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Abstract

Understanding how genetic variants impact molecular phenotypes is a key goal of functional 

genomics, currently hindered by reliance on a single haploid reference genome. Here, we present 

the EN-TEx resource of 1635 open-access datasets from four donors (~30 tissues × ~15 assays). 

The datasets are mapped to matched, diploid genomes, with long-read phasing and structural 

variants, instantiating a catalog of >1 million allele-specific loci. These loci exhibit coordinated 

activity along haplotypes and are less conserved than corresponding, non-allele-specific ones. 

Surprisingly, a deep-learning transformer model can predict the allele-specific activity based 

only on local nucleotide-sequence context, highlighting the importance of transcription-factor-

binding motifs particularly sensitive to variants. Furthermore, combining EN-TEx with existing 

genome annotations reveals strong associations between allele-specific and GWAS loci. It also 

enables models for transferring known eQTLs to difficult-to-profile tissues (e.g., from skin to 

heart). Overall, EN-TEx provides rich data and generalizable models for more accurate personal 

functional genomics.

In Brief:

Understanding the impact of genetic variants is important to functional genomics. EN-TEx 

provides epigenomes across tissues, coupled with long-read genome assemblies, to build 

generalizable models of variant impact.
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INTRODUCTION

The Human Genome Project assembled one representative haploid sequence 20 years ago1,2. 

Since then, many individual genomes have been sequenced3,4. Compared to the reference, 

an individual’s personal genome typically contains ~4.5 million variants5. The vast majority 

of these are in non-coding regions and are most often present in the heterozygous state6–8. 

A goal of functional genomics is to assess the impact of these variants on molecular 

endophenotypes (e.g., epigenetic activity, RNA expression, or protein levels) and relate these 

to cell, tissue, and organismal traits, including disease phenotypes9–12.

To this end, researchers have conducted many genome-wide association studies (GWAS) 

and expression quantitative trait loci (eQTL) analyses associating genetic variants with 

phenotypic traits and changes in gene expression. In particular, the Genotype-Tissue 

Expression (GTEx) project has performed RNA sequencing (RNA-seq) experiments on 

>40 human tissues from nearly 1,000 individuals, allowing for the identification of >175K 

eQTLs13–16. In complementary fashion, the Encyclopedia of DNA Elements (ENCODE) 

project was initiated to annotate functional regions throughout the human genome17–19. 

However, these studies have largely been carried out using the generic reference genome, 

not directly using the variations observed in an individual’s diploid sequence. By using a 

diploid genome, heterozygous loci can distinguish sequences from each of the two parental 

chromosomes (haplotypes) that give rise to distinct molecular signals from each (e.g, RNA 

expression or transcription factor [TF] binding). The imbalance of expression or epigenetic 

activity between the haplotypes can be accurately measured by taking the reference allele 

as a baseline, avoiding biological and technical biases. If the imbalance is significant, the 

heterozygous variant is termed allele-specific (AS). AS variants have been identified in 

numerous previous studies and are implicated in several diseases18,20–30. Note that only 

some AS variants are thought to be causal for the observed changes31,32. However, for these 
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loci, the AS experiment provides an ideal way to assess variant impact in a consistent and 

unbiased fashion33,34.

Here, to better connect personal genomes and functional genomics, we created the EN-TEx 

resource. This comprises a uniformly processed dataset of ~15 functional genomic assays, 

consistently collected from four individuals for ~30 tissues, many of them relatively difficult 

to obtain (e.g. lung). Specifically, it used two representative male and female individuals 

selected from the GTEx project for which the full battery of ENCODE assays were applied. 

These assays are coupled with long-read genome assemblies, containing comprehensive 

sets of structural variants (SVs). Compared to what was previously possible, mapping 

reads from the assays directly to diploid genomes allows for more precise quantification of 

differential expression and regulatory-element activity and for directly visualizing the impact 

on chromatin of single-nucleotide and structural variants (SNVs and SVs, respectively). 

Moreover, the uniform nature of the dataset makes possible more precise ascertainment 

of inter-individual vs. inter-tissue differences, and the scale of the resource enables the 

creation of the largest catalog of non-coding AS variants, an order-of-magnitude beyond 

what was available previously. We leveraged this catalog to build generalized models of 

variant impact. In particular, we created a model that predicts the AS imbalance resulting 

from a SNV just from the extended sequence context around a site (i.e., within a ~250 

bp window). It highlights the importance of ~100 key TF motifs we term AS-sensitive. 

Finally, we can relate the EN-TEx resource to external genome annotations -- eQTLs and 

regulatory elements already known for the human genome. We built generalized models 

that transfer eQTLs from a source tissue to a different target one, leveraging the fact that 

EN-TEx represents a uniform collection of epigenetics data in hard-to-obtain tissues. This 

is practically quite useful given it is typically much easier to measure eQTLs in blood 

than other tissues, such as the heart, especially when using large cohorts of individuals. We 

also show that data from the EN-TEx resource can “decorate” existing regulatory elements, 

identifying subsets that are much more highly enriched with eQTL and GWAS SNVs than 

had been previously possible and illuminating broad relationships between conservation, AS 

activity and tissue-specificity.

RESULTS

Uniform Multi-tissue Data Collection & Diploid Mapping

We sequenced and phased the genomes of four GTEx individuals (identified as 1 through 4) 

using various complementary sequencing technologies (i.e., short-read Illumina, linked-read 

10x Genomics, and long-read PacBio and Oxford Nanopore; STAR Methods “Data Stack” 

Section). After identifying SNVs, small insertions and deletions (indels), and SVs, we 

phased the haplotypes of the assembled genomes using linked-reads and proximity ligation 

sequencing (Hi-C; Data S2)35. This step generated long sequence blocks of phased variants 

extending across each chromosome, forming diploid personal genomes for each of the four 

individuals (Figure 1). The paternal/maternal origins of many of the phased blocks were 

determined by comparing the AS expression levels with known imprinted loci (Figure 1B 

and Data S2G–H; STAR Methods “Personal Genome” Section).
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We identified ~18K SVs in each of the four individuals (>50 bp in length; Figure S1D and 

Data S15; STAR Methods “SVs” Section). The SVs tended to be depleted in most functional 

regions (e.g., genes and enhancers) and to have typical allele-frequency spectra, consistent 

with previous findings36,37.

In parallel, we carried out 1,635 experiments from ~15 different epigenome, transcriptome, 

and proteome assays on ~30 tissues obtained from each of four individuals (i.e., 13 core 

assays -- including ChIP-seq, ATAC-seq, DNase-seq, methylation arrays, short-read RNA-

seq -- and several additional ones -- including whole-genome bisulfite sequencing [WGBS], 

Hi-C, eCLIP, and labeled proteomic mass-spectrometry; Figures 1A and S1A; STAR 

Methods “Data Stack” Section). This significantly expanded upon the assays available 

from GTEx using ENCODE technologies (STAR Methods “Sample Selection” Section). 

The data, analysis and software tools from the project are all open access, with everything 

being directly available from the EN-TEx portal (entex.encodeproject.org, Details in STAR 

methods “Portal” Section).

All datasets in the EN-TEx resource were processed using the phased diploid and reference 

genomes, giving rise to three mappings and three corresponding signal tracks for each 

assay (maternal and paternal haplotypes and the reference; Figure S1C and Data S2–4). 

Overall, we found ~2.5% more reads mapped to the personal genomes than the reference 

(for strict mapping criteria; Figure S1C; STAR Methods “Reference Comparison” Section). 

This mapping had a measurable effect (>2 fold) on the expression levels of >200 genes 

across all four individuals. This change is a conservative estimate but still comparable 

in magnitude to the number of differentially expressed genes often found in comparing 

between healthy and disease states (Figure S2A and Data S5; STAR Methods “Reference 

Comparison” Section)38–41. A similar fraction of cCREs, candidate cis-regulatory regulatory 

elements, exhibited a significant change in activity levels when using the personal compared 

to the reference genome (specifically, comparing the H3K27ac level on ENCODE cCREs; 

Figure S2B and Data S5)17.

Because of its uniform data collection and processing, EN-TEx provides an ideal platform 

to consistently measure inter-individual, inter-tissue, and inter-assay variability (Figure S2C 

and Data S6). In particular, we can explore all the sources of variation to place each 

EN-TEx sample in a high-dimensional space. It is readily apparent, as expected, that 

inter-individual variation is less than inter-tissue variation (e.g. in H3K27ac), which is 

less than inter-assay variation (e.g. comparing H3K27ac to H3K4me3). Finally, for the 

specific situation of comparing between tissues, the EN-TEx resource allows us to determine 

inter-tissue differences with greater accuracy than for equivalent data not matched across 

individuals (Details in Figure S2D and Data S6N–O).

Large-scale Determination of AS SNVs & Construction of the AS Catalog

We investigated AS behavior on a large scale using EN-TEx. For most assays, we performed 

these calculations uniformly using a standardized pipeline that dealt with various technical 

issues such as the reference and ambiguous mapping biases (Data S7 and STAR Methods 

“AS Calling” Section)18,19,22,42–45. Overall, we ran the pipeline on ~1,000 samples (31 

tissues, 12 assays, and four individuals). On average, we detected ~800 AS events at 
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SNVs in each sample, representing about ~4% of the total number of accessible SNVs 

(Figures 1C and S3A–D). (An accessible SNV is a heterozygous SNV with sequencing 

depth sufficient to detect AS behavior.) We were also able to group together the AS SNVs 

within a genomic element together to determine its overall AS status; on average, we found 

~200 “AS elements” in each sample.

We had to use a more specialized approach for some of the assays, in particular, WGBS, 

Hi-C, and mass-spec proteomics. For instance, for Hi-C, we constructed haplotype-resolved 

contact matrices and then identified haplotype-specific AS interactions (Data S10C). 

Overall, per sample, we found ~0.5M AS interactions out of a total of ~6.5M Hi-C 

interactions (Data S10D). We also identified AS peptides exhibiting significant imbalance, 

corresponding to 696 unique genes (STAR Methods “AS Calling” Section).

