017), and increased

susceptibility to glutamate toxicity (Zheng et al, 2016a). Neurons

derived from an LS individual carrying relatively low heteroplasmy

level of a mutation in gene MT-ND5 also showed defects in calcium

signaling (Galera-Monge et al, 2020). In addition, 3D models of LS

have been generated. Brain organoids carrying the mutation

m.8993T > G in gene MT-ATP6 at high heteroplasmy developed

abnormally, showing reduced size and altered cortical architecture

(Romero-Morales et al, 2022). Interestingly, similar defects in size

and cellular organization were also observed in brain organoids

derived from LS patients carrying mutations in the nuclear gene

SURF1 (Inak et al, 2021). These works collectively suggest that mito-

chondrial diseases such as LS could affect the physiological process

of human neurogenesis (Brunetti et al, 2021).

To model LHON, iPSCs carrying mutations in the gene MT-ND4

were differentiated into neurons (Danese et al, 2022) and retinal

ganglion cells (Yang et al, 2020). These latter cells showed defective

neurite outgrowth and increased mitochondrial biogenesis (Wu

et al, 2018), disrupted action potentials (Yang et al, 2019), and

increased oxidative stress and apoptosis with aberrant mitochon-

drial transport (Yang et al, 2019).

MERFF has also been modeled with iPSCs derived from patients

carrying the mutation m.8344A > G in the gene MT-TK (Chou et al,

2016). There, differentiated cardiomyocytes and neural progenitors

showed oxidative stress and defective mitochondrial dynamics.

Neurons directly derived from fibroblasts of MERFF patients exhib-

ited oxidative stress with reduced bioenergetics and increased mito-

phagy (Villanueva-Paz et al, 2019).

Human iPSCs carrying large-scale mtDNA deletions have been

generated from patients affected by KSS and PMPS (Cherry et al,

2013; Russell et al, 2018; Lester Sequiera et al, 2021; Peron et al,

2021; Hern�andez-Ainsa et al, 2022). Initial studies showed defects

in hematopoietic progenitors (Cherry et al, 2013), but the contribu-

tion of mtDNA deletions to the disease pathogenesis in differentiated

progenies has not been addressed in detail.

Besides mechanistic studies, some iPSC studies focused on using

the derived models to test therapeutic strategies. The drug Sonlicro-

manol, currently employed in a stage IIB clinical trial for MELAS

(Janssen et al, 2019), was found beneficial on the activity and tran-

scriptional signature of neuronal cells derived from MELAS patients

Box 1. In need of answers

(i) What are the mechanisms underlying the heteroplasmy shift
and bottleneck effect of mtDNA occurring upon reprogramming
somatic cells to pluripotency? Can we modulate such
phenomena?

(ii) If we cannot prevent the occurrence of mtDNA modifications in
human iPSCs, can we design pipelines to effectively monitor the
mtDNA profile and remove unwanted mutations for all iPSC
lines used in medical applications and translational studies?

(iii) If we apply mtDNA base editing to introduce mtDNA mutations
in healthy iPSCs, can we reach a level of mutation load high
enough to cause functional defects and recapitulate disease-
related phenotypes? Similarly, if we apply mtDNA base editing
to correct mtDNA mutations in patient-derived iPSCs, can we
decrease the mutation load significantly to the point that the
functional defects are corrected, and the disease phenotypes
ameliorated?

(iv) Is it possible to reliably predict which mtDNA base editing con-
structs and configurations are best suited to target each specific
mtDNA mutation?

(v) How can we further reduce unwanted off-target effects in
nuclear or mitochondrial genomes that might be associated
with mtDNA base editing?

(vi) Will it be possible to develop novel mtDNA editing approaches
to target pathogenic mtDNA mutations in sites that are cur-
rently not editable? And can there be editing approaches effec-
tive also for large-scale deletions?

(vii) Can we obtain complex organoids and assembloid systems
including vasculature and immune cells? And could such
models be able to show the impact of mtDNA mutations and
their segregation in different human tissues?
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(Gunnewiek et al, 2021). Rapamycin improved the bioenergetics of

neurons carrying homoplasmic MT-ATP6 mutations and enhanced

their resistance to glutamate toxicity (Zheng et al, 2016a). Somatic

cell nuclear transfer (SCNT) was employed in iPSCs as a means to

replace mutant mitochondria carrying a homoplasmic mutation in

the gene MT-ATP6 with healthy donor oocyte mitochondria

(Ma et al, 2015). iPSC-derived neural cells from patients with mtDNA

diseases can also be used to perform drug screenings to identify new

treatments. In a proof-of-concept work, iPSC-derived neural cells

harboring MT-ATP6 mutations associated with LS were used to

screen selected FDA-approved drugs, leading to the identification of

potential compounds to be repositioned for LS (Lorenz et al, 2017).

