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Yoav Benjamini,6,7,11 and Talma Hendler1,2,6,8,11,12,*

SUMMARY

Linking scalp electroencephalography (EEG) signals and spontaneous firing activity
from deep nuclei in humans is not trivial. To examine this, we analyzed simulta-
neous recordings of scalp EEG and unit activity in deeply located sites recorded
overnight from patients undergoing pre-surgical invasive monitoring. We focused
on modeling the within-subject average unit activity of two medial temporal lobe
areas: amygdala and hippocampus. Linear regression model correlates the units’
average firing activity to spectral features extracted from the EEG during wakeful-
ness or non-REM sleep. We show that changes in mean firing activity in both areas
and states can be estimated from EEG (Pearson r > 0.2, p�0.001). Region speci-
ficitywas shownwith respect to other areas. Both short- and long-termfluctuations
in firing rates contributed to themodel accuracy. This demonstrates that scalp EEG
frequency modulations can predict changes in neuronal firing rates, opening a new
horizon for non-invasive neurological and psychiatric interventions.

INTRODUCTION

Non-invasive tracking of electrophysiological patterns deriving from neurons located in deep brain regions

encompasses the potential of being a game changer in neuropsychiatry. Such ability could serve the

development of biomarkers, as well as identification of targets for neuromodulation. However, this desired

goal is hampered by two main limitations of scalp electroencephalography (EEG), the most common non-

invasive electrophysiological recording technique.

First, a leading assumption is that scalp EEG, like intracranial field potentials, originate primarily from post-

synaptic activity arising in the apical dendrites of pyramidal cortical cells and less so from single neurons’

action potentials.1,2 Second, neural activity of deeply located regions such as in the mesial temporal lobe

(MTL), have been regarded as undetectable on the scalp due to the rapid decay of the EEG signal from

deeper brain sources and due to the cellular architecture of these structures that have been considered

as closed-field.3 This assumption has been recently challenged by statistical methods used to depict amyg-

dala activity marked by fMRI.4,5 Yet the consensus remains that currents reaching the scalp from deep brain

areas would be very weak, particularly from the high frequency bands which are most correlated with unit

activity6,7 and whose power decays most rapidly with distance.8

This paper presents the results from a data science study using human simultaneous recording of single

unit spiking activity in MTL and scalp EEG in order to obtain a prediction model for localized intracranial

neural activity.

Major MTL structures such as the amygdala and hippocampus are thought to play a central role in various

cognitive processes that underlie neuropsychiatric disturbances including memory, emotion, and motiva-

tion. In psychiatry, accumulating evidence from animal models and neuroimaging studies in humans show

that hyperactive amygdala could be predictive of post-traumatic stress disorder (PTSD) development

following exposure to potentially traumatic stress.9–12 Amygdala abnormality; however, is transdiagnostic

as evident from neuroimaging studies in anxiety, depression, and personality disorders.13 Similarly, animal

models demonstrated alterations in amygdala single cell activity related to anxiety14,15 and schizophrenia-

like syndrome.16 The hippocampus seems critical for adaptive encoding and consolidation of the traumatic

memory, thus could mediate recovery from trauma and effectiveness of therapeutic effort.10,11 Reduced

hippocampal volume in individuals with PTSD has been repeatedly observed along with post-traumatic
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molecular changes including decreased brain-derived neurotrophic factor (BDNF), impaired neurogenesis

in the dentate gyrus, decreased long-term potentiation in the CA1 region, and dendritic retraction in

CA3.17 MTL also constitute an important source of abnormal neural activity in epilepsy. Temporal lobe ep-

ilepsy (TLE) is the most common form of epilepsy with focal seizures and in many cases originates from the

amygdala and/or hippocampus. Lastly, animal work repeatedly showed abnormal activity in hippocampal

neurons in Alzheimer’s diseasemodels.18 Altogether this evidence emphasize that non-invasive yet reliable

recording of activity arriving from the amygdala and hippocampus could be of special value for advancing

mechanism-driven diagnosis and intervention strategies in psychiatry and neurology.19