After determining the AS SNVs in each sample, we combined them across all tissues, 

individuals, and assays (Figure 1C or S3C). We used two different combining strategies for 

the catalog: (i) individually determining AS imbalance (i.e., “calling”) separately on each 

tissue (or assay) and then taking the union of the calls or (ii) pooling the reads across 

tissues (or assays) and then jointly calling. We found, in fact, that pooling across tissues 

dramatically increased our detection power (by ~5X), making it possible to identify ~27K 

AS SNVs for an assay in an individual (for RNA/ChIP/ATAC assays; Figure 1C and S3A–D; 

STAR Methods “Aggregation” Section). We then combined the AS SNVs across assays and 

found ~365K AS SNVs per individual (now including WGBS and DNase). Finally, when 

we combined these data across all four individuals, we reached a total of about ~1.3M AS 

SNVs, which constitutes our AS catalog (with 516K coming from RNA/ChIP/ATAC assays; 

Figure 1C and S3A–D).

The AS catalog has several key aspects. First of all, it is much larger than previous 

collections of AS chromatin events (STAR Methods “AS Catalog” Section)22,28,46. 

Moreover, we estimated that the AS SNVs detected in the four EN-TEx individuals cover 

76% of common AS SNVs in the European population, suggesting that the catalog includes 

a majority of the AS events at common SNV loci in Europeans (STAR Methods “AS 

Catalog”). In addition to the common AS variants detected, some AS sites correspond to rare 

SNVs: in total, we found that 63K of the 1.3M AS variants were rare (STAR Methods “AS 

Catalog”). We were also able to cross-reference these rare SNVs with known pathogenic and 

deleterious variants, including 14 in ClinVar (STAR Methods “AS Catalog” Section)47.

Because of its size, we can leverage the catalog to determine AS SNVs in an entirely new 

sample with increased sensitivity (Data S12). In addition, using a related strategy, we can 

develop alternate, “high-power” AS assignments from joint calling across samples (Data 

S13). A final key aspect of the AS catalog is that most variants are in noncoding regions 

of the genome and are determined using non-RNA-based assays. In fact, only ~2.5% of the 

AS variants in the catalog are uniquely detected by RNA-seq, and 95% are only detected by 

assays other than RNA-seq (Data S8B–C).
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Examples of Coordinated AS Activity, involving SNVs & SVs

Using the catalog, we found several examples of coordinated AS activity across different 

assays. First, we surveyed known imprinted loci, finding that AS activity is fairly consistent 

across tissues (Data S9B and S2H). A good illustrative example is the classic case of 

IGF2 and H19. As expected, in several tissues, we observed that H19 is expressed only 

maternally, and IGF2, only paternally, due to AS CTCF binding at the imprinting control 

region (Figure S4A)48. Moreover, haplotype-resolved Hi-C showed that, on the maternal 

haplotype, a cCRE upstream of H19 interacts with this gene but not with IGF2. In contrast, 

on the paternal haplotype, the same cCRE only interacts with IGF2, suggesting a potential 

mechanism for the locus.

A second illustrative example shows the coordinated activity over chromosome X. On 

this chromosome in females, we observed gene expression, active histone marks, POL2R 

and CTCF binding all skewed toward one haplotype, with repressive marks biased to 

the other (Figure 2A and Data S14). There are notable exceptions, including genes in 

pseudoautosomal regions and documented “escaper” genes (e.g., DHRSX and KDM6A, 

respectively)49. The imbalance in the active chromatin mirrors well what is observed in 

the RNA-seq. In addition, haplotype-specific Hi-C manifested great differences in AS 

interactions on chromosome X at some loci (e.g., XACT; Data S14G and STAR Methods 

“AS Examples” Section). Interestingly, across many tissues, we find a consistent skew in 

X-chromosome imbalance, in line with recent findings that X-inactivation is completed prior 

to the specification of the germ layers (Data S14A–F)50.

A third example that demonstrates coordinated AS activity is DNAH11, a gene associated 

with ciliary dyskinesia (OMIM #611884; Figure 2B). We observed AS methylation in 

the promoter regions on the opposite haplotype to the AS expression and H3K4me3 and 

H3K27ac activity, consistent with transcriptional downregulation.

For SVs as opposed to SNVs, we found many specific examples of variants impacting 

chromatin and nearby gene expression in an AS fashion. For instance, Figure 2D shows a 

well-supported example: a heterozygous deletion, overlapping a known SV eQTL, removing 

an activating region, and a matching decrease in expression of a nearby gene (specifically, 

an H3K27ac peak near ZFAND2A51). Figure 2E shows a similar example: a heterozygous 

deletion removing an activating region near PSCA. Here, the deletion is not known to be 

associated with an eQTL but has a similar allele frequency to nearby eQTL SNVs and 

thus might represent the causal variant associated with them. On average, we identified 

~300 potential SV eQTLs in each individual (STAR Methods “SVs” Section; Figure S4C 

and Data S17G–J show additional examples and SV-eQTL associations; Data S17N–O 

shows related examples for homozygous events; Data S17M shows examples of whole-exon 

deletions).

Figure S4B shows an SV removing a likely repressive region in an intron of PCCB (a 

H3K9me3 peak). Moreover, this SV is adjacent to several GTEx splicing QTL (sQTL) sites, 

and long-read RNA-seq indicates that both individuals have different splice isoforms near 

the SV (Data S17K). Notably, the EN-TEx resource enables direct comparison between SVs 

and their impact on transcript structure, with both determined by long-read sequencing.
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Overall, we found that the SVs were distributed over the diploid genome unevenly with 

different associations with the chromatin from different haplotypes and that a significant 

fraction of genes with AS expression were associated with nearby SVs or indels (1.5% for 

SV deletions and 13.6% for small deletions; Figure 2C–E, Data S16, and Data S17A–B). 

Furthermore, many of these expression changes were also coupled to chromatin changes, 

as expected52. In particular, we assessed whether chromatin significantly changes around 

heterozygous SVs by calculating a “disruption score” (Figure 2F and Data S18A). We found 

that transposable element (TE) insertions were associated with a reduction in nearby open 

chromatin (compared with non-TE ones). We observed similar results when comparing the 

chromatin near SVs between EN-TEx individuals (both heterozygous and homozygous SVs; 

Data S18B–D). These results agree with findings that cells repress active chromatin to 

suppress TE expression53–55.

Application 1: Decorating ENCODE Elements with EN-TEx Tissue & AS Information

Up to this point, we have focused on the four EN-TEx individuals; now we turn to 

leveraging the resource to create generalized knowledge beyond them, broadly applicable 

in many contexts. We demonstrate 3 applications, focused on predictive modeling of AS 

behavior and approaches to “decorating” existing genome annotations.

The ENCODE encyclopedia annotations were constructed using a disparate collection of 

cell lines and tissues; they are also devoid of variant annotations. We can layer the results 

from EN-TEx onto these annotations, consistently “decorating” them and extending their 

utility. In particular, we can combine them with the AS catalog, highlighting subsets 

exhibiting AS activity (Data S19A–B). Next, for each EN-TEx tissue we determined 

consistently whether each ENCODE element is active, repressed, or bivalent (Figure 3A 

and Data S19C; STAR Methods “Decoration Process” Section). Overall, 97% of the ~1M 

cCREs in the ENCODE encyclopedia can be decorated, and we validated our decorations 

using data from other studies with tissuematched Hi-C (Data S21).

Given our decoration strategy, we used a straightforward approach to measure tissue-

specificity, which can be consistently applied to many different types of annotations (STAR 

Methods “Tissue Specificity” Section). Briefly, the tissue specificity of a given annotation 

subset (e.g., gene-proximal cCREs) is the fraction of elements active in only one tissue 

(Figure 3B and Data S22; STAR Methods “Tissue Specificity” Section). As expected, by 

this measure, only a small percentage of protein-coding genes were tissue-specific (~8% 

by either RNA-seq or mass spectrometry)56,57; in comparison, pseudogenes, lncRNAs, and 

active regulatory elements exhibited higher tissue specificity (Figure 3B and 3C). More 

notably, AS genes and regulatory elements were more tissue-specific than the corresponding 

non-AS ones (Figures 3B and S5B). Moreover, we observed that unlike many genomic 

elements that mostly fall into two distinct categories, tissue-specific or ubiquitously active 

(giving rise to the characteristic “U-shaped” histogram in Figure 3D), AS elements are only 

tissue-specific for many different assays (an “L-shaped” histogram). (They are also depleted 

in “housekeeping behavior”; Data S22J and S23D–G). Finally, for the few elements that 

are AS across all available tissues, we found the haplotype direction of the AS imbalance 

to be consistent (23 AS cCREs and 20 AS genes; Figure 3F, Data S22G–I, and STAR 
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Methods “Tissue Specificity” Section)58. This finding, plus the fact that we did not observe 

many loci where the imbalance direction flipped across tissues, supports our joint-calling 

and aggregation strategy for identifying AS events (Figures 1C and Data S3A–D; STAR 

Methods “Tissue Specificity” Section).

We examined the relationship between tissue specificity and conservation (Figures 3B and 

3C). Notably, we found for active annotations, those with higher tissue specificity had lower 

purifying selection and for repressed annotations, the opposite trend (Figure 3C). Consistent 

with previous studies, we found that AS elements are under less purifying selection 

than non-AS ones (Figure 3B and Data S23D–G)22,28,43,59. Conversely, we detected an 

increase in purifying selection for loci AS in more than one assay (e.g., methylation and 

histone modifications), perhaps reflecting their greater functional importance (Figure 3E). 

In summary, we found that loci demonstrating more activity across tissues, haplotypes, or 

functional assays showed increased conservation.

Next, we analyzed the relationship between decorated regulatory elements and eQTL and 

GWAS SNVs. First, we found that AS elements produced significantly better GWAS 

enrichments for disease traits (compared to an appropriate baseline, Figure 4A–B and Data 

S25A–B; STAR Methods “Decoration Enrichments” Section). In particular, we found that 

the subsets of tissue-specific cCREs that were AS showed substantially greater enrichment 

than those not AS. For example, cCREs that exhibited AS activity in the coronary artery 

had higher enrichment for cardiovascular-disease GWAS SNVs as compared to non-AS 

ones60–63. Also, for immune-associated traits, we found that enriched AS cCREs manifest 

better specificity for their biologically relevant tissue compared to non-AS ones (Figure 4B, 

showing spleen, and Data S25F).