The base editing revolution for mtDNA

A groundbreaking finding for the mtDNA disease field came in 2020

with the development by Mok et al (2020) of a genome engineering

method that allows targeted C-to-T base conversion in the mtDNA.

This approach is reminiscent of the CRISPR/Cas base editor system

since it does not generate DSB and does not require a DNA template.

In contrast to CRISPR/Cas, however, this new method does not

depend on gRNAs for guidance to the target site. Instead, it modifies

the mitochondrial genome through a deaminase enzyme guided by

proteins termed transcription activator-like effectors (TALEs).

Mok et al (2020) identified a cytidine deaminase from Burkhol-

deria cenocepacia that can act on double-stranded DNA and dubbed

this enzyme “double-stranded DNA deaminase toxin A” (DddA).

The discovery was remarkable as other deaminases known to date

could only manipulate single-stranded DNA and were therefore

dependent on enzymes capable of unwinding DNA double strands,

such as Cas proteins. This limited the application of such base

editing systems to nuclear DNA. Conversely, DddA can act directly

on double-stranded DNA and enables transitions of C�G to T�A bp

through deamination of cytidines at TC sites in the mtDNA. In the

first step, cytidine is deaminated to uridine. In a second step during

DNA replication, uridine is read as thymidine by the DNA polymer-

ase and adenine is incorporated on the opposite strand. Uridine is

then replaced by thymidine, thus completing the base editing pro-

cess (Fig 3A). The DddA enzyme is split into two halves to avoid

widespread deamination in unwanted locations, and each half is

fused to TALEs designed to bind left and right of the desired target

site. In order to reconstitute the deaminase at the target locus, two

constructs are required for each manipulation, bringing both halves

in close proximity. The constructs are imported into mitochondria

via mitochondrial targeting sequences (MTS) fused to each N-

terminus. Editing efficiency is improved through the fusion of one

copy of uracil glycosylase inhibitor (UGI) to each C-terminus, which

should prevent uracil excision during BER (Nilsen et al, 1997). This

novel genome editing tool was coined “DddA-derived cytosine base

editor” (DdCBE; Mok et al, 2020; Fig 3A).

Since the original publication in 2020, multiple groups have dem-

onstrated the feasibility of this new DdCBE technique. Employed

models included mice (Lee et al, 2021, 2022b; Guo et al, 2022;

Silva-Pinheiro et al, 2022b; Wei et al, 2022b), rats (Qi et al, 2021),

zebrafish (Guo et al, 2021; Sabharwal et al, 2021), and human

zygotes (Chen et al, 2022; Wei et al, 2022c). Most of the works

used mRNA microinjection as delivery system (Lee et al, 2021,

2022b; Qi et al, 2021; Sabharwal et al, 2021; Chen et al, 2022; Guo

et al, 2022; Wei et al, 2022b, 2022c). Additionally, it was also pos-

sible to deliver DdCBE constructs into mouse heart via AAV, pro-

viding a proof of concept of in vivo mtDNA editing of post-mitotic

tissues (Silva-Pinheiro et al, 2022b).

Besides being applied in a variety of organisms, the DdCBE

technique is already evolving (Fig 3B). The tool has been adapted

for use with zinc fingers as targeting proteins, a platform dubbed

“zinc finger deaminases” (ZFD; Lim et al, 2022b). Besides achiev-

ing base editing with up to 30% efficiency in mtDNA, ZFD/DdCBE

Table 2. iPSC models of mtDNA diseases.

