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Abstract

This paper presents the use of two popular explainability tools called Local Interpretable 

Model-Agnostic Explanations (LIME) and Shapley Additive exPlanations (SHAP) to explain the 

predictions made by a trained deep neural network. The deep neural network used in this work 

is trained on the UCI Breast Cancer Wisconsin dataset. The neural network is used to classify 

the masses found in patients as benign or malignant based on 30 features that describe the mass. 

LIME and SHAP are then used to explain the individual predictions made by the trained neural 

network model. The explanations provide further insights into the relationship between the input 

features and the predictions. SHAP methodology additionally provides a more holistic view of the 

effect of the inputs on the output predictions. The results also present the commonalities between 

the insights gained using LIME and SHAP. Although this paper focuses on the use of deep neural 

networks trained on UCI Breast Cancer Wisconsin dataset, the methodology can be applied to 

other neural networks and architectures trained on other applications. The deep neural network 

trained in this work provides a high level of accuracy. Analyzing the model using LIME and 

SHAP adds the much desired benefit of providing explanations for the recommendations made by 

the trained model.

Keywords

Explainable AI; LIME; SHAP; neural networks

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any 
purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

Correspondence to: Dr. Anoop Sathyan, Department of Aerospace Engineering, University of Cincinnati, Cincinnati, OH 45231, 
USA. sathyaap@ucmail.uc.edu.
Authors’ contributions
Made substantial contributions to conception and design of the study: Sathyan A, Weinberg AI, Cohen K Training the models and 
interpretation of results: Sathyan A, Weinberg AI

DECLARATIONS
Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

HHS Public Access
Author manuscript
Complex Eng Syst. Author manuscript; available in PMC 2023 April 05.

Published in final edited form as:
Complex Eng Syst. 2022 December ; 2(4): . doi:10.20517/ces.2022.41.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


1. INTRODUCTION

In recent years, we have witnessed growth in the usage and implementation of machine 

learning based decision making and predictive analytics. Practically speaking, machine 

learning models are ubiquitous[1]. One of the reasons for this growth is the contribution 

of machine learning to their users and decision makers. In recent times, there has been 

a rise in the development of new computational infrastructures such as cloud storage 

and parallel computation[2], which has contributed to faster training of the models. Many 

papers contribute to the effort of developing machine learning models that excel in 

metrics such as accuracy, efficiency and running time. The more complex models are 

usually more accurate[3,4]. However, the ability of humans to understand it is negatively 

correlated to model complexity[5]. One of the challenges to eXplainable AI (XAI) is 

its implementation in real-life applications. XAI has inherent challenges such as lack of 

expertise, inherently biased choices, lack of resiliency for data changes, algorithms and 

problems interference challenges, local context dependency of the explanations and lack of 

causality of explanations between input and output[6]. These challenges intensify for clinical 

and medical real-life use cases such as in the breast cancer use case we consider in this 

work. In order to overcome these challenges, there is a need for a strong interaction between 

the XAI system and the decision makers. In our case, the domain experts, radiologists and 

physicians need to examine the XAI results and add their own perspectives based on their 

prior knowledge before making final decisions. In addition, they can add their feedback in 

order to improve and fine-tune the XAI system. Another way to increase the trustworthiness 

of the XAI can be synergy between different XAI approaches and algorithms. In our case, 

we use Local Interpretable Model-Agnostic Explanations (LIME) and Shapley Additive 

exPlanations (SHAP). Each of them has a different approach to extract the explanations of 

the model predictions. When both XAI approaches provide the same or similar results, it is 

an indication that the user can have higher confidence in the interpretability of the model.

To realize the immense economic and functional potential in AI applications that have 

stringent safety and mission critical requirements in areas such as healthcare, transportation, 

aerospace, cybersecurity, and manufacturing, existing vulnerabilities need to be clearly 

identified and addressed. The end user of such applications as well as the taxpaying public 

will need assurances that the fielded systems can be trusted to deliver as asked. Moreover, 

recent developments evaluating the trustworthiness of high-performing “black-box” AI have 

classified them using the term “Brittle AI”, as a retrospective look at DARPA’s explainable 

AI program. These developments coupled with a growing belief in the need for “Explainable 

AI” have led major policy makers in the US and Europe to underscore the importance 

of ”Responsible AI”.