Finally, we systematically estimated the enrichment of eQTL and sQTL variants in cCREs 

active in the matched tissue type (Figure 4C and Data S24A). The enrichment was 

considerably stronger than previous studies and showed greater magnitude for proximal 

vs distal cCREs, especially, as expected, for sQTLs (Data S24C)64. As we did for GWAS 

SNVs, we compared eQTL/sQTL enrichment in AS elements with non-AS ones, finding 

substantially higher enrichment in AS subsets (Figure 4C). For distal active cCREs, the AS 

subset showed stronger enrichment across all tissues, with some tissues showing especially 

large increases (>2X change in enrichment, for cCREs containing CTCF binding sites).

Application 2: Relating AS SNVs to GTEx eQTLs & Modeling eQTLs in Hard-to-obtain 
Tissues

Another analysis we could do with GTEx eQTLs is to directly relate them to nearby AS 

activity. First, we analyzed the association of an eQTL with the AS expression of its target 

gene: as expected, a positive correlation is evident with eQTL effect size, providing an 

additional confirmation for the eQTL (Figure 4D). Next, we directly relate eQTL effect with 

the AS imbalance in promotor chromatin at the eQTL SNV (Figure 4D and Data S26A–C). 

The association here is more direct and provides a way to help prioritize putative causal 

variants among GTEx eQTLs, in line with previous findings (Data S26B–C; also see Figure 

S6A and Data S27A for a related, but alternate, approach)65. Finally, to complete the “triad” 

of comparisons, we interrelated the AS activities in both the promoter and the associated 
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gene (Figure 4D). Here, we found quantitative agreement for the magnitude and direction of 

the AS imbalance over many different epigenetic and proteomic assays (with an associated 

list of strongly compatible gene-promoter pairs, STAR Methods “Compatibility” Section; 

Figure S5D). As expected, we observed negative correlations for repressive marks and DNA 

methylation and positive correlations for the many different active chromatin modifications 

(e.g., H3K27ac; Figure S5D and Data S26A–C).

The above correlation between AS activity and eQTLs is an example of how the EN-

TEx resource can be integrated with external annotation. This integration can go further: 

because EN-TEx includes ChIP-seq data from hard-to-obtain tissues (e.g., heart), which is 

comparatively more difficult to obtain than RNA-seq data, we can use it to extend existing 

eQTL annotations to additional tissues.

We start with the observation that eQTL SNVs have stronger chromatin signals in the 

tissues in which they are active than in the tissues in which they are not, suggesting that 

the chromatin around an SNV may influence its chance of being an eQTL in a particular 

tissue (Figure S6B and Data S27B). Then, by combining the EN-TEx chromatin data and 

the GTEx eQTL catalog, we developed a random-forest statistical model that transfers the 

activity of an eQTL from a given donor tissue to another target tissue by considering the 

EN-TEx chromatin profile in the target (e.g., from skin to tibial artery; Figures 5A and S6C). 

Overall, when compared with known GTEx eQTLs, our predictions are highly accurate, 

independent of which donor or target tissues are employed (0.86 balanced accuracy; Figure 

5B and Data S28C–D). Our model tends to transfer stronger GTEx eQTLs to the target 

(Figure 5C); conversely, it also identifies “likely” eQTLs, not quite reaching the “official” 

GTEx significance threshold (probably due to sample size) but still achieving greater 

significance than those not transferred.

We further validated our model, trained on GTEx, against other eQTL catalogs66. In 

particular, it correctly identified >75% of the eQTLs reported in catalogs for pancreas, 

skeletal muscle, and skin (Figure 5D). Finally, to showcase the value of our approach 

to enhance existing eQTL catalogs, we applied it to a set of 1.5M blood eQTLs from a 

large-cohort study; we were able to transfer up to 60% of these, enhancing the GTEx catalog 

with ~500K new candidate eQTLs per tissue (Figure 5E and Data S28F–G)67. Note the 

utility of this application: up to now, large-cohort, high-power eQTLs studies so far have 

been conducted mostly on a few readily available tissues, such as blood or skin67; the 

uniformly collected EN-TEx chromatin data allow us to leverage these existing annotations 

to other, more difficult-to-secure tissues.

Finally, we evaluated the relative contribution of the different genomic features to the model 

(Figure 5F and Data S29A). We found that we could get most of the predictive accuracy 

from a core model using four histone modifications (H3K36me3, H3K27ac, H3K4me1, 

H3K27me3, and some non-chromatin features; Figure S6E). Moreover, as expected, we 

found that SNVs with observable chromatin activity, especially H3K36me3, were more 

likely to be transferred. We observed the opposite for SNVs associated with genes that are 

highly tissue-specific or have distant transcription-start sites (Figure 5F and Data S29A). 

Given this, we can summarize the main features of our model in a simple heuristic: we can 
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likely transfer an eQTL if it has high chromatin activity in the target tissue or its associated 

gene is not tissue-specific; if neither of these conditions is met, the transfer is probably not 

possible (Figure 5G and Data S29B).

Application 3: Modeling AS Activity from Variant Impact on the Nucleotide Sequence, 
Highlighting “Sensitive” TF Motifs

In our final application, we model the likelihood of a heterozygous variant to cause AS 

behavior. In particular, the ability of an SNV to disrupt a TF-binding motif suggests a 

direct relationship to the AS imbalance for a sequence-specific TF. Furthermore, given the 

importance of TFs in modulating open and closed chromatin, there is also a relationship, 

though less direct, to AS histone modifications. To study this, we cross-referenced all the AS 

sites in the EN-TEx ChIP-seq data with the 660 known human TF motifs and then ranked 

the motifs based on enrichment of AS SNVs (Figure 6A and STAR Methods “Sensitive 

Motifs” Section)68. Overall, we identified 195 TF motifs that were significantly enriched in 

AS SNVs and selected further a “top 100” subset (using a logical cutoff, which was robust to 

tissue selection, Figure S7A and Data S30; STAR Methods “Sensitive Motifs” Section).

These top-ranked motifs represented TF binding sites particularly “sensitive” to mutations 

and more likely to give rise to AS behavior. They were enriched in C2H2 zinc-finger 

motifs (e.g. FOXO3 and ZNF460; Figure 6A). In contrast, the bottom-ranked, least-sensitive 

motifs were more likely to have a homeobox domain (e.g. DLX5). FOXO3, in particular, 

represents well how AS SNVs affect the zinc-finger motif: the AS SNVs occurred mostly 

at a single distinct nucleotide positions known to modulate binding, while non-AS SNVs 

occurred more uniformly (STAR Methods “Sensitive Motifs” Section)69. For many motifs, 

the enrichment associated with activating and repressive histone marks followed opposite 

trends (e.g. MYRF). Additionally, we found that the enrichment in AS SNVs anti-correlates 

with the conservation of the motif regions in the genome but is not correlated at all with 

a motif’s sequence complexity (i.e., “PWM entropy”; Figure 6B and Data S30A–I; STAR 

Methods “Sensitive Motifs” Section). The finding that AS-sensitive sites are less conserved 

dovetails with our earlier finding in Figure 3B that AS elements tend to be less conserved.

We next investigated how variants affecting motifs for AS-sensitive TFs relate to their effect 

on the expression of the downstream gene. To do this, we built simple statistical models 

connecting the presence of TF motifs to the AS activities of a gene and its associated 

promoter (specifically, in terms of AS expression and histone modification; Figure 6C 

and Data S31B–F). Simple statistics revealed that the promoter-target-gene relationship for 

AS activity is more nuanced than one might expect (Figure S7B and Data S31E); the 

complexity potentially results from alternative distal regulation or redundancy of regulatory 

sites. Nevertheless, we could construct successful models for AS promoter activity (cross-

validated AUROCs of 0.81 on the EN-TEx individuals and 0.88 on external validation data; 

Figure 6C and Data S31A; STAR Methods “AS Promoter” Section). Given that RNA-seq 

data is much more readily available than ChIP-seq data, the model can be applied in a 

practical context, e.g., to predict AS promoter activity throughout the 838-individual GTEx 

cohort, using just RNA-seq data and genotypes (STAR Methods “AS Promoter” Section).
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Remarkably, successful models for AS promoter activity needed few features. The most 

important ones were the number of AS-sensitive TF motifs in the promoter (overlapping 

or nearby to the central AS SNV), underscoring the importance of variants impacting these 

motifs. Other relevant features, but of secondary importance, were the occurrence of any 

TF motif (sensitive or not) distal to the SNV, and the AS expression imbalance of the 

downstream gene (Figure 6C and Data S31B). Interestingly, features that one might have 

expected to be important -- including the overall expression level of the gene or the eQTL 

status of the SNV in the promoter -- were not informative (Data S31D). Related to how the 

AS-promoter model highlighted the importance of AS-sensitive motifs, we also found an 

over-representation of TF motifs, particularly AS-sensitive ones, in the decorated subsets of 

cCREs enriched with eQTLs, discussed earlier (Figure 4C and Data S30J–K). This suggests 

AS sensitive motifs are key in driving the expression differences between alleles observed in 

eQTLs.

The impact of SNVs on AS-sensitive TFs implies that we may be able to predict whether 

an SNV would be associated with AS behavior by whether it overlaps such a motif. To 

investigate this, we built a simple model to predict whether an SNV would be AS for CTCF 

binding based on whether it overlapped with a CTCF motif in regulatory regions (STAR 

Methods “Transformer Model” Section); this “strawman” model had only slight predictive 

performance (Figure 7B). We then surmised that we could achieve better performance by 

including sequence context surrounding the CTCF motif. To do this, we built progressively 

more complex models, culminating in a deep-learning transformer model that took into 

account the sequence in a 250-bp window around the SNV (using DNABERT70; Figure 

7A and STAR Methods “Transformer Model” Section). The transformer model achieved 

surprisingly good performance (0.69 cross-validated AUROC using EN-TEx samples, for 

predicting whether or not an accessible SNV for CTCF binding in any tissue would be AS, 

purely based on the sequence characteristics of the surrounding window; Figure 7B). We 

were also able to build similar models for POLR2A and various histone marks (Figure S7 

and Data S32A). For H3K27ac, we validated our model, trained on EN-TEx, on an external 

dataset (0.74 AUROC; Figure 7B and Data S32B). Our transformer model predicts whether 

an SNV would be AS in a tissue-independent fashion. We next tried to enhance it in a 

tissue-specific fashion, by including additional epigenetic information; this only marginally 

improved the model, underscoring the overwhelming importance of sequence context in 

assessing the impact of a variant (Figure 7C).