Disease

Genes and
mutations
studied

Mutation levels in
iPSC lines

Differentiated cell models
investigated Publications

Leigh Syndrome (LS) MT-ND5
(m.13513G > A)
MT-ATP6
(m.9185T > C;
m.8993T > G)

Homoplasmy or high
heteroplasmy for MT-
ATP6. Low heteroplasmy
for MT-ND5

Neural progenitors, neurons,
and brain organoids

Ma et al (2015), Lorenz et al (2017), Zheng
et al (2016a), Galera-Monge et al (2020),
Romero-Morales et al (2022)

Mitochondrial
Encephalopathy, Lactic
Acidosis, and Stroke-like
episodes (MELAS)

MT-TL1
(m.3243A > G)
MT-ND1
(m.5541C > T)

Variable heteroplasmy,
including mutation-free
iPSCs

Neurons, skeletal muscles,
endothelial cells, retinal
pigment epithelium, and spinal
cord organoids

H€am€al€ainen et al (2013), Hatakeyama
et al (2015), Winanto et al (2020), Pek
et al (2019), Chichagova et al (2017),
Gunnewiek et al (2020)

Myoclonic Epilepsy and
Ragged-Red Fibers
(MERRF)

MT-TK
(m.8344A > G)

Variable heteroplasmy,
including mutation-free
iPSCs

Cardiomyocytes and neural
progenitors

Chou et al (2016)

Leber’s Hereditary Optic
Neuropathy (LHON)

MT-ND4
(m.11778G > A)

Homoplasmy Retinal ganglion cells Wu et al (2018), Yang et al (2019), Yang et
al (2020)

Kearns–Sayre Syndrome
(KSS)

Common
deletion

Variable heteroplasmy Neural progenitors, fibroblast-
like cells, and cardiomyocytes

Lester Sequiera et al (2021)

Pearson Marrow–
Pancreas syndrome
(PMPS)

Common
deletion

Variable heteroplasmy Hematopoietic progenitors Cherry et al (2013)
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hybrids were shown to modify mtDNA in unique mutation pat-

terns, sometimes even avoiding unwanted bystander editing (Lim

et al, 2022b). Another improvement was the development of two

mutant enzymes engineered from wild-type DddA: DddA6 for

enhanced editing at TC sites, and DddA11 for editing in AC and

CC sequence contexts in addition to TC sites (Mok et al, 2022a).

Both DddA6 and DddA11 exhibited increased off-target editing of

mtDNA, but enabled greater editing efficiency for difficult-to-edit

loci and broaden the substrate scope (Mok et al, 2022a). Addition-

ally, it has been possible to engineer a monomeric DdCBE

(mDdCBE), a non-toxic full-length variant of DddA that does not

need to be split into two halves (Mok et al, 2022b). The small size

of mDdCBE facilitates the packaging into AAV, and the presence

of a single TALE-binding site increases the number of targetable

sites, adding more versatility to the mtDNA base editing method

(Mok et al, 2022b).

Another important milestone for mtDNA base editing has been

the development of TALE-linked deaminases (TALEDs; Cho et al,

2022). This technology allows A-to-G base conversion in the mtDNA

through adenine deamination. This is achieved by fusing a known

adenine deaminase (TadA8e) to a DdCBE construct. The possibility

of modifying A�T to G�C bp significantly expands the number of

potentially targeted disease-associated mtDNA mutations. Different

TALED configurations have been reported, thereby increasing the

options available for mtDNA base editing design with respect to the

choice of delivery vehicle (e.g., AAV) and accessibility of target

sites.

DdCBE has been already used to generate a mouse model car-

rying the pathogenic mutation m.13513G > A in MT-ND5 gene

(m.12918G > A in mice) that is associated in humans with LS,

MELAS, and LHON syndromes (Lee et al, 2022b). The authors

demonstrated improved editing efficiency at the target site by co-

injecting DdCBE with mito-TALENs into mouse embryos. While

DdCBE introduced the desired mutation, mito-TALENs were

designed to specifically cut unedited copies. The resulting mice

exhibited damaged mitochondria in tissues, as well as abnormal

brain structures resulting in premature death (Lee et al, 2022b).

Moreover, the development of a library of DdCBEs to knock out

mouse mtDNA protein-coding genes led the Minczuk group to

obtain a mouse model carrying the mutation m.8069G > A in

gene mt-Apt6 at high heteroplasmy (Silva-Pinheiro et al, 2022a).

One major concern for mtDNA base editing remains safety.