Recently, on June 28, 2022, a group of Cruise robotaxis abruptly stopped working on a street 

in San Francisco, California, which caused traffic to stop for several hours until employees 

of the company arrived. Cruise, which is backed by General Motors and Honda, has been 

testing its technology in San Francisco since February, but only launched a commercial 

robotaxi service a week prior to this malfunction. The cars have no human driver at all but 

operate under certain restrictions (good weather and a speed limit of 30mph). They only 

offer the taxi service in a dedicated area of the city during after-hours between 10PM and 
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6AM[7]. While no one was hurt in this instance, several questions are raised concerning the 

maturity of the autonomous system technology and the need to ensure that these autonomous 

systems operate as intended. The outcome is that the public is concerned and does not trust 

such systems. In order to handle such events in future, we can find several approaches in 

literature. Some of the methods include observer fault estimation based on sensors[8], nature 

optimal control systems[9] and predictive control models[10]. All the approaches add a layer 

to the system that is supposed to detect any faulty behavior of the system. The mission in 

such cases is to translate the predictions of the control systems into a way that its operators 

and decision makers will be able to understand. The system has to provide a way to explain 

what happened and what action has to be taken by humans. This is one of the deliverables 

that XAI is supposed to yield.

According to the National Institute of Standards and Technology (NIST)[11], determining 

that an AI system is trustworthy just because all system requirements have been addressed 

is not enough to guarantee widespread adoption of AI. Moreover, according to NIST, “It is 

the user, the human affected by the AI, who ultimately places their trust in the system,” and 

furthermore, “alongside research toward building trustworthy systems, understanding user 

trust in AI will be necessary to minimize the risks of this new technology and realize its 

benefits.

In June 2022, Kathleen Hicks, Deputy Secretary of Defense, released a report that clarifies 

the DoD perspective concerning trust in AI systems as follows: “The Department’s desired 

end state for Responsible AI (RAI) is trust. Trust in DoD AI will allow the Department to 

modernize its warfighting capability across a range of combat and non-combat applications, 

considering the needs of those internal and external to the DoD. Without trust, warfighters 

and leaders will not employ Al effectively and the American people will not support the 

continued use and adoption of such technology”[12]. This paradigm shift in policy will have 

a major impact on the continued development and fielding of AI systems for DoD and for 

the safety critical systems in the civilian arenas such as health, energy transportation etc.

In line with DoD’s perspectives on trust in AI, it is important that users of AI models be 

able to assess the model, its decisions and predictions by their ability to understand it. In 

addition, for better understanding, the users would like to get answers to questions such as 

what needs to be done to change the model or its prediction. This is one of the motivations 

for the rapid growth in popularity of the paradigm called XAI. The interaction between 

machine learning models and their users has become one of the crucial points in usage and 

implementation of AI systems. Many emerging algorithms try to solve this human-machine 

interaction by providing a meaningful explanation for the model.

There are ways to classify the XAI approaches by several criteria[13] such as: model 

dependency, sample particularity, explainability timing and the interaction between the 

explanation to the model itself. More specifically, independence of the explainability of 

the model itself is called model agnostics. The explanation of the entire model is called 

global explainability, while explaining a particular sample is called local explainability. 

The position of the explainability process in model life cycle determines whether the 

explainability is pre-model, in-model or post-model.
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This paper uses two popular approaches for XAI: LIME[14,15] and SHAP[16]. Both 

are attribution-based explanation models. Attribution-based explanation models find and 

quantify the most contributed features on model predictions. In addition, both models 

are relatively easy to use, and their results can be plotted and easily interpreted. LIME 

and SHAP in our case are used as Post-hoc models, locally interpretable and model 

agnostic. Although both LIME and SHAP explain the predictions made by the trained 

model, they use different approaches. SHAP relies on Shapley values for finding the best 

contributing features[16], while LIME explains the model decision in a local region around 

a particular sample[14]. Each approach has its own benefits. Using both approaches supports 

the explainability level of our deep learning model. Using both LIME and SHAP allows us 

to compare the insights gained using the two tools. Additionally, since the two tools work 

independently of each other, the commonalities between the insights gained can be used to 

gain a better understanding of the trained model as well as how the different features play a 

role in the diagnosis/prediction.