Trackingpatternsof neuronal activity indeepbrain structuresusingscalpEEGcouldbepossible indirectly, given

that some cortical regions that are closer to the scalpmay show correlated activity with deep regions of interest

during shared state changes. Both the amygdala and hippocampus have numerous connections to cortical

structures, from sensory areas to the pre-frontal cortex, forming cortical-limbic dynamical networks.9,20 Thus,

by simultaneously tracking cortical and MTL subcortical structures it could be possible to detect correlates of

deep brain activity using non-invasive measures. In a previous study, we showed that using machine learning

it ispossible toobtain anEEGmodel informedbyamygdala fMRIBOLDactivation (termedelectrical fingerprint,

EFP).21 The amygdala-EFP model was validated by showing its correspondence with amygdala BOLDmodula-

tion via fMRI performed on a new group19 and by employing it in neurofeedback to improve stress resilience

among soldiers.22 Nevertheless, using simultaneous scalp EEG recording in the MRI scanner as the source for

theamygdala-EFP inevitably introducesnoise to themodeldue to thenatureofBOLDbeingan indirectmeasure

of neural activity and the introduction of MRI induced artifacts to the EEG signal.

Aspiring to establish a more direct estimation of MTL activity from EEG, in this study we used simultaneous

neuronal spiking activity from intracranial contacts located in the amygdala and hippocampus, together

with EEG from four scalp electrodes obtained from six individuals with intractable epilepsy acquired over-

night during periods of wakefulness and non-rapid eye movement (NREM) sleep (402.94 G 11.70 min,

mean G sem). We used unit recordings from contacts in the pre-frontal cortex as a control region outside

the MTL. To deal with the complex relation between spiking activity and EEG spectral information, we

applied a statistical approach by means of linear regression using the power in the traditional EEG bands

as predictors of the average unit activity. In light of recent findings correlating scalp activity with deep brain

sources,5 we hypothesized that this analysis will result in significant and unique prediction of unit spike ac-

tivity per region from simultaneous scalp EEG recording.

RESULTS

Estimating mean firing rates from EEG is region specific

Neuronal firing rates (FR) in the amygdala and hippocampus were modeled from scalp EEG in 5s bins

within-subject using 5-fold cross-validation. We split the data into five consecutive non-overlapping seg-

ments, training the model over 4/5 segments and testing for accuracy on the remaining segment. Owing

to the variation in spectral properties between wakefulness and NREM sleep,23 we modeled each state

separately (see STARMethods). Pearson correlation coefficient and in some cases root mean squared error

(RMSE) between true and predicted FR were calculated as performance measures.

Figure 1A depicts test versus train RMSE prediction error, constituting the objective function of the linear

model. As expected, the range of the train RMSE was smaller than that of the test (i.e., better fit), and in

most cases it was lower than the test error. There were no major differences in model performance

(RMSE) across different subjects, areas or brain states.

Figure 1B shows an example of the hippocampal model’s performance for one patient during NREM sleep

where the correlation coefficient (r = 0.4) was calculated by sequentially concatenating all test segments.

Test correlations for each model were calculated for the area for which the model was developed (amyg-

dala or hippocampus), and in order to assess the regional specificity of the model, we used the model to

predict the firing rate in two other areas (amygdala or hippocampus and frontal cortex, FC). Test correla-

tions for all six patients in each brain area and state are summarized in Figures 1C–1F. All regressionmodels

are significant (F-test, p�0.001, see STAR Methods), and the majority (18/24 models, one-sided binomial

test, p = 0.02) of the test correlations are within the range of 0.2–0.6, depicting a weak to moderate positive

correlation. Correlation values were also tested for significance with a one-sided test and a p value of 0.01
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Figure 1. MTL average unit activity can be estimated using features extracted from the EEG