Whereas off-target editing in mtDNA was shown to be minimal in

the original work (Mok et al, 2020), increasing evidence suggests

that it can be more substantial (Guo et al, 2021, 2022; Qi et al, 2021;

Chen et al, 2022; Lee et al, 2022a; Silva-Pinheiro et al, 2022b; Wei

et al, 2022b, 2022c). No off-target editing was observed in nuclear

pseudogenes (Mok et al, 2020; Chen et al, 2022; Guo et al, 2022; Lee

et al, 2022a; Silva-Pinheiro et al, 2022b; Wei et al, 2022c). However,

the studies that analyzed genome-wide specificity on the nuclear

genome detected significant off-target editing (Lei et al, 2022; Lee

et al, 2022b; Wei et al, 2022b). It has been suggested that the split

halves may spontaneously reassemble rather than depending on

both TALE arrays for guidance (Lei et al, 2022; Lee et al, 2022b). To

avoid this spontaneous reassembly, high-fidelity DdCBE (HiFi-

DdCBE) was developed (Lee et al, 2022a). HiFi-DdCBE was obtained

by mutating key residues at the split interface of DddA, thereby

leading to decreased off-target assembly of both halves, while still

enabling guided reconstitution at target site. Off-target editing could

also be markedly reduced by including nuclear export signals (NES)

on the editing constructs (Lei et al, 2022; Lee et al, 2022b), or by co-

transfection of the DddA inhibitor DddIA (Lei et al, 2022; Lee et al,

2022b).

In less than 3 years since the original discovery of DdCBE, much

has happened in the field of precise mtDNA manipulation (Table 3).

Nevertheless, more work is needed to reliably predict which con-

structs and configurations are best suited for any given target site.

More safety studies are also required before translating mtDNA base

editing technology into human applications. Furthermore, not all

types of mutations are targetable. With base editors, mtDNA manip-

ulations are restricted to transitions (i.e., C<->T and G<->A),

whereas transversions (i.e., interchanges of purines with pyrimi-

dines), insertions, deletions, or mutations encompassing more than

one nucleotide are not achievable (Box 1).

◀ Figure 3. Base editing of mtDNA.

(A) Using double-stranded DNA deaminase (DddA)-derived cytosine base editors (DdCBE) or transcription activator-like effector (TALE)-linked deaminases (TALEDs), it is

possible to introduce precise single gene modifications of the mtDNA. Nucleotides that are directly targeted are shown in red. The constructs are imported into the

mitochondria via their mitochondrial targeting sequence (MTS) and are guided to the target site by their TALEs. In mitochondria, DddA halves are brought into close

proximity and the enzyme is reconstituted. For DdCBE, in the first editing step, the nucleobase is deaminated, resulting in cytidine conversion to uridine (C > U). During

DNA replication (second step), uridine is read as thymidine by the DNA polymerase and adenosine is incorporated on the opposite strand. In the next replication cycle,

uridine is replaced by thymidine, ultimately resulting in the conversion of the mismatched U�G to a T�A bp. Analogously, in case of TALEDs, adenosine is first deami-

nated to inosine (A > I) and then the I�T bp is converted to a G�C bp during replication. Here, inosine is read as guanosine, and cytidine is incorporated on the opposite

strand. In the next replication cycle, inosine is replaced by guanosine, thus completing the editing round. (B) Schematic representation of different mtDNA editing plat-

forms. Both DNA strands can be edited. Targeted nucleotides are shown in red. DdCBE: DddA is split into two halves and thus two constructs per target site are required.

Wild-type (WT) DddA and DddA6 prefer TC contexts, while DddA11 can additionally deaminate cytidines in AC and CC contexts. Zinc finger deaminases (ZFD): DddA is

also split into two halves and editing occurs preferentially at TC sites. The constructs are guided to the target site via zinc finger proteins (ZFP), while nuclear export sig-

nals (NES) reduce nuclear localization. Monomeric DdCBE (mDdCBE): a full-length DddA mutant, either catalytically attenuated (E1347A) or with reduced cytotoxicity

(GSVG), is fused to one single TALE protein with MTS and uracil glycosylase inhibitor (UGI). Only one construct per target site is required. TALEDs exist in three different

configurations where adenine in any sequence context is converted to guanine. Split TALED (sTALED): DddA is split into two halves and a full-length adenine deaminase

(TadA8e) is fused to the C-terminus of one construct. Dimeric TALED (dTALED): catalytically attenuated full-length DddA (E1347A) is fused to one construct and the full-

length adenine deaminase is fused to another construct. Monomeric TALED (mTALED): only one construct per target site is required, and catalytically attenuated full-

length DddA (E1347A) and full-length adenine deaminase TadA8e are fused to one single TALE protein with MTS. High-fidelity DdCBE (HiFi-DdCBE): DddA is split into

two halves. An interface mutant with reduced spontaneous self-assembly due to an alanine mutation (�Ala) is fused to one construct; cytidines at TC, AC, and CC sites

can be targeted with reduced off-target editing. Additional abbreviations: TadA8e: adenine deaminase; DddAFull(E1347A): catalytically impaired full-length DddA;