2. XAI FOR HEALTHCARE

The implementation of XAI for increasing trustworthiness can also be found in biomedical 

studies such as drug-drug interactions prediction[17] as well as classification of protein 

complexes from sequence information[18]. In our case, we use the XAI for the 

interpretability of breast cancer predictions. The combination of the two has a fast-growing 

demand[2]. The benefits of implementing XAI in medical fields provide opportunity for 

prevention and better treatment[2]. The XAI helps clinicians in the diagnostic process as well 

as their recommendations[2]. This in turn helps the patients to trust the model results and 

system recommendations. This can also increase the probability that the patient will accept 

and follow the recommended medical treatment. Moreover, XAI can decrease the probability 

of error in the diagnostic process since it helps clinicians to focus on the relevant data and 

help them to better understand the model recommendations.

XAI is an evolving field. As mentioned before, at this current stage, even state-of-the-art 

XAI algorithms have disadvantages. In literature, we can find approaches that aim to 

improve some aspects. One of the main challenges of using XAI in healthcare environments 

is the need to remain neutral regarding preferences. We can find a bona fide approach 

called scientific explanation in AI (sXAI) that can be used in the field of medicine and 

healthcare[19]. An additional approach based on integrated Electronic Medical Records 

(EMR) medical systems is described in[20]. The approach focuses on explainability and 

interoperability from the human aspect. Ensemble of machine learning (ML) can also 

increase the level of interpretability, as can be seen in[21]. In[21], the author use ensemble of 

ML for logic driving of anthropometric measurements influencing body mass index (BMI). 

Additional evidence for the implementations of several XAI models is mentioned in[22]. The 

paper shows how integrating XAI models helps to increase the persuasive and coherence 

levels in the decision making of clinicians and medical professionals teams. The usage of 

XAI has shown an improvement in transparency and reliability in the field of neuroscience 

field[23].
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In this paper, we apply some XAI concepts to a use case applicable to the medical field. 

Our work focus on XAI implementation for breast cancer diagnostics. Our research uses 

the commonly researched UCI breast cancer dataset. We focus on breast cancer since it is 

the most common type of cancer amongst women[24]. The usage of XAI for diagnostics 

and prediction of breast cancer can impact and help a large number of patients. The UCI 

breast cancer dataset includes 569 data points[25]. Each data point consists of 32 attributes 

that include the ID number, the diagnosis, and 30 features used as predictors in this work. 

The 30 predictors include the mean, standard deviation and the mean of 3 largest values 

of 10 features: (1) radius (mean of distances from center to points on the perimeter); (2) 

texture (standard deviation of gray-scale values); (3) perimeter; (4) area; (5) smoothness; (6) 

compactness; (7) concavity; (8) concave points; (9) symmetry; and (10) fractal dimension.

3. METHODOLOGY

3.1. LIME

LIME is one of the methodologies that is used to explain the predictions made by machine 

learning classifier models[26]. It can explain individual predictions made by text classifiers 

as well as classifiers that are modeled on tabular data.

In this work, we are focusing on using LIME to explain decisions made by a neural 

network classifier that works on tabular dataset. The process of LIME to explain individual 

predictions are as follows:

1. For each instance that needs to be explained, LIME perturbs the observation n 
times.

2. For tabular data, the statistics for each variable in the data are evaluated.

3. The permutations are then sampled from the variable distributions within the 

neighborhood of the original data point for which an explanation is being sought.

4. In our case, the original model is a neural network. The trained neural network 

model is used to predict the outcome of all permuted observations.

5. Calculate the distance from the perturbed points to the original observation and 

then convert it to a similarity score.

6. Select m features best describing the original model outcome for the perturbed 

data.

7. Fit a simple model (linear model) on the perturbed data, explaining the original 

model outcome with the m features from the permuted data weighted by its 

similarity to the original observation.

8. Extract the feature weights from the simple model and use these as explanations.

3.2. SHAP

SHAP is another methodology used for obtaining explanations for individual predictions. 

Additionally, SHAP can provide additional insights into predictions made across a set 

of data points. SHAP is based on Shapely values, a concept that is derived from game 
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theory[16]. This is a game theoretic approach to explain any predictions made by a machine 

learning model. Game theory deals with how different players affect the overall outcome of 

a game. For the explainability of a machine learning model, SHAP considers the outcome 

from the trained model as the game and the input features that are used by the model as the 

players. Shapley values are a way of representing the contribution of each player (feature) to 

the game (prediction).

Shapley values are based on the concept that each possible combination of features has 

an effect on the overall prediction made by the model. The SHAP process for explaining 

predictions is as follows[27]:

1. For a set of p features, there are 2p possible combination of features. For 

example, a dataset that consists of three input features (x1, x2, x3) will have 

the eight possible combinations: (a) no features, (b) x1 (c) x2, (d) x3, (e) (x1, x2), 

(f) (x2, x3), (g) (x1, x3), (h) (x1, x2, x3).