(A) Test vs. train RMSE per fold. Each color represents a different subject and each shape represents a region and state (see legend). The train and test RMSE

are similar across subjects, regions, and states. As expected, the train accuracy is less variable and usually better than that of the test.
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(Bonferroni corrected for all the different models; n = 68). In most cases (15/18 models) where a non-negli-

gible correlation was found with the target area (higher than 0.2), the model accuracy of the target area was

the highest than the two other areas. When the correlation was highest in a brain region other than the

target, it was found within the MTL (amygdala or hippocampus) and never within the FC. Examining the

correlation between amygdala and hippocampus firing rate revealed high and significant correlations in

those cases (see Figure S1). Rare cases of high correlations may be attributed to the functional relationship

between the amygdala and hippocampus.24

Model coefficients for non-rapid eye movement sleep are more stable than awake signals

To evaluate the similarity between the models’ coefficients across the different folds, we calculated the

mean euclidean distance between coefficients of all possible pairs of models for the same patient, region,

and state. We observed that NREM sleep models were more stable than wakefulness models (signed-rank

test: N = 12, W = 10, Z = 2.27, p = 0.02) (Figure 2A). 10 of the 12 models showed a larger variation in model

coefficients within the wakefulness state than NREM sleep.

Finally, a full model was fit for each patient, region, and state using all available data (all 5 time-sections). The

amplitudes of the specific coefficients of these models were variable, and the low number of subjects pre-

vents drawing statistical conclusions (Figure S4). Nevertheless, when focusing on NREM sleep (a state of

higher model stability) and on patients in which models performed well (with a mean correlation above

0.2), we observed relatively high beta band coefficients in both amygdala and hippocampus models

(Figures 2B and 2C).

Prediction’s accuracy emerges from both short- and long-term fluctuations in firing rates

Figures 3A–3D features single patient examples ofmodel predictions for the amygdala and hippocampus in

either wakefulness or NREM sleep using the entire dataset (full model). We verified that the measured cor-

relation does not benefit from adding the firing rate in frontal areas or arousal, by creating two additional

models, which include an estimate of FC activity or a proxy of arousal measured by an estimate of the 1/f

slope in the frequency band 30–45 Hz25 (see STAR Methods). In the combined models, model accuracy

as measured by the adjusted R2 values does not improve by adding the additional features. (Figure S5).

To make sure these additional features are not by themselves explanatory of MTL firing rate, we also

show that predictions based solely on these features are much worse than the original models (Figure S5).

The measured correlations could arise from momentary changes in firing rates, from long-term changes in

firing rates, or from a combination of both. Long-term changes in firing rate could be attributed to state

transitions in the entire network. Though both short- and long-term fluctuations are of importance, we

sought to validate whether the model’s prediction can be attributed to one over the other. In order to

do so, we created for each patient, region and state separately, a series of models predicting shifted

MTL FR from unshifted scalp EEG (5– 300 s shifts, see STAR Methods). If such short time shifts would cause

a decrease in model prediction, it would support the notion that the model does not only take into account

long-term fluctuations.

In 18/24 models correlation decayed rapidly with time shifts (in the shortest 5 s shift) indicating that a sig-

nificant part of the model correlation is due to short time dependencies (Figure S6). Figures 3E–3H summa-

rize the results of evaluating the model’s prediction compared to the distribution of the shifted models.

During wakefulness, the accuracy of the unshifted model’s prediction was in the region where it was iden-

tified as an outlier relative to the distribution of the shifted models in 10 out of the 12 models (five out of six

models in both tested regions). During NREM sleep, it occurred for five (out of six) subjects for the amyg-

dala and in four (out of six) for the hippocampus. For both states, the unshifted correlation was the extreme

data point in 17 models. Thus, in 70% (17/24) of the cases (95% CI: 52%–100%) the correlations arise from

short time dependencies and not only due to long-term changes in firing rates.

Figure 1. Continued

(B) An example of a 5-fold prediction from the amygdala of one subject (P399) during non-REM sleep. The black trace represents a true firing rate after

transformation (see STAR Methods), and the red trace represents the model prediction. Each vertical line is a transition point between each test period.

Above each section the true to prediction correlation is noted, and the total test correlation overall test periods concatenated to each other equals to 0.4.