To better understand the sequence context that gives rise to AS behavior, we explored one 

characteristic of transformer models: they direct attention to specific sequence positions, 

often corresponding to known motifs. An example is shown in Fig 7D; one can see the 

attention paid to the CTCF motif at the center, and many other locations with known 

motif clusters are also flagged as important. The attention score from the model averaged 

over many positions clearly shows that it is more focused on the central SNV than other 

“control” models. This averaged attention score is ideal for comparing to motif occurrence: 

as expected, we observed a central enrichment for CTCF, but we also saw an enrichment for 

other TF motifs, such as SP1 (Figure 7EF and Data S32ACF; also, see Figure S7DE and 

Data S32ADE for analogous results for additional ChIP-seq datasets). In this way we can 
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partially “re-discover” the key motifs highlighted in Figure 6 by a completely different route 

(Figure S7B).

DISCUSSION

The main contribution of EN-TEx is the creation of a readily accessible resource of personal 

epigenomes and the corresponding annotations, decorations, and models. We envision the 

resource enabling additional analyses outside of the scope of discussion here. Vignettes of 

methylation data related to aging or the cross-tissue epigenetics of genes associated with 

COVID-19 provide hints of what is possible (Data S34).

A key aspect of EN-TEx is that it can be easily connected with other human-genome 

annotation resources, potentially extending them. In particular, by training on the GTEx 

eQTL catalog, we were able to build a model that can transfer eQTLs from an easily 

obtained tissue to ones harder to get. With this approach, we leverage the fact that EN-TEx 

represents a uniform collection of epigenetics data from hard-to-obtain tissues. We also 

show that EN-TEx can decorate the ENCODE regulatory elements to give a unified view 

of tissue specificity and conservation and provide subsets of elements that are particularly 

enriched in GWAS variants. We imagine that in the future, EN-TEx could connect with and 

extend other genomic resources beyond ENCODE and GTEx, such as the recently initiated 

IGVF project (IGVF.org).

The second aspect of EN-TEx is that we can leverage the scale of the AS catalog to develop 

models illuminating the biological impact of variants. These models suggest that the local 

sequence context around a variant is the dominating factor in determining its impact, with 

certain TF motifs being particularly sensitive to mutations. That said, it is not just the TF 

motif right at the SNV position that is relevant, but the surrounding sequence (within a ~250 

bp window). This suggests that determining whether a particular site is AS may have to do 

with other, potentially interacting, TFs binding nearby. For instance, a particular TF-binding 

site could be stabilized from mutational impact (and AS behavior) by being one of the many 

DNA-binding sites of a large hetero-oligomeric complex. Alternatively, redundant binding 

sites for a single factor may act as “backup” against the effects of one mutation71; the 

concept of “buffering” posits a mechanism for this26.

A final contribution of EN-TEx is demonstrating how the diploid genome is important for 

future human functional genomics. In particular, we show that diploid genomes provide 

more accurate quantification of differential expression and regulatory activity, which is 

essential for disease studies72. Furthermore, the matching of individuals and tissues in 

EN-TEx allows a precise ascertainment of the relative contribution of inter-tissue and 

inter-individual variation. We envision that in the near future, with the decreased cost of 

sequencing, generating a matched personal genome sequence as an accompaniment to each 

functional genomics experiment will become the norm. Thus, the EN-TEx personalized 

epigenomics approach for analyzing the impact of genome variation will necessarily become 

commonplace, potentially providing benefits for precision medicine72.
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Limitations of the Study

A key limitation of EN-TEx is that only four individuals were profiled. Due to this, we 

are not statistically powered to compare the activity of elements between individuals. That 

said, the EN-TEx approach could be straightforwardly scaled up to larger cohorts. An 

aspect of this scaling would be the characterization of rare variants. Although the four 

individuals were considered healthy, their genomes contain many rare variants, including 

some potentially deleterious. These are not normally accessible to traditional QTL studies, 

which are mostly targeted to common variants. In contrast, our AS analysis and models 

can provide information on rare variants, and, in this regard, the EN-TEx resource is 

particularly informative to precision medicine. Moreover, if the approach piloted by EN-

TEx were scaled up to more individuals in the future, it would provide a commensurate 

amount of information on additional new rare variants. This situation contrasts with common 

variants, where increasing the cohort size would provide diminishing amounts of additional 

information (STAR Methods “AS Catalog” Section).

A second limitation of EN-TEx is that due to the many functional assays and tissues used, 

it was not feasible to do technical replicates for each experiment; only a few tissues and 

assay combinations were replicated (see STAR Methods “Sample Selection” Section). The 

absence of replicates limits the utility of the differential expression and comparison of 

element activity between the personal genome and the reference. This limitation could be 

addressed in the future by more replicated experiments.

STAR METHODS

Resource availability

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, Mark Gerstein (mark@gersteinlab.org).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• All data contained in the EN-TEx resource are fully open-consented and 

accessible without registration as of the date of publication. Raw sequencing 

data as well as other standard functional genomics data have been deposited at 

a special page on the ENCODE data center, linked from the EN-TEx portal. 

Accession numbers are listed in the key resources table or in the supplementary 

data. Additional ancillary files are available directly on the EN-TEx portal: http://

entex.encodeproject.org. The portal is organized into three organized sections: 

(i) data files, (ii) interactive visualization tools, and (iii) source code. For more 

details, see “Portal” Section of the STAR Methods.

• All original code has been deposited at Github and is publicly available as of the 

date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.
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Experimental Model and Subject Details—N/A

Method details

Sections within the STAR Methods are referenced from the main text using the abbreviated 

section headings. We also indicate the relevant main text sections and figures that each of 

these STAR Methods sections are related to.

Sample Selection: Details of the EN-TEx Samples and their Relationship with ENCODE 

and GTEx (related to “Uniform Multi-tissue Data Collection & Diploid Mapping” in the 

main text, Figures 1A and S1A)

The EN-TEx project (ENCODE assays applied to GTEx samples) has an intricate 

relationship with both the ENCODE and GTEx projects. Originally, the four individuals 

for the EN-TEx project were drawn from the main GTEx cohort. Two males and two 

females were chosen with a representative age distribution (ENCODE accession numbers: 

ENCDO845WKR, 37-year-old male; ENCDO451RUA, 54-year-old male; ENCDO793LXB, 

53-year-old female; and ENCDO271OUW, 51-year-old female; the corresponding 

GTEx accession numbers are GTEX-1JKYN, GTEX-1K2DA, GTEX-1LGRB, and 

GTEX-1LVAN). The other key criterion was that these individuals’ data would be fully 

open access. This separates them from the consent criteria used for the GTEx cohort. This is 

non-trivial to obtain and requires a reconsenting process.

The EN-TEx tissues were chosen based on donor availability. The goal was to collect all, 

or as many as possible, of the exact same tissues collected for the GTEx protocol73. Note 

that the project specifically targeted organ transplant donors on ventilators, which excluded 

the collection of brain tissues, but increased the quality of the non-brain tissues due to 

much shorter collection and ischemic times. As described in74, not all tissues could be 

collected from all donors, since some were donated for tissue or organ transplant prior to the 

collection of tissues for research.

A full battery of ENCODE assays were applied to the tissue specimens from each of these 

four donors. The assays were mostly derived from ENCODE 3 and followed these standards 

to be consistent with the other ENCODE 3 datasets. However, a few follow-on datasets 

have been added to the collection, particularly related to histone marks and long-read RNA 

sequencing, that follow ENCODE 4 rather than ENCODE 3 standards. Based on sample 

availability, a few tissues were done with technical replicates but most were not. None of the 

EN-TEx datasets have been described in a publication, including the ENCODE 3 publication 

in 202075.

As the EN-TEx individuals were drawn from the main GTEx cohort, they were included in 

the GTEx publication. In that publication, the tissues were subjected to the standard GTEx 

assays, including short-read DNA sequencing of the blood and short-read RNA sequencing 

(polyA) also of the blood and a number of other tissues. These standard GTEx assays have 

data that are under different consent from the ENCODE data. For EN-TEx, in concert with 

the GTEx project, an Institutional Review Board-approved consent form was written and 

given to the next-of-kin of each donor. The consent form allows for unrestricted access to 
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data collected as part of the EN-TEx project, including unrestricted use of the primary data 

and metadata collected from each donor. It was made clear that although no identification of 

the donor or family constituted part of these data, it is within the realm of possibility that 

individual identification could be made.

Specific details of the consent document are contained here: https://www.genome.gov/Pages/

Research/ENCODE/GTEx_Consent_ENCODE_addendum_10-9-14.pdf. The GTEx consent 

requires users to undergo a dbGaP registration process to access the associated GTEx data. 

The GTEx data for these individuals is separately available on the GTEx website (https://

gtexportal.org/home/).

For the EN-TEx individuals, there are a wealth of interesting technical comparisons possible 

between the standards of the GTEx and ENCODE projects, and also between two different 

versions of short-read DNA sequencing. However, the bulk of the assays and the focus 

of this paper are on the non-published data derived from the ENCODE assays, which 

includes the long-read DNA sequencing and all the chromatin and epigenetics assays, 

which are not part of the standard GTEx assays. As part of the standard GTEx cohort, 

these individuals fit perfectly into the expression quantitative trait loci (eQTL) calculations 

done by GTEx and allow us to match the eQTLs to the EN-TEx allele-specific (AS) 

catalog. Because we have ENCODE assays for all the individuals, we can also perfectly 

match the ENCODE regulatory elements, particularly the candidate cis-regulatory elements 

(cCREs). However, the decoration applied to the EN-TEx individuals goes beyond the cCRE 

annotation described in ENCODE 3, which only included active elements as opposed to 

repressed or bivalent ones.

The raw data for the ENCODE part of the EN-TEx are housed in the ENCODE data center; 

the GTEx part is on the GTEx portal. All of this is indicated on the EN-TEx portal. In 

addition, the EN-TEx portal has a large amount of supplementary analysis and software, all 

freely available, that are associated with this publication. The EN-TEx assays and analyses 

were funded by the National Human Genome Research Institute (NHGRI) using ENCODE 

funds. The relationship of each of the participants in the EN-TEx project to GTEx and 

ENCODE is described in Document S2 (see Data S36 and S37).