2. Models are trained for each of the 2p combinations. Note that the model that uses 

no features just outputs the mean of all output values in the training data. This is 

considered as the baseline prediction (yϕ).

3. For the data point whose output needs to be explained, the remaining 2p − 1 

models are evaluated.

4. Marginal contribution of each of the models. Marginal contribution of model-j is 

calculated using the difference between the predictions made by model-j and the 

baseline prediction.

MCj = yj − yϕ (1)

5. To obtain the overall effect of a feature on the prediction, the weighted mean of 

the marginal contributions of every model containing that feature is evaluated. 

This is called the Shapley value of the feature for the particular data point.

3.3. Deep neural network

We use a deep neural network (DNN) to diagnose a patient into two classes: benign or 

malignant. The architecture of the DNN is shown in Figure 1. It uses the 30 features 

mentioned before to make predictions. The development and training of the DNN was done 

in PyTorch[28]. Rectified linear units (ReLU) are used as the activation functions in the 

hidden layers, and softmax activation is used at the output layer to output the probabilities to 

the two output classes.

4. RESULTS & DISCUSSION

The UCI Breast Cancer Wisconsin dataset used an 80%–20% split. This means 80% of the 

data were randomly chosen for training and the remaining 20% was used for testing. To 

highlight the data distribution, histograms are shown for three of the important input features 

in Figure 2.
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Since this is a classification problem, cross entropy was used as the loss function. Adam 

optimizer was used with a learning rate of 0.001 for training the DNN. A batch size of 32 

was used when modifying the parameters during the optimization. The DNN was trained on 

100 epochs and the trained DNN provided an accuracy of 97% on the test data. This is on 

the higher end of performance among models trained on this dataset, with the best accuracy 

noted for this dataset to be 98.6%[29]. It is to be noted that this work is not focused on 

the performance of DNN in terms of accuracy, but instead on explaining the decisions or 

predictions made by the trained DNN. The trained DNN is further analyzed using LIME and 

SHAP to understand and explain its predictions.

4.1. Results with LIME

LIME is used to explain the predictions made by the DNN on the patients (data points) 

identified in the test set. The outputs from LIME are shown for two data points from the 

test set in Figures 3 and 4. The first number above each horizontal bar refers to the index 

of the input variable. The length of each bar is proportional to the contribution factor of that 

input variable mentioned next to it. For the data point in Figure 3, inputs 21, 27 and 24 are 

the three most contributing variables that drive the prediction to malignant with contribution 

factors of 0.28, 0.22 and 0.18, respectively. There are some variables such as inputs 29, 11, 

15, etc. that try to drive the prediction to benign. However, the contributions of these inputs 

are lower for this particular data point.

For the data point in Figure 4, most of the major input contributions seem to drive the 

prediction correctly to benign. In this case, inputs 20, 6 and 22 (radius (worst), concavity 

(mean) and perimeter (worst), respectively) are the most important inputs, each with a 

contribution factor of 0.1. For these two cases, it is understood that lower values for most 

of the features indicate benign masses while higher values indicate malignancy. This is 

consistent with expert understanding of malignant masses[30]. The LIME outputs thus help 

us gain an understanding of the variables and their values that affect the predictions made by 

the trained DNN.

4.2. Results with SHAP

SHAP was also used to analyze the predictions made by the trained DNN on the data points 

from the test set. The Shapley values of each input feature can be evaluated for each data 

point. The mean of the absolute shapley values of each feature across the data can be used 

to evaluate the importance of the features. Figure 5 shows the summary plot of shapley 

values across the test data. The shapley values are plotted for the benign output class. Hence, 

higher shapley values imply higher chances of a benign prediction. The color of the points 

represents the feature values, with lower values shown by blue and higher values shown 

by red points. Overlapping points are jittered vertically. The input features are ordered in 

descending order of importance which is measured using the mean of the absolute shapley 

values across the data for feature. This can also be noticed from the fact that moving down, 

the distribution of shapley decreases.

From Figure 5, we can infer that lower values of certain features such as radius (worst), 

concave points (worst), texture (worst), etc. indicate a benign prediction. On the other hand, 
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higher values for the same features indicate a malignant prediction. This is in line with 

expert’s understanding of malignancy of breast masses as described in the UCI breast cancer 

Wisconsin database[30]. In fact, the features in this dataset are defined such that higher 

values indicate malignancy. Additionally, the SHAP summary plot also correctly identifies 

that the worst values of the different variables are more important for differentiating between 

benign and malignant masses.