(C–F) Test correlations for the target area (amygdala or hippocampus) and for the two other areas (Am or Hipp and FC) for each area and state. Significant

test correlations are noted with * (p < 0.01, bonferroni corrected). The dashed line marks a non-negligible correlation value of 0.2. For most models, the

highest test correlation is with the target area of the model.

ll
OPEN ACCESS

4 iScience 26, 106391, April 21, 2023

iScience
Article



Figure 2. Model stability and coefficients

(A) Mean euclidean distance between the coefficients of the different models (folds) for the awake vs. NRS period. Dots

represent region/patient. Dot location above the diagonal line represents higher coefficient stability for NRS than wake period.

(B and C) Mean coefficients for each frequency band of the successful models (i.e., correlation with signal > 0.2) in the full

NRS amygdala (B) and hippocampus (C) models.

ll
OPEN ACCESS

iScience 26, 106391, April 21, 2023 5

iScience
Article



DISCUSSION

We demonstrate here the feasibility of estimating the dynamics of averaged neuronal spiking activity in hu-

man MTL using features extracted from simultaneously acquired scalp EEG. The model performance as

measured by both RMSE and Pearson correlation was of similar range for the two regions used for unit

recording; amygdala and hippocampus and for both states of wakefulness and NREM sleep (Figure 1). It

was also demonstrated that the predictions are attributed to both short- and long-term changes in the firing

rate and that they are regionally specific when each region is compared to unit activity in pre-frontal cortex

and to the other MTL region (Figures 1 and 3). Altogether, these findings support the notion that tracking

deep neural patterns in the MTL from scalp EEG recording is possible. These results do not imply that

MTL currents are detected in scalp EEG, but rather that a statistical association is made possible indirectly

by the abundant anatomical and functional connectivity between units in the amygdala and hippocampus

and neural activity in the neocortex that is readily detected from the scalp EEG. As far as we know this is the

first demonstration of limbic unit activity transformation from EEG; an affordable and accessible, non-inva-

sive electrical recording technique. Thedemonstrated ability thus opens thepotential usageof scalp EEG to

guidemonitoring ormodulation of limbicMTL based activity. This is particularly appealing as the amygdala

and hippocampus have been repeatedly indicated in several neuropsychiatric disorders.10,17

Several limitations of this work should be considered upfront. First, one should consider changes in the current

flow over the scalp once the skull has been breached and electrodes are inserted. It may be claimed that scalp

EEG recorded in this situation is not comparable to the EEG with an intact skull or once electrodes have been

removed. However, previous reports either using Deep Brain Stimulation electrodes5 or subdural electrodes26

simultaneously with scalp EEG were able to show comparable source activity of the different frequency bands.

We modeled the mean firing rate over multiple neurons in the amygdala or hippocampus in each individual; a

relatively crude simplification of the complexity that entails the neural activity of a region. Obviously, each re-

gion encompasses multiple neuron types that differ in many dimensions such as their electrophysiological

behavior, transmitters, and connectivity profiles. Second, each patient was implanted at slightly different loca-

tions and perhaps different sub-regions within the amygdala or hippocampus; both known to include multiple

nuclei, sections, and cellular types.27 Diverse neural firing patterns between the different sub-regions have been

reported in both the amygdala and hippocampus.14,28 Nevertheless, this work shows that despite this diversity,

an average firing pattern in each monitored region can be modeled from the scalp of an individual, thus open-

ing the path for utilizing EEG based reliable surrogates of deeply localized limbic neural activity.

What makes the intracranial-scalp transformation possible?

We suggest that the ability to depict deeply originated neuronal activity in MTL from non-invasive scalp

EEG is made possible by a number of factors. First, harnessing the brain’s ample connectivity and small

world topography.29 Both the amygdala and hippocampus have numerous connections to cortical struc-

tures, from sensory areas to the pre-frontal cortex, forming cortical-limbic/paralimbic dynamical net-

works.30 Indeed it has been proposed that the amygdala’s involvement in emotion regulation originates

from its interactions with the cingulate cortex, orbitofrontal cortex, dorsolateral pre-frontal cortex, and

the hippocampus.31 In a similar manner, the hippocampus’ involvement in memory formation and retrieval

is associated with transient increases in cortico-hippocampal interactions including co-activation of the

hippocampal with perirhinal, orbitofrontal, and posterior cingulate cortices.32 An analogous scenario

can be found in connectivity between basal ganglia andmotor cortex circuits’ in relation to movement pro-

cessing. For example, Lalo et al.33 found bidirectional coupling between scalp measured beta and gamma

band EEG and intracranial field potentials recorded from depth electrodes in the subthalamic nucleus, and