Finally, the Epigenome Roadmap Project data derive from a large set of epigenetic assays 

consistently applied to many tissues. This project was eventually rolled into the ENCODE 

project, but did not have consistent standards across projects. Thus, EN-TEx is much like 

the Epigenome Roadmap Project, but with all the assays being performed consistently 

with ENCODE. It also includes specific individuals with their personal genome sequence, 

allowing the impact of variants and inter-individual differences to be precisely ascertained.

Personal Genome: Construction of the Personal Genome (related to “Uniform Multi-

tissue Data Collection & Diploid Mapping” in the main text, Figures 1B and S1BC)

Sequencing of the Personal Genome: Data S2A–F summarizes the technologies used to 

sequence the whole genomes of the four individuals.
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To prepare samples for PacBio sequencing, genomic DNA was isolated as previously 

described76,77 and evaluated for purity and quantity using UV-Vis (Nanodrop 1000, Thermo 

Fisher) and fluorometric (Qubit, Thermo Fisher) assays. DNA sizing was checked on the 

Femto Pulse (Agilent). Samples all exhibited a mode size above 50 kbp (most above 100 

kbp) and were considered good candidates for PacBio sequencing. DNA was sheared using 

Megarupter (Diaganode) to a mode size of ~15 kbp. The sheared material was subjected to 

SMRTbell library preparation. Fractions were checked via fluorometric quantitation (Qubit) 

and pulse-field sizing (FEMTO Pulse). For sequencing, isolated gDNA was SMRTbell 

library prepared using the Express Kit V2 (PacBio) and subjected to size selection on a 

Blue Pippin instrument (Sage Science) with a 40 kbp size cutoff. Libraries were loaded on a 

Sequel II using v2.0 binding and v2.0 sequencing kits, no pre-extension, and 24-hour movie 

times.

For nanopore sequencing, samples were sheared to approximately 60 kbp and size selected 

by SRE XL (Circulomics). Fragmented DNA was prepared for sequencing with the SQK-

LSK110 kit (Oxford Nanopore) following the manufacturer’s instructions. Prepared libraries 

were sequenced on a PromethION 24 with PROM0002 flow cell for 72 hours. One nuclease 

flush and reload was performed at 24 hours. Live high accuracy base calling was used.

We generated and analyzed Illumina whole-genome sequencing (WGS) data for each of 

the four human genome samples. WGS libraries were prepared using the TruSeq DNA PCR-

Free Library Preparation Kit (Illumina) in accordance with the manufacturer’s instructions. 

Briefly, 1 μg of DNA was sheared using a Covaris LE220 sonicator (adaptive focused 

acoustics). DNA fragments underwent bead-based size selection and were subsequently 

end-repaired, adenylated, and ligated to Illumina sequencing adapters. Final libraries were 

evaluated using fluorescent-based assays, including quantitative PCR with the Universal 

KAPA Library Quantification Kit and Fragment Analyzer (Advanced Analytics) or 

BioAnalyzer (Agilent 2100). Libraries were sequenced on an Illumina NovaSeq 6000 

sequencer using 2 × 150 bp cycles to a minimum depth of 30X.

Variant Calling and Genome Assembly: Personal genomes were assembled from a 

combination of long-range Hi-C reads, 10x Genomics linked reads, and long reads (PacBio 

reads and Oxford Nanopore reads were base called with Guppy v4) using the reference-

guided assembler CrossStitch (Data S2B)78. This pipeline has been used in several other 

studies of human and non-human genomes with as many as 100 different genomes at 

once78–80 for comprehensive single-nucleotide variant (SNV), insertion and deletion (indel), 

and structural variant (SV) calling. Notably, previous studies have shown that it is possible 

to accurately identify and phase SVs with variants identified from 10x linked reads and Hi-C 

data using the approach in CrossStitch to near chromosome-level resolution81.

Specifically, the following preprocessing steps were performed:

1. Align all reads (Hi-C, 10X, PacBio) to the human reference (GRCh38).

2. Call small variants from the linked reads with Long Ranger (ver. 2.1.2).

3. Phase small variants with HapCUT2 (ver. 1.1)35 using HiC and 10X data.
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4. Call large SVs with Sniffles (ver. 1.0.11)82 using default parameters in samples 

sequenced with PacBio and using --min_homo_af 0.93 in samples sequenced 

with Oxford Nanopore. Additionally, in samples sequenced with PacBio, call 

SVs with pbsv (ver. 2.2.1) and merge the call sets with SURVIVOR (ver. 

1.0.6)83, discarding SVs that were only identified by pbsv.

5. Filter SVs with low read support (fewer than 10 reads in samples 2 and 3, fewer 

than 3 reads in sample 1, and fewer than 4 reads in sample 4). Additionally, in 

samples 2 and 3, filter SVs labeled by Sniffles with the IMPRECISE INFO flag.

Then, the CrossStitch software (commit 53f64af) performed the following steps to obtain a 

personal genome:

6. Refine SVs with Iris (ver. 1.0)80.

7. Phase long reads using the phased small variants with which they overlap using 

an analogous approach to the NanoSV algorithm81.

8. Phase large SVs based on the phasing of the reads supporting them (Data S2C).

9. Integrate (“splice”) the phased variants into two copies of each human 

chromosome to produce personal diploid chromosome sequences using 

vcf2diploid (ver. 1.0)45.

10. Assign one sequence of each chromosome to pseudo-haplotype 1 and the other 

to pseudo-haplotype 2.

Note that each chromosome was phased independently from the other chromosomes, so that 

pseudo-haplotype 1 of one chromosome may correspond to pseudo-haplotype 2 of another 

chromosome. Unfortunately, the available data are insufficient to distinguish such cases or 

assemble full haplotypes genome wide. However, we were able to assign parental origin of 

the haplotypes for which the AS expression of known imprinted genes was determined (see 

more in section “Assigning Parental Origin by Imprinted Genes”).

In all four samples, the use of 10x and Hi-C data resulted in chromosome-arm-length phase 

blocks for all autosomes (Figure 1B and Data S2E). Specifically, the N50 of the phase 

blocks were 133.65 Mb, 133.68 Mb, 134.99 Mb, and 135.00 Mb for the four individuals, 

respectively. In addition, in both samples for which long reads were used, more than 90% of 

the large indels were able to be confidently phased with CrossStitch. For all four individuals, 

variant call format (VCF) files containing the SNVs and indels are accessible from the 

ENCODE portal84 (see Data S2D for accession numbers).

We adopted the reference-guided approach over alternative de novo assembly-based 

approaches because it gave more accurate and comprehensive results for the genome 

data available. For example, for individual 2 we also applied the leading PacBio-based 

de novo assembly algorithm FALCON-unzip85 to assemble the genome de novo, but this 

resulted in a contig N50 of only 7.0 Mbp. Aligning the FALCON-unzip contigs to GRCh38 

using MUMmer86/Assemblytics87 identified <13,000 SVs compared with >18,000 for our 

reference-guided approach, with thousands of variants, especially heterozygous variants, 

unresolved. De novo assembly of the 10X Genomics linked reads or Illumina paired-end 
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reads was even more limited, with contig N50 values of only 72 kbp and 13 kbp using 

the 10X Genomics Supernovo88 and Illumina Megahit89 assemblers, respectively. The 

10x Genomics de novo assembly was particularly problematic for SV identification, as 

we observed an enrichment for ~200 bp insertions not observed with other sequencing 

technologies. In communication with 10X Genomics, we found these to be false positives 

derived from their assembly algorithm79. However, we and others found the SNV and indel 

calls to be highly accurate, especially within repetitive elements that could not be mapped 

using standard short-read paired-end sequencing.

Refining Novel Insertion Sequences with Iris: Iris is an established method for refining 

the breakpoints and sequences of insertion variants80. This tool has been used in several 

contexts78,79. Each of the calls, when taken directly from the variant caller, consists of 

an insertion sequence obtained from the alignment of a single representative read, and 

Iris improves upon this sequence by integrating all of the reads that support the variant’s 

presence. The tool gathers the sequences of all of the reads listed in the RNAMES INFO 

field output by Sniffles, extracts the original insertion sequence with the surrounding context 

from the reference genome, and uses the gathered reads to polish this sequence with racon 

(ver. 1.4.0)90. Then, this polished sequence is aligned back to the reference with minimap2 

(ver. 2.17)91, and a refined insertion sequence is obtained. If no insertion is found from this 

alignment, which has a similar length to that of the original variant call, Iris falls back on the 

original sequence to ensure it does not mask variants in more difficult-to-map regions.

We benchmarked the performance of Iris using data from HG002, a sample sequenced 

as part of the Genome in a Bottle release. In this individual, we called SVs separately 

using Oxford Nanopore (ONT) data and PacBio Circular Consensus Sequencing (CCS) data, 

both sequenced to ~50x coverage using the ngmlr aligner82 and the Sniffles variant caller. 

Because of the high accuracy of the CCS reads, we used the insertion sequences obtained 

from these calls as a proxy for the ground truth to evaluate the accuracy of the ONT calls. 

We compared the CCS and ONT call sets before and after refining the ONT calls with Iris. 

In each comparison, we evaluated all of the variant calls in the CCS dataset, which had an 

ONT variant call within 10 kbp in both the refined and unrefined call sets. Among these 

14,001 variants, we measured the average sequence similarity between the CCS call and 

the ONT call, with the similarity of two strings S and T measured as [1 - edit_distance(S, 

T)] / max[length(S), length(T)]. Using the unrefined calls, the average similarity was 0.854, 

while the refined calls gave an average similarity of 0.94, demonstrating the ability of Iris to 

obtain more accurate insertion breakpoints and sequences. Data S2F shows the distribution 

of sequence similarities before and after refinement.

Assigning Parental Origin by Imprinted Genes: The list of known human imprinted 

genes was downloaded from the Imprinted Gene Database (geneimprint.com). In total, 216 

genes with known parental origin of the expressed allele were used in this analysis. For 

known imprinted genes that showed AS expression (ASE) in tissues from each individual, 

the haplotype-specific read counts were combined from these tissues and the potential 

parental origin of the haplotype blocks was determined based on the direction of the 

imbalance (haplotype 1 or haplotype 2) and the known expressed allele of the imprinted 
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gene (maternal or paternal allele) (Data S2H). Results were included in the following 

ancillary files:

File: imprinted_genes_in_ENTEx_ASE.tsv: All known imprinted genes for which 

allele-specific expression was detected, genome-wide, in the EN-TEx samples.