DddAFull(GSVG): full-length DddA mutant with reduced cytotoxicity. C, cytidine; G, guanosine; U, uridine; A, adenosine; T, thymidine; I, inosine.
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Combining mtDNA editing with iPSCs and organoid
models

To properly dissect the contribution of specific gene defects, it is

important to use cell models that harbor the same genetic back-

ground in order to reduce variations that are not due to gene-

specific changes. In the iPSC field, the gold standard for modeling

diseases caused by nuclear mutations is to employ CRISPR/Cas sys-

tems to produce isogenic iPSC lines. Isogenic iPSCs carry the same

genetic background and differ only at the site of a specific gene

mutation. Isogenic iPSCs can be obtained either by introducing the

disease mutation into control healthy iPSCs or by correcting the

mutation in patient-derived iPSCs. By comparing 2D and 3D models

derived from the unedited iPSCs and their engineered isogenic coun-

terparts, it is then possible to identify defects that are caused specifi-

cally by the studied nuclear gene mutation (Ben Jehuda et al, 2018).

As mentioned above, such approaches are unfortunately more

challenging for mtDNA defects. However, some strategies can be

envisioned. In the investigation of pathogenic heteroplasmic mtDNA

mutations, it is possible to take advantage of the spontaneous

heteroplasmy shift occurring upon reprogramming to iPSCs. This

can be achieved by screening for iPSC clones carrying very low

levels of heteroplasmy without the need for external mtDNA manip-

ulation (Fujikura et al, 2012; H€am€al€ainen et al, 2013; Ma et al, 2015;

Lin et al, 2019; Gunnewiek et al, 2020; Fig 4A). However, given that

the iPSC-associated heteroplasmy shift cannot be effectively

Table 3. mtDNA base editing platforms.

Platform

Type of
mutation
targetable Pros Cons Publications

DdCBE C > T and
G > A in TC
motifs

• Precise editing with minimal
bystander editing

• Large amount of data available
• Tested in multiple organisms

• Editing restricted to TC
motifs ➔ targetable patho-
genic mutations are limited

• Two constructs per target
site required ➔ large-size,
two TALE binding sites
required

Mok et al (2020), Chen et al (2022), Wei et al (2022c),
Lei et al (2022), Qi et al (2021), Lee et al (2021), Silva-
Pinheiro et al (2022a), Silva-Pinheiro et al (2022b),
Guo et al (2022), Wei et al (2022b), Lee et al (2022b),
Guo et al (2021), Sabharwal et al (2021)

DddA6 C > T and
G > A in TC
motifs

• Enables editing of difficult-to-
edit loci at TC sites with reduced
bystander editing

• Editing restricted to TC
motifs ➔ targetable patho-
genic mutations are limited

• Two constructs per target
site required ➔ large size,
two TALE binding sites
required

• Higher off-target editing

Mok et al (2022a)

DddA11 C > T and
G > A in TC,
AC, and CC
motifs

• Broadens substrate scope to
editing at AC, CC, and TC sites ➔
more mutations targetable

• Higher bystander editing ➔

less precise
• Two constructs per target
site required ➔ large size,
two TALE binding sites
required

• High off-target editing

Mok et al (2022a)

ZFD C > T and
G > A in TC
motifs

• Not limited to available TALE
binding sites

• ZFD/DdCBE hybrids exhibit dis-
tinct editing patterns ➔ alterna-
tive to DdCBE for difficult-to-edit
loci

• Editing restricted to TC
motifs ➔ targetable patho-
genic mutations are limited

• Two constructs per target
site required ➔ large size

Lim et al (2022b)

TALED A > G and
T > C

• Adenine deamination signifi-
cantly increases number of tar-
getable mutations

• No sequence context limitations
• Three configurations for different
target sites and experimental goals

• Precise targeting of distinct
A or T in editing window
difficult

• Two constructs per target
site required ➔ large size,
two TALE binding sites
required

Cho et al (2022)

mDdCBE C > T and
G > A in TC
motifs

• Smaller size facilitates packaging
into AAV

• Only one TALE binding site
required ➔ design more flexible
and larger substrate scope

• Little data available Mok et al (2022b)

HiFi-
DdCBE

C > T and
G > A in TC,
AC, and CC
motifs

• Decreased off-target editing • Little data available Lee et al (2022a)
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controlled or predicted, the identification of isogenic iPSC lines may

require extensive screening of numerous iPSC clones. In order to

more precisely manipulate the heteroplasmy level of patient-derived

iPSCs, it is possible to employ mitoREs, mito-TALENS, or mtZFNs

(Yahata et al, 2017, 2021; Yang et al, 2018, 2020). These approaches

cause heteroplasmy shifts that have the potential to lead to the gen-

eration of isogenic iPSC lines containing low levels of mtDNA muta-

tions. Lastly, mtDNA base editing strategies such as DdCBE might

also be applied to directly insert precise site-specific modifications

into the mitochondrial genome.