Gatev et al.34 showed that unit activity in the extra-striatal basal ganglia is related to EEG oscillations

measured from the scalp. It has also recently been shown that alpha oscillations generated in the thalamus

and nucleus accumbens can be detected using source reconstruction of high-density scalp EEG.5 Second,

both rapid and slow changes in arousal, likely constitute a latent variable that affects both MTL firing rates

and simultaneously recorded scalp EEG dynamics. For example, changes in sleep depth, as well as dy-

namics in vigilance and attention during wakefulness, likely contribute to the ability to relate intracranial

MTL activity to scalp EEG when recorded simultaneously. During sleep specifically, higher slow wave activ-

ity is known to be associated with decreases in firing rates across most brain regions.35

Limitations of the study

Modeling neuronal firing using EEG recorded from the scalp is a promising approach allowing non-invasive

monitoring of deeply originated neuronal activity. Yet, it is important to be aware of the limited framework
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of the approach. In previous work by Whittingstall and Logothetis,36 multi-unit activity from a monkey’s

visual cortex was modeled using scalp EEG while monkeys observed natural movies. Our current study fol-

lows their approach but with a more ambitious aim of modeling deeper limbic structures and without a pro-

voking task in humans. Interestingly, model success as measured by the correlation between the predicted

and true spike rate was similar in both studies (r � = 0.2–0.3). However, in their study the features best pre-

dicting neuronal firing rates were relatively stable over monkeys (i.e., gamma-band power, delta-band

phase) whereas, we found large variability in the weighting of EEG features across models trained on

the different subjects’ data (Figures 2B and 2C). This inter-subject variability precludes development of

a one-class generic model that can be used outside the realm of intracranial recording from each person

(at least at present), largely hampering the scalability of the model’s application in clinical setting. We

further speculate that this difference between visual cortex and subcortical limbic models is due to different

electrical and electrophysiological mechanisms of these areas. Since the visual cortex is closer to the scalp

than the MTL, a more direct cortically basedmodel can be obtained while an MTL model presumably relies

on subcortical-cortical connectivity and latent variables, which could be more prone to between subject

variability also in terms of momentary brain or mental state. In addition, since precise electrode locations

were based on clinical needs, these data are inherently more variable between individuals than those

animal studies. Additionally, specificity of this model to a certain region is inherently limited by the inde-

pendency of the firing rate from other brain regions. We show that when frontal cortex units have highly

correlated firing rates with amygdala/hippocampal units, the specificity of the model decreases. Future

studies can pre-select periods of independent regional activity for a more specific modeling process.

In recent studies, we showed that an EEG based model of amygdala fMRI activation can be achieved.19,21

While both our previous and current analyses try to model deep brain activity from scalp EEG they differ in

the probe they try tomodel: BOLD amygdala activation in the previous work and amygdala or hippocampal

neural activity in the current study. While BOLD fMRI is an indirect measure of neural activity, which de-

pends on hemodynamic coupling, here we directly model neural activity in situ. In our previous work, we

were able to produce a group EEG based model of amygdala fMRI activation. Due to the small number

of subjects in the current work, we could not address model generalization over patients but rather present

the robustness of per patient data. We hope that the increased usage of implanted electrodes and devices

over the last decade, as well as the formation of international shared databases will allow similar analysis of

larger datasets in the near future. General models will open the door to novel clinical applications ranging

from online monitoring of disordered state biomarkers to closed loop non-invasive self-neuromodulation

procedures (e.g., neurofeedback).