SHAP dependency plots can provide additional insights about the dependency between 

features and their effect on the shapley values. For example, Figure 6 shows the SHAP 

dependency plot for the input feature texture (mean). This feature has the highest 

dependency on another input feature texture (worst) and hence is also shown in the plot. 

It can be noticed that shapley values for texture mean linearly decreases with increasing 

texture (mean). Additionally, based on the colored points, it can be seen that higher texture 

(mean) also has higher texture (worst).

As another example, Figure 7 shows the SHAP dependency plot for the feature concave 

points (mean). The feature with the highest dependency on this feature is symmetry (std). 

Again, it can be seen that the shapley values for concave points (mean) linearly decrease 

with increasing values for the feature concave points (mean). However, symmetry (std) does 

not necessarily have a linear relationship with the chosen feature, as can be seen from the 

distribution in the colors of the different points on the plot. We can see points with low and 

high values of symmetry (std) for lower values of concave points (mean).

Certain commonalities can be found between the SHAP summary plot in Figure 5 and the 

LIME plots for individual data points from Figures 3 and 4. For example, Figure 3 shows 

that higher values of texture (worst), smoothness (worst) and concave points (worst) (inputs 

21, 24 and 27, respectively) drive that data point to malignant prediction. The same can 

be noticed from the SHAP summary plot. Similarly, from Figure 4, lower values of radius 

(worst), concavity (mean) and perimeter (worst) (inputs 20, 6 and 22, respectively) drive that 

data point towards benign prediction. The same trend can be seen from the SHAP summary 

plot in Figure 5.

The above analysis suggests that explainability tools such as LIME and SHAP can be 

invaluable tools in analyzing trained models and understanding their predictions. These 

tools can help us obtain trends in the predictions from the trained models to explain the 

decisions made by the model. LIME and SHAP could be used for multi-class classification 

(with more than two classes)[31], regression[32] and other types of applications such as 

image processing using CNNs[33], etc. Since both tools have to run the trained model 

several times to produce explanations, it may not be useful for real-time explanations. The 

computational complexity of methods would depend on the computational time needed to 

make inferences. For example, larger neural networks could be more complicated to use 

as inputs to LIME and SHAP. However, they can still be a valuable tool for obtaining 

explanations for applications that do not require real-time explanations or those that only 

require explanations during certain instances.
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5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the use of two explainability tools, namely LIME and SHAP, to 

explain the decisions made by a trained DNN model. We used the popular Breast Cancer 

Wisconsin dataset from the UCI repository as the use case for our work. We presented the 

trends obtained using LIME and SHAP on the predictions made by the trained models. The 

LIME outputs were shown for individual data points from the test data. On the other hand, 

SHAP was used to present a summary plot that showed a holistic view of the effect of 

the different features on the model predictions across the entire test dataset. Additionally, 

the paper also presented common trends between the analysis results from both LIME and 

SHAP.

For future work, we plan to use these tools for other datasets, especially those with more 

than two output classes. It will be interesting to see how the results from LIME and SHAP 

analysis can help gain insights into datasets with a larger number of classes. The results 

from this paper are very encouraging to the research efforts on advancing explainability to 

deep learning based machine learning models. We also plan to make use of the abstract 

features derived within the DNN as possible input to LIME and SHAP. This may also help 

to understand the relevance of abstract features and may be useful for other aspects of 

machine learning, such as transfer learning.

5.1. Note

The Python code is available at this GitHub repository: https://github.com/sathyaa3p/

xaiBreastCancer
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Figure 1. 
Schematic of the DNN used for classification into benign and malignant. The network uses 

30 features and has three hidden layers (HL).
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Figure 2. 
Histograms for three of the important features: radius (worst), texture (worst) and concave 

points (worst)
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Figure 3. 
LIME output for a data point that is classified as malignant.

Sathyan et al. Page 14

Complex Eng Syst. Author manuscript; available in PMC 2023 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
LIME output for a data point which is classified as benign.
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Figure 5. 
SHAP summary plot on the test data for the benign output class
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Figure 6. 
SHAP dependency plot for texture (mean). SHAP: Shapley Additive exPlanations.
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Figure 7. 
SHAP dependency plot for concave points (mean). SHAP: Shapley Additive exPlanations.
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