File: phased_block.tar.gz: Parental origin of each phased block in the four 

individuals.

The parental origin results of individual 3 are shown in Figure 1B and are available in the 

file phased_block_ind3.txt within phased_block.tar.gz, where each line is a phased block. 

The first three columns are genomic coordinates of the phased block. The fourth and fifth 

columns are the parental origins of haplotype 1 and haplotype 2, respectively. ‘NoInfo’ 

indicates that there are no imprinted genes in that phased block. ‘Contradict’ indicates that 

there is at least one AS gene-imprinted gene pair that has a different imbalance direction 

compared to the other AS gene-imprinted gene pairs, and thus contradictory conclusions 

are reached for the same phased block. A similar approach can be used for the other 

EN-TEx individuals (Data S2G). Overall, 97.3% of base pairs in the EN-TEx individuals 

were assigned to a phased block (on average across the four donors). This corresponds to 

98.5% of all heterozygous variants. We were able to determine the parental origin of 45.3%, 

43.2%, 36.1%, and 45.3% of the bases in phased blocks for individuals 1–4, respectively.

Data Stack: Functional Genomics Data in the EN-TEx Resource (related to “Uniform 

Multi-tissue Data Collection & Diploid Mapping” in the main text, Figures 1A and S1A)

In total, EN-TEx includes more than 25 different biochemical assays performed on multiple 

(30+) tissues from four individuals (Figure 1A and Figure S1A). The tissues and legend 

for Figure 1A are detailed in Data S2I. In Figure 1A, we indicate the “core assays” 

in bold, corresponding to the assays that were performed in EN-TEx across almost 

all individuals and tissues; these assays include the histone modifications H3K27me3, 

H3K9me3, H3K36me3, H3K4me1, H3K4me3, and H3K27ac, POL2 and CTCF ChIP-seq, 

methylation arrays, ATAC-seq, DNase-seq, RAMPAGE, and total RNA-seq. Experiments 

from GTEx on the four EN-TEx individuals are indicated with asterisks (polyA RNA-seq 

and whole-blood datasets). Note that EN-TEx encompasses 1,635 total experiments, which 

includes control experiments and replicates (both of which are not explicitly shown in the 

data matrix in Figure 1). If we remove replicates and controls, the number of experiments is 

1,275.

RNA Sequencing: Multiple RNA-seq experiments were performed in ENCODE Phase III 

on the 30+ tissue samples sourced from GTEx and included in EN-TEx, including: 1) 

long RNA-seq, i.e., RNA with a length greater than 200 nt, and total RNA-seq, 2) small 

RNA-seq, i.e., RNA with a length less than 200 nt, and 3) microRNA-seq, i.e., RNA 

with a length less than 30 nt. More information about each RNA-seq protocol and data 

processing pipeline can be found at the ENCODE portal: 1) https://www.encodeproject.org/

data-standards/rna-seq/long-rnas/, 2) https://www.encodeproject.org/data-standards/rna-seq/

small-rnas/, and 3) https://www.encodeproject.org/microrna/microrna-seq/. RNA-seq data 
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quality was calculated using the number of aligned reads and replicate concordance (as 

described in the ENCODE pipelines linked above).

RAMPAGE: RNA annotation and mapping of promoters for analysis of gene expression 

(RAMPAGE) is a biochemical assay that captures 5′-complete cDNA to identify and 

quantify transcriptional start sites (TSSs) and characterize transcripts. The assay is described 

in detail at the ENCODE portal: https://www.encodeproject.org/data-standards/rampage/. 

The ENCODE RAMPAGE data processing pipeline was developed for RAMPAGE libraries 

containing cDNA sequences longer than 200 nt. The pipeline takes cDNA sequences as 

input (in FASTQ format) and outputs alignments normalized for both positive and negative 

strands of the genome. Reproducible peaks between replicates were identified using the 

irreproducible discovery rate (IDR). The quality of the RAMPAGE data was determined 

using the read depth and replicate concordance with respect to peaks in the data.

eCLIP: Enhanced crosslinking and immunoprecipitation (eCLIP) is a biochemical 

assay that identifies RNA-binding protein (RBP) occupancy sites across the 

transcriptome. The eCLIP experimental protocol is available at the ENCODE 

portal: https://www.encodeproject.org/documents/842f7424-5396-424a-a1a3-3f18707c3222/

@@download/attachment/eCLIP_SOP_v1.P_110915.pdf. Additional assay details are 

available at https://www.encodeproject.org/eclip/. All eCLIP antibodies were 

required to undergo primary and secondary characterizations. RBP antibody 

standards are available at the ENCODE portal: https://www.encodeproject.org/

documents/fb70e2e7-8a2d-425b-b2a0-9c39fa296816/@@download/attachment/

ENCODE_Approved_Nov_2016_RBP_Antibody_Characterization_Guidelines.pdf. The 

quality of the eCLIP data was determined using 

the number of unique RNA fragments, IDR, and fraction of reads in peaks (FRiP).

Histone ChIP-seq: Histone ChIP-seq is a biochemical assay that observes interactions 

between histone proteins and DNA. This assay selects for a specific histone protein variant 

or post-translational modification using immunoprecipitation followed by DNA sequencing. 

The histone ChIP-seq experimental protocol is available at the ENCODE portal: https://

www.encodeproject.org/documents/be2a0f12-af38-430c8f2d-57953baab5f5/@@download/

attachment/Epigenomics_Alternative_Mag_Bead_ChIP_Protocol_v1.1_exp.pdf. Additional 

assay details are available at https://www.encodeproject.org/chip-seq/histone/. All 

commercial histone antibodies were validated by at least two independent experiments. 

Histone mark antibody standards are available at the ENCODE portal: https://

www.encodeproject.org/documents/4bb40778-387a-47c4-ab24-cebe64ead5ae/

@@download/attachment/

ENCODE_Approved_Oct_2016_Histone_and_Chromatin_associated_Proteins_Antibody_C

haracterization_Guidelines.pdf. The quality of the histone ChIP-seq data was determined 

using the read depth, number of uniquely mapping reads over the total number of reads (i.e., 

non-redundant fraction, NRF), and two PCR bottlenecking coefficients (PBC1 and PBC2).

Transcription Factor (TF) ChIP-seq: ChIP-seq captures DNA and DNA-

binding protein (e.g., CTCF, EP300, and Pol II) interactions through 
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immunoprecipitation, pulldown, and DNA sequencing. All ChIP-seq protocols 

involved in the generation of data included in EN-TEx are available at 

the ENCODE portal: 1) https://www.encodeproject.org/documents/20ebf60b-4009-4a57-

a540-8fd93407eccc/@@download/attachment/Epigenomics_CR_ChIP_Protocol_v1.0.pdf, 

2) https://www.encodeproject.org/documents/6ecd8240-a351-479b-9de6-

f09ca3702ac3/@@download/attachment/ChIP-seq_Protocol_v011014.pdf, 

3) https://www.encodeproject.org/documents/a59e54bc-ec64-4401-8cf6-b60161e1eae9/

@@download/attachment/EN-TEx%20ChIP-seq%20Protocol%20-%20Myers%20Lab.pdf, 

and 4) https://www.encodeproject.org/

documents/f2aa60f2-90a6-4e4b-863a-c6831be371a2/@@download/attachment/

ChIP-Seq%20Biorupter%20Pico%20TruSeq%20protocol%20for%20Syapse-

c5bdc444fe0511e69d6a06346f39f379.pdf. Additional ChIP-seq protocol 

details are available at https://www.encodeproject.org/chip-seq/transcription_factor/. 

The quality of the ChIP-seq data was determined using the read depth, NRF, two PCR 

bottlenecking coefficients (PBC1 and PBC2), replicate concordance (i.e., IDR), and FRiP.

ATAC-seq: ATAC-seq identifies accessible regions of DNA by inserting 

primers into open chromatin regions via transposase, followed by DNA 

sequencing. The ATAC-seq experimental protocol is available at the ENCODE 

portal: https://www.encodeproject.org/documents/404ab3a6-4766-45ca-af80-878a344f07b6/

@@download/attachment/ATAC-Seq%20protocol.pdf. Additional details about the ATAC-

seq protocol can be found at https://www.encodeproject.org/atac-seq/. The quality of the 

ATAC-seq data was determined using the number of non-duplicate, non-mitochondrial 

aligned reads, IDR, NRF, two PCR bottlenecking coefficients (PBC1 and PBC2), number of 

resulting peaks in the data, DNA fragment length distribution, FRiP, and TSS enrichment.

DNase-seq: DNase-seq is a biochemical method that identifies open regions 

of chromatin. These regions are identified by performing enzyme digests using 

endonuclease DNase I, which inserts itself into open regions, followed by DNA 

sequencing. The DNase-seq experimental protocols are available at the ENCODE 

portal: https://www.encodeproject.org/documents/c6ceebb6-9a7a-4277-b7be-4a3c1ce1cfc6/

@@download/attachment/08112010_nuclei_isolation_human__tissue_V6_3.pdf. Additional 

protocol information can be found at https://www.encodeproject.org/data-standards/dnase-

seq/. The quality of the DNase-seq data was determined using the number of uniquely 

mapped reads, fraction of mitochondrial reads, and signal portion of tags score.

WGBS: Whole-genome bisulfite sequencing (WGBS) was used to identify 

DNA methylation. WGBS converts unmethylated cytosine (C) into uracil (U), 

leaving methylated C unchanged. DNA sequencing followed by read alignment 

to a genome results in CpG island, CHG, and CHH methylation levels 

being observed. The WGBS experimental protocol is available at the ENCODE 

portal: https://www.encodeproject.org/documents/9d9cbba0-5ebe-482b-9fa3-d93a968a7045/

@@download/attachment/WGBS_V4_protocol.pdf. Additional WGBS assay details are 

available at https://www.encodeproject.org/data-standards/wgbs/. The quality of the WGBS 
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data was determined from the genomic read coverage, C-to-T conversion rate, and 

correlation of CpG methylation levels between replicates.