To sum, this work presents a novel modeling approach of neuronal firing rates in the human MTL through

non-invasive scalp EEG, demonstrating the feasibility and location specificity of such approach. Further ad-

vancements and validations may prove this approach useful for clinical monitoring and targeted

neuromodulation.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

Figure 3. Model accuracy can be attributed to both short- and long-term changes in firing rates

(A–D) True (black trace) vs. predicted (red trace) average unit activity after transformation (see STAR Methods) of the

amygdala (A and C) from subjects p402 and p399, and hippocampus (B and D) from subjects p406 and p416 —during

awake and non-REM sleep periods. The prediction is calculated using the train model without splitting to test and train

periods. The overall correlation, which is stated in each graph, is composed from short- and long-term correlations.

(E–H) Fisher transform of the Pearson correlation between true and predicted firing rate for the amygdala (E and G) and

hippocampus (F and H) during awake (E and F) and non-REM sleep (G and H) periods for the unshifted model (green dots)

and boxplot of the fisher-transformed correlations for the shifted models (gray). Central mark indicates the median, and the

bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most

extreme data point within 1.5 times the interquartile range; data points that are considered as potential outliers are marked

in + sign. Note that in 19 of the 24 cases the correlation of the unshifted model is in the outlying region and in 17 of the 24 it is

the most extreme point lying far away from the upper quartile. Indicating in these cases that the correlation can be attributed

to short-term fluctuations in the firing rate. Right y axis indicates the untransformed Pearson’s correlation values.
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B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Human participants

d METHOD DETAILS

B Data acquisition and spike sorting

B Unit activity preprocessing

B EEG preprocessing

B EEG feature extraction by principal component analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Cross scales linear regression modeling

B Model assessments

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2023.106391.
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Further information and requests for resources and materials should be directed to and will be fulfilled by

the lead contact, Talma Hendler (hendlert@gmail.com).

Materials availability

This study did not generate new materials.

Data and code availability

d All data reported in this paper will be shared by the lead contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human participants

Thirteen patients with intractable epilepsy were implanted with depth electrodes to identify seizure foci for

potential surgical intervention. Electrode location was based on clinical criteria. We examined six patients

(2 males and 4 females, ages 32 G 7.3) who had both amygdala and hippocampal units (of the 13 analyzed

in Nir et al.35). All patients participated in a sleep study, which included episodes of wakefulness. Patients

provided informed consent to participate in the study, which followed the guidelines of the Medical Insti-

tutional Review Board at UCLA.

METHOD DETAILS

All data analysis procedures were implemented using Matlab (Mathworks, USA). Data modeling was

repeated several times per subject, brain region and state using five-fold cross-validation for performance

evaluation, followed by complete data set modeling for additional analysis.

Data acquisition and spike sorting

8–12 depth electrodes were implanted in each patient. Each electrode terminated in eight 40-mm plat-

inum-iridium microwires, from which extracellular signals were continuously recorded (referenced locally

to a ninth non-insulated microwire) at a sampling rate of 28/30 kHz and bandpass-filtered between 1

and 6000 Hz. Scalp EEG (C3, C4, Fz and Pz) was continuously recorded at a sampling rate of 2 kHz, band-

pass-filtered between 0.1 and 500 Hz, and re-referenced offline to the mean signal recorded from the ear-

lobes. Recordings also included synchronized electro-oculogram, electromyogram and continuous video

monitoring. The data was scored offline for sleep staging following established guidelines.37

Unit activity preprocessing

Spike sorting was performed offline using ‘wave_clus’.38 The number of isolated units from each subject

and brain region are described in Table S1.

Most recorded units fired in low rates, �90% from all recorded neurons in both wake and NREM sleep

showed a firing rate % 5 spikes/s and �43% % 1 spikes/s. Thus, spiking activity of all recorded neurons

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB 2013a MathWorks https://www.mathworks.com/
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in each brain region and time period used for training (wake and NREM sleep) were calculated in 5 s bins

(number of spikes in each bin divided by the bin size in seconds). By doing so, we avoided transient fluc-

tuations in firing activity and the relative sparseness of the recorded units. Applying linear regression is

best suited for responses that are normally distributed, thus we visually inspected the distribution of the

units firing rate and applied a transformation to best match a normal distribution. The chosen transforma-

tion was:
ffiffiffi

x3
p

. For each unit we removed a small fraction of the time bins, in which its FR exceeded 5 times

the standard deviation of its average activity. Those time bins were removed from all simultaneously re-

corded neurons. The firing rate was then averaged across neurons from both hemispheres and z-scored

to have zero mean and standard deviation of one. The recorded units in both the amygdala and hippocam-

pus did not form clustered activity (see Figure S2), which justified using the units’ sample mean as a repre-

sentative measure of regional activity.