The ability to modify mtDNA via base editing opens the way to

the generation of effective disease models also for homoplasmic

mtDNA mutations (Fig 4B). Homoplasmic mtDNA mutations have

so far not been possible to introduce or correct, neither through cel-

lular reprogramming-associated modifications nor with

conventional heteroplasmy shift approaches. DdCBE and other

mtDNA base editing platforms may thus enable the derivation of

isogenic iPSC lines, for example, by targeting a homoplasmic

mtDNA mutation to significantly reduce its mutation load in order

to revert the disease defects.

It is important to notice that the possibility to engineer mtDNA

mutations in iPSCs could also enable the generation of mtDNA dis-

ease models without the need for obtaining somatic cells from

patients (Fig 4C). This approach, already commonly accepted for

nuclear gene defects, would allow investigating of cells and orga-

noids for mutants and controls with identical nuclear genetic back-

grounds. This strategy is particularly convenient for rare and

pediatric conditions, as in the case of mtDNA diseases. Neverthe-

less, this approach would not allow for investigating the nuclear–

mitochondrial genomes interplay. mtDNA alterations will only be

A

C

B

Figure 4.
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related to a control nuclear background, thereby limiting the possi-

bility to unveil the interconnection between patient-specific nuclear

DNA and the presence or absence of defined mtDNA alterations.

Lastly, mtDNA base editing in iPSCs may have potential utility

also for modeling diseases caused by nuclear mutations. In fact,

given that during cellular reprogramming changes in mtDNA profile

can occur, one could envision the use of mtDNA editing to remove

these unwanted mtDNA mutations from newly generated iPSC lines,

before proceeding to use the iPSC lines in disease modeling and

therapeutic applications (Box 1).

Concluding remarks and future outlook

The recent establishment of key remarkable technologies has

brought important advances for mtDNA diseases. The multi-copy

nature of mtDNA, its lack of efficient double-strand break repair

mechanisms, and its cellular localization within a double-membrane

organelle have made editing mtDNA a major challenge. As a result,

only a limited number of cellular and animal models for mtDNA dis-

eases could be created. The discovery of mtDNA base editing com-

bined with the possibility to build 3D organoid models from human

iPSCs have the potential to lead to the development of new effective

model platforms for mtDNA diseases. These technologies may also

help establish therapies in a personalized medicine manner, which

could be potentially highly beneficial for highly heterogeneous con-

ditions such as mtDNA diseases.

In order to move forward using these technologies, crucial ques-

tions and technical aspects remain to be addressed (Box 1). For

example, we still do not know the mechanisms underlying the

heteroplasmy shift occurring in human iPSCs. Moreover, current

mtDNA base editing approaches only work for point mutations and

not for large-scale deletions, and even for point mutations, they can

only target few specific sites and cannot edit or correct all known

pathogenic mtDNA mutations. Nevertheless, we expect that

mtDNA-engineered iPSCs could represent a decisive advance in the

study of mtDNA diseases. The heterogeneous and complex nature

of these diseases makes it inherently difficult to decipher the

contribution of a mutation to the pathophysiology of the disease.

Comparing both mutant and control cells under the same nuclear

background conditions could allow elucidating the contribution of

specific mtDNA defects to disease phenotypes in different human

tissues. Moreover, the use of complex organoid models could shed

light on how mtDNA heteroplasmy segregates during human tissue

organization. This knowledge could in turn lead to a better

understanding of genotype–phenotype correlation and heteroge-

neous organ specificity of mtDNA mutations in patients with

mtDNA diseases.

Overall, by using novel mtDNA base editors and applying them

to iPSC-derived organoids, it may be possible to develop complex

human models of mtDNA diseases. These new models could lead to

the discovery of relevant pathological mechanisms and might pave

the way to interventional strategies for these challenging diseases

with high unmet medical needs.
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