DNAme Array: DNA methylation profiling by array assay (DNAme) measures CpG island 

methylation. Similar to WGBS, DNA is treated with bisulfite converting unmethylated 

C to U. After library amplification and purification, DNA fragments are hybridized to a 

microarray (Illumina Infinium Methylation EPIC BeadChip) that probes for both methylated 

and unmethylated states. DNA methylation is then quantified by comparing the signal 

between the two DNA microarray probes. Illumina Genomestudio (v2011.1) was used to 

calculate the fraction of methylated reads at each CpG site from the raw microarray output.

Hi-C: High-quality Hi-C data were generated from the four EN-TEx donors using 

samples collected from the gastrocnemius medialis and transverse colon tissues. The 

in-situ Hi-C protocol used to produce Hi-C libraries was described previously by 

Rao et al. (2014)92. A detailed protocol document is provided with each dataset 

at the ENCODE website: https://www.encodeproject.org/documents/e1ef20c9-7539-40bc-

bdbf-a4deab7f72c7/. Approximately 20 mg of tissue was used for each Hi-C experiment, 

and the MboI restriction enzyme was used for restriction digests. All sequencing was 

performed on an Illumina 4,000 platform. The data was processed twice, separately utilizing 

a reference genome or personal genomes constructed for each individual’s tissue.

Hi-C interaction matrices were generated using the Juicer pipeline93, an open-source tool 

for analyzing large Hi-C libraries. We utilized BWA-MEM94 to align individual reads to the 

hg38 reference genome, which was obtained from the ENCODE portal. For each paired-end 

read, the two individual sequences were first separately aligned to the reference genome 

before being paired based on their read names. Chimeric reads and PCR duplicates were 

removed prior to the creation of an interaction matrix for each tissue of each individual 

(Data S3A). Data S3B provides information on the number of reads and number of contacts 

per sample utilized to create the matrices. Significant intrachromosomal Hi-C interactions 

were identified with FitHiC2 (ver. 2.0.7)95,96. Preprocessing of EN-TEx Hi-C interaction 

matrices followed the author’s instructions in the FitHiC2 GitHub repository’s README. 

Matrices were binned at a resolution of 50 Kb and bin biases were generated using the 

author’s provided software (HiCKRy.py — with percentOfSparseToRemove set to 0.1). See 

Data S3E for the number of all vs. significant interactions for each sample.

Determination of the A and B compartments was done using the Juicer pipeline93 at a 1 

MB resolution. In detail, the observed/expected interaction matrices were normalized using 

the Knight-Ruiz matrix-balancing algorithm97. A correlation matrix from these interaction 

matrices was calculated, with the first eigenvector of the matrix corresponding to A/B 

compartments. The positive values of the vector indicate genomic regions belonging to the A 

compartment, while negative values correspond to the B compartment (Data S3C–D).

Topologically associating domains (TADs) were identified using TopDom (ver. 0.9.0)98 

from the two tissues of all four donors with a window_size parameter of 3. Before 

running TopDom, EN-TEx Hi-C libraries were binned at a resolution of 100 Kb and 

normalized using the Knight-Ruiz matrix-balancing algorithm97 implemented by Juicer93. 
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TopDom’s window_size parameter was optimized for the known enrichment of CTCF motif 

directionality at TAD boundaries92 and visual consistency/fit with Hi-C interaction matrices. 

CTCF directionality was identified using paired EN-TEx ChIP-seq peak (narrowPeak 

format) files and the ‘CTCF_known1’ motif as described by Cameron et al. (2020)99. TAD 

boundary similarity was calculated by overlapping TAD annotations between individuals/

tissues with a buffer of three bins when considering two boundaries to be the same.

The FitHiC2 output and TAD annotations can be found within the ancillary files.

File: fithic2_out.tar.gz: Hi-C genomic data processed by Fit-Hi-C software.

File: TopDomTADcalls.tar.gz: Topologically associating domains of the genome 

identified by TopDom software.

Proteomics: For 10 mg tissue, 200 μl lysis buffer [50 mM Tris-HCl pH8.5, 50 mM NaCl, 

8 M urea, 4% SDS, and Halt protease inhibitor (Thermo)] was added. After the tissue was 

homogenized by a pestle/mortar, a Dounce homogenizer, or similar device, the sample was 

heated at 95°C for 10 min, followed by probe sonication until the viscosity was reduced. The 

sample was then centrifuged at 13,000 rpm for 15 min, and supernatant was collected. RNA 

was first extracted from samples (see RNA Sequencing).

Protein concentration was measured by the Pierce 660 nm Protein Assay (Thermo). For each 

sample, 100 μg proteins were taken, and volumes were equalized by 100 mM TEAB to 100 

μl, reduced by 20 mM TCEP (Sigma), and then alkylated by 40 mM iodoacetamide (Sigma). 

Proteins were purified by 20% trichloroacetic acid (TCA) precipitation. A total of 100 mM 

TEAB was added to the sample, followed by digestion with trypsin (MS grade, Thermo) 

at 37°C for 18 hours. The peptides were labeled by TMT10plex as per the manufacturer’s 

instruction, and the labeled samples were pooled and SpeedVac dried. Samples of 300 μg 

peptides were fractionated on a U3000 HPLC system (Thermo Fisher) using an XBridge 

BEH C18 column (2.1 mm id × 15 cm, 130 Å, 3.5 μm, Waters) at pH 10, at 200 μl/min on a 

30 min linear gradient from 5–35% acetonitrile/NH4OH. The fractions were collected every 

30 sec into a 96-well plate, which were concatenated to 35 fractions and dried.

The peptides were resuspended in 0.5% formic acid (FA) and 50% was injected for liquid 

chromatography with tandem mass spectrometry (MS) analysis on an Orbitrap Fusion 

Tribrid mass spectrometer coupled with a U3000 RSLCnano UHPLC system (Thermo 

Fisher). The peptides were loaded onto a PepMap C18 trap (100 μm i.d. × 20 mm, 100 

Å, 5 μm) for 10 min at 10 μl/min with 0.1% FA/H2O, and then separated on a PepMap 

C18 column (75 μm i.d. × 500 mm, 100 Å, 2 μm) at 300 nl/min and a linear gradient of 

4–33.6% ACN/0.1% FA in 90 min/cycle at 120 min, or 4–32% ACN/0.1% FA in 150 min 

or 180 min with a cycle time of 180 min or 210 min for each fraction. For data acquisition, 

we used the SPS10-MS3 method with the top speed set at 3 s per cycle time. The full MS 

scans (m/z 380–1,500) were acquired at a 120,000 resolution at m/z 200, and the automatic 

gain control (AGC) was set at 400,000 with a 50 ms maximum injection time. The most 

abundant multiply charged ions (z = 2–6, above 5,000 counts) were subjected to MS/MS 

fragmentation by collision-induced dissociation (35% CE) and detected in an ion trap for 

peptide identification. The isolation window by quadrupole was set at m/z 1.0, and the AGC 
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at 10,000 with a 35 ms maximum injection time. The dynamic exclusion window was set 

at ±7 ppm with a duration of 60 s. Following each MS2, the 10-notch MS3 was performed 

on the top 10 most abundant fragments isolated by synchronous precursor selection. The 

precursors were fragmented by higher-energy collisional dissociation at 60% CE, and then 

detected in the Orbitrap at m/z 110–400 at a 50,000 resolution for peptide quantification. 

The AGC was set at 50,000 with a maximum injection time of 86 ms.

GENCODE v27100 annotation was lifted over from GRCh38 to each EN-TEx donor’s 

personal genome, to generate eight sets of general feature format annotations. GFFRead 

utility101 was used to extract the nucleic acid sequence for all protein-coding transcripts. 

An in-house Python script was then applied to translate each protein-coding transcript into 

its amino acid sequence. All protein sequences from the eight genomes were combined 

with the GENCODE v27 reference, redundant sequences were removed, and each unique 

protein sequence was given a unique accession ID that included the genomes that contain 

the protein. The final database contained 128,063 unique protein sequences, 82,136 (64%) 

from the GENCODE reference and 45,927 (36%) unique to the EN-TEx donors. A total of 

6,344 protein sequences from GENCODE (8% of the reference proteome) were not matched 

to any of the alleles in the four individuals. Decoy protein sequences were generated using 

the DecoyPYrat tool102.

The proteomics results are summarized in this ancillary file.

File: Supp_data_proteomics.xlsx: Proteomics result summary including peptide 

annotation.

Spectra were processed using ProteomeDiscoverer (ver. 2.4) (Thermo Fisher Scientific) 

and searched against the personal proteome database using both Mascot (ver. 2.4) (Matrix 

Science) and SequestHT with target-decoy scoring evaluated using Percolator103. The 

precursor tolerance was set at 30 ppm and the fragment tolerance was set at 0.5 

Da; spectra were matched with fully tryptic peptides with a maximum of two missed 

cleavages. Fixed modifications included carbamidomethyl [C] and TMT6plex [N-Term]. 

Variable modifications included TMT6plex [K], oxidation [M], carbamyl [K], methyl [DE], 

deamidation [NQ], and acetyl [N-term]. The carbamyl and methyl modifications were 

included due to their high incidence after samples were exposed to high concentrations 

of urea during the RNA extraction process. Peptide results were initially filtered to a 

1% false discovery rate (FDR; 0.01 q-value). The reporter ion quantifier node included a 

TMT-11-plex quantification method with an integration window tolerance of 15 ppm and 

integration method based on the most confident centroid peak at the MS3 level. Protein 

quantification was performed using unique peptides only, with protein groups considered 

for peptide uniqueness. Peptides were quantified and normalized using tandem mass tags 

(TMTs) for isobaric labeling. Peptide results from ProteomeDiscoverer were remapped to 

the protein database and marked as reference, genome, or AS. Gene-level quantification of 

proteins was conducted by summing normalized unambiguous peptide TMT intensities.

At a 1% FDR, we report 256,512 peptide-to-spectrum matches and 117,934 distinct peptide 

sequences (0.01 q-value at the peptide level), of which 45,276 were quantified using TMT 

isobaric labels. Personal peptides were further filtered to unambiguously match one gene 
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and have a posterior error probability below 0.699. These peptides did not map to the 

reference genome, only matching personal protein sequences. The 4,489 peptides identified 

were not present in all eight genomes across the four donors, 830 of these peptides were 

missing in one or more of the donors completely, and 4,334 were only present on a single 

allele in at least one of the donors. This corresponds to 13% coverage of the possible 

observable personal peptides across all protein-coding genes in the personal genomes, and a 

1% increase in the number of significant distinct peptide sequences quantified (Data S4).

Gene quantification was conducted using only unambiguous peptides summing the peptide 

isobaric tag intensities. A total of 9,242 genes were quantified, 540 genes had non-reference 

peptides, 1,333 genes had peptides not present in all eight genomes (personal peptides), 518 

genes had peptides absent in at least one donor, and 1,260 genes had peptides specific to a 

single allele in at least one donor.

For comparison between proteomic and RNA-seq abundances, a paired set of samples and 

confidently identified genes matching between the proteomic and RNA-seq datasets were 

extracted. For each dataset, the values were normalized and then scaled to the maximum 

value across the samples/tissues. A Pearson correlation was then used to test the similarity 

between the two sets across the samples.

All spectra were also processed via the ICR GENCODE OpenMS novel peptide discovery 

proteomics pipeline104 against a database containing GENCODE v27 reference proteins and 

a set of potential novel protein-coding sequences, including many unannotated PhyloCSF 

conserved regions105. Novel peptide results were filtered according to high-stringency 

criteria106. This resulted in 291 novel peptides, which were further filtered to remove 

peptides that could be explained by semi-tryptic cleavage or single amino acid variants. The 

27 remaining peptides were assessed, validating eight novel protein models, which have all 

now been annotated in the GENCODE reference set (Data S4D).

All spectra, results, and supporting files, including the personal proteome database, have 

been deposited in the PRIDE107 proteomic repository (https://www.ebi.ac.uk/pride/) under 

project accession number PXD022787.

Reference Comparison: Comparing Between Personal and Reference Genomes (related 

to “Uniform Multi-tissue Data Collection & Diploid Mapping” in the main text and Figures 

S2)

Mapping Functional Genomics Data to the Personal Genomes: We used DNA from 

transverse colon tissues to construct both haplotype sequences for each individual. Mapping 

sequences to the derived haplotypes, rather than to the reference genome, resulted in an 

overall improvement in mapping accuracy across the different assays (RNA-seq, DNA-seq, 

Hi-C, and ChIP-seq). By applying conventional mapping criteria, we observed an increase in 

the number of mapped reads of about 0.5–1%. When we applied more stringent filtering 

criteria to select for high-quality, uniquely mapping sequences, we observed a much 

larger improvement, reaching an increase of 2–4% across assays over the four individuals 

(Figure S1C). Data S5A–C summarizes the numbers of reads and percentages for precision 
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mapping across the four individuals for DNA-seq, CHIP-seq, Hi-C, and RNA-seq. Mapping 

categories include mapping to haplotype 1 (Hap.1), haplotype 2 (Hap.2), union of Hap.1 

and Hap.2 (Hap1&Hap2), reference (ref), intersection between Hap.1 and Hap.2 but not ref 

(Hap1&&Hap2¬Ref), and improvement as a measure of Gain=[(Hap.1 ⋃ Hap.2)-Ref]/Ref.

For all assays, we excluded counting reads that mapped to the X, Y, and M chromosomes 

for all individuals. In general, to ensure high-quality mapping we selected reads with at 

most two mismatches and unique mapping. We used raw reads from transverse colon, 

publicly available at the ENCODE portal, with the exception of DNA-seq. For DNA-seq 

mapping, we used reads from blood samples that we obtained from GTEx to avoid any 

bias deriving from the construction of haplotypes using DNA sequences. For DNA-seq and 

RNA-seq mapping, we used paired-end reads. For RNA-seq, to account for gene splicing, 

we used *.gtf files with transcript genomic coordinations and STAR Aligner (ver. 2.7). For 

DNA-seq, Hi-C, and ChIP-seq we used BWA (ver. 0.7.17) and selected reads with at most 

two mismatches and quality Q>30. For RNA-seq, we used sequences with quality mapping 

Q=255.

Differential Gene Expression Analysis Between Reference and Personal Genomes: In 

order to evaluate the impact of personal genomes on gene expression quantification, we 

performed a differential gene expression (DGE) analysis between gene expression read 

counts obtained after mapping to reference and personal genomes. Conventional software 

to perform DGE analysis (such as DESeq2108 or edgeR109) rely on the existence of 

replicates. Due to the study design, however, the vast majority of RNA-seq experiments 

in EN-TEx are unreplicated. For this reason, we performed a DGE analysis for each of 

the four donors, running DESeq2 with default parameters and using RNA-seq experiments 

for different tissues of the same donor as replicates. For each donor, we identified sets 

of upregulated and downregulated genes, defined as genes that have significantly higher 

and lower expression, respectively, when mapped to the reference genome compared to the 

diploid genome (adjusted p-value [Benjamini–Hochberg] < 0.1 and |log2 FC| > 1; Figure 

S2A, Data S5D–E).

By taking the union of differentially expressed genes across the four donors, we identified a 

total of 112 upregulated and 100 downregulated genes. Overall, we observed an enrichment 

of immune-related genes among our sets of upregulated and downregulated genes (gene 

ontology term: “MHC class II protein complex assembly,” log10(p-value) = −9.74; gene 

ontology analysis performed with Metascape110), as well as an enrichment of pseudogenes 

among downregulated genes (Data S5F). In Data S5G–I, we provide a few examples of 

either immune-related (HLA-DQA1) or disease-relevant (SMN2, SIK1) genes that show 

increased expression when mapped to the personal genomes.

We acknowledge that performing the DGE analysis using tissues as replicates is not optimal. 

However, we argue that it is a conservative approach. To demonstrate this, we performed 

two additional analyses. First, we identified six RNA-seq experiments with two available 

technical replicates (from independent sequencing libraries), as well as one tissue (liver for 

individual 3) with two independent RNA-seq experiments available (biological replicates). 

For each of these seven experiments, we performed a DGE analysis between the reference 
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and personal genome mappings with the same parameters as the one described above (Data 

S5J, upper side). We identified 53 upregulated and 59 downregulated genes, including an 

additional set of 18 and 25 upregulated and downregulated genes, respectively. These genes 

were not previously reported by the per-donor DGE analysis.

Given that we obtained these results using only two replicates per experiment, we 

hypothesize that we could potentially identify a larger number of genes differentially 

expressed between the reference and personal genomes if each tissue had multiple replicates 

available. Thus, to estimate the reduced discovery power due to the lack of replicated 

experiments, we generated a personal genome of the cell line GM12878 and performed a 

DGE analysis using 5 polyA+ RNA-seq experiments available from the ENCODE portal 

(each experiment with two biological replicates). The list of experiments is provided in Data 

S5J (lower side). We applied the same pipeline as for the EN-TEx RNA-seq experiments 

to obtain read counts mapped to both the reference (hg19) and personal assemblies, using 

GENCODE v19 annotation. We performed DGE analysis running DESeq2 with default 

parameters as described for the previous two analyses, after specifying batch information per 

replicate based on the ENCODE experiment identifier (Data S5J, lower side). This analysis 

identified 46 upregulated and 43 downregulated genes, including an additional set of 31 and 

34 upregulated and downregulated genes, respectively.

Overall, these results demonstrate that our reduced discovery power of differentially 

expressed genes between the reference and personal genomes could be partially due to 

the lack of multiple replicated experiments available per each tissue. The approach described 

above, which uses tissues of the same donor as biological replicates, can best measure the 

impact of personal genomes on genes that are expressed across a wide range of tissues. 

However, this approach might not be suited for tissue-specific genes, whose changes in 

expression between the reference and personal genomes in a particular tissue might be 

masked or underestimated when averaged across all tissues.

The differentially expressed gene lists are available in the following ancillary files. 

Specifically, novel differentially expressed genes identified in the analysis of experiments 

with available replicates or in the analysis of GM12878 cells are marked with an asterisk.

File: table.DE.genes.tsv. Union of genes differentially expressed between reference 

and personal genomes across the four EN-TEx individuals.

File: table.DE.genes.techReps.liver.tsv. Union of genes differentially expressed 

between reference and personal genomes across seven EN-TEx RNA-seq 

experiments with available replicates.

File: table.DE.genes.GM12878.tsv. Genes differentially expressed between reference 

and personal genome in GM12878.

Differential Regulatory Element Activity Between Reference and Personal 
Genomes: To better characterize the cCRE activity between reference- and diploid-based 

alignment, we set up a pipeline to accurately estimate the H3K27ac signals of active 

cCREs from the four EN-TEx individuals by considering their gender information when 

we performed the ChIP-seq read alignment. Briefly, for the female individuals, we mapped 
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the reads to the autosomal and X chromosomes, while for the male individuals, we 

mapped the reads to the autosomal and X/Y chromosomes. When considering diploid-based 

mapping, we performed read alignment to their diploid genomes separately, and calculated 

the normalized read coverage for each active cCRE, followed by computing the mean 

value, which was used to represent the activity signals of cCREs under the scenario of 

diploid-based mapping. Similar to our approach for the differential gene expression analysis, 

we applied DESeq2108 to identify the active cCREs that show significantly differential 

activity under reference- versus diploid-based alignment across all the samples (adjusted 

p-value [Benjamini–Hochberg] < 0.1 and |log2 FC| > 1; Figure S2B, Data S5K–N). See the 

following ancillary file for the result.

File: differentially_marked_H3K27ac_cCREs.txt: Union of candidate cis-regulatory 

elements with differential H3K27ac signal between reference and personal genomes 

across the four EN-TEx individuals.

Variation Analysis: Analysis of the Variation in Element Activity (related to “Uniform 

Multi-tissue Data Collection & Diploid Mapping” in the main text and Figures S2CD)

Visualizing the Variation of cCRE Activity with JIVE: To visualize the relationship 

among the functional genomic data across the tissues, we used a dimension-reduction 

approach, namely Joint and Individual Variance Explained (JIVE)111. For each functional 

genomic experiment of histone modifications, we calculated its signals at the cCREs using 

the UCSC Genome Browser bigWig tools112. For proteomics and RNA-