To check for correlated activity within brain region we calculated the Pearson correlation coefficient be-

tween the firing rates (after transformation) of all the pairs of simultaneously recorded units.

EEG preprocessing

Four EEG channels were recorded per patient (C3, C4, Fz and Pz) at a 1 kHz sample rate, and were refer-

enced to the mean of two electrodes located on the earlobes. EEG epochs in which the EEG amplitude of

one of the channels exceeds 250 mV were considered artifacts and removed from further analysis (�1.5% of

the 5 s bins were removed).

To calculate the power spectrum of the EEG signals we down-sampled the signal to 300 Hz and removed

the mean amplitude of each 5 s time epoch (removing the DC component). Time frequency analysis was

done using Stockwell transform39 with a frequency resolution of 1 Hz. Stockwell transform provides fre-

quency dependent resolution while maintaining a direct relationship with the Fourier spectrum. An

example of the use of Stockwell transform in EEG can be found in Meir-Hasson et al.21 The power in

each 1 Hz bin was averaged per 5 s, and the frequency resolution was then reduced to 5 samples per

time bin, according to the traditional division of EEG signal into frequency bands; delta (0-4 Hz), theta

(4-8 Hz), alpha (8-16 Hz), beta (16-31 Hz), and low gamma (31-55 Hz) bands. Each EEG feature was z-scored

to have a zero mean and standard deviation of one. This procedure produced an EEG feature matrix size N

x 20, where N is the total number of time bins and 20 is the number of features (four scalp electrodes x five

frequency bands per electrode). To validate rather the firing rate of frontal cortex units improve model per-

formance we added their mean firing rate as an additional feature into the model. To validate whether

arousal might improve the model performance we added four additional features, each is an estimate of

the slope of the 1/f spectrum from each EEG channel in the frequency range 30-45 Hz25 calculated from

the spectrum of each 5 s bin using MATLAB polyfit function with n = 1, for a linear fit. FC mean firing

rate and arousal features were also compared by themselves to the scalp EEG models.

Nir et al.35 showed that neuronal spiking activity might be influenced from interictal epileptiform dis-

charges, therefore we identified interictal activity at the target zone (amygdala or hippocampus) and

excluded from further analysis any time bin in which such activity was identified. Interictal activity was de-

tected by offline filtering the iEEG signal of the target area above 100 Hz and detecting events whose

amplitude exceeded 5 SDs above the mean and whose duration was less than 70 ms.40 For one subject

(P396), all time points in the amygdala were kept, because it contained a large amount of interictal activity

which did not lead to changes in firing rates.

As previously stated, linear regression is an additive model, and such a model usually benefit from features

that are symmetrically distributed. Thus, we visually inspected the distribution of each feature and applied

a transformation to best match a normal distribution. For the delta, theta and alpha bands we used a log

transformation, for the beta band we used 1=x and for the gamma band we used 1=x2.

EEG feature extraction by principal component analysis

In most cases the EEG features were found to be highly correlated (see Figure S3A). In such cases,

linear regression model coefficients can vary quite a bit, even with small perturbations of the data. We

therefore performed principal component analysis (PCA) to reduce the excessive dimensionality of the

input.
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PCA41 was performed separately for each of the patients’ EEG feature matrix. To determine the number of

principal components (PCs) to use, we examined each of the transformations scree plots (Eigen value vs.

principal component number).42 It revealed that the transition point from steep descent to a flat line occurs

at the 6th PC for all subjects (Figure S3). Thus we chose to use the projection of the EEG feature matrix of

the first 6 PCs as input to train the model (see Figures S3B and S3C). Using this number of PCs explained

92.85 G 0.8% and 91.50 G 1.36% of the variance over the 6 subjects in wakefulness and NREM sleep,

respectively.

We used 8 and 9 first PCs respectively, when adding the frontal cortex mean neuron or the 1/f slope to the

model, so that the explained variance is similar to that of the original model (which included only the fre-

quency bands power).

QUANTIFICATION AND STATISTICAL ANALYSIS

Cross scales linear regression modeling

We used a linear regression to predict the firing rate (after transformation) from the EEG feature matrix (af-

ter PCA). For each brain region and patient, we calculated twomodels, one for wakefulness periods and the

other for NREM sleep (REM sleep was not modeled because it occupied a relatively short period of our data

(49.75 G 12.20 min, mean G sem). For each of the models we concatenated the relevant time bins, after

discarding any irrelevant or noisy time bins. An examination of the Pearson correlations between single

EEG features and target firing rates showed a very low and variable correlation across subjects. We there-

fore omitted this analysis from the report and used the multiple features jointly.

In order to obtain test predictions across the entire time frame we used five-fold cross validation. We split

the data into five consecutive non-overlapping segments, training the model over 4/5 segments and

testing for accuracy on the remaining segment. By choosing this validation process, and not randomly se-

lecting the test data in between the train data, we were able to verify that the short timescale dependencies

within the data would not facilitate model performance. Pearson correlation coefficient and root mean

squared error (RMSE) between true and predicted FR were calculated as performance measures. Correla-

tion values were compared to zero with a one-sided T test (a= 0.01, Bonferroni corrected for all the

different models; n = 68). We also used an F-test on the regression model to assess a significance of the

linear regression relationship between the FR and predictors (with a significance level of p < 0.001). The

PCA over the features was calculated using the training data only, and the PCA calculated coefficients

were used to transform the test data. Test correlation was defined as the Pearson correlation between

all test periods concatenated to each other and their predicted values.

To check for the spatial specificity of the models, we used the model calculated for the amygdala/hip-

pocampus to estimate the average unit activity of the hippocampus, amygdala and frontal cortex. This

was performed in a similar 5-fold cross validation procedure as explained above. Depending on data

availability, different frontal brain structures were used per subject to represent frontal cortex unit ac-

tivity: P399 right and left supplementary motor area (12 and 11 units respectively), P402 right supple-

mentary motor area (6 units), P405 right and left orbitofrontal cortex (7 and 2 units respectively),

P406 right and left anterior cingulate cortex (4 and 3 units respectively), and P416 left orbitofrontal cor-

tex (10 units).

Model assessments

To check for model stability, for each subject area and state we have calculated the pairwise Euclidean dis-

tance between each of the 5 different model coefficients from the 5-folds and averaged over it. After

assessment of model accuracy in the cross validation setting and verifying similarity of model predictions

across folds, the same multiple linear regression was applied to the entire time frame for further analyses

(full model). Having found linear transformation models from the EEG PCA components to neural predic-

tions, we could then compose the two transformations (PCA and regression model) into a single linear

transform and report weights for the original EEG-band features.

To compare Pearson correlation between brain regions and states, correlations were subjected to

Fisher’s transform before applying any statistical test. In order to check the statistical properties of

the per subject per region and state models performance, we created 60 different models each result-

ing from the different time shifts (5s–300s in 5s jumps) of the response vector (the firing rate) with the
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un-shifted EEG feature matrix. We then visualized the calculated Fisher-transformed correlations be-

tween the firing rate and the predictions using boxplots for all shifted models. Since these are highly

correlated and a strong trend is evident, these could not be used directly for testing. Nevertheless,

corroborating evidence can be observed from the boxplots, such as the location of the un-shifted

model away from the upper quartile, being the model with the highest correlation relative to the

shifted ones, or being marked as an outlier. At the model level the assumption of independence can

be more appropriate, so estimate and binomial confidence intervals for the proportion of models

enjoying the property were constructed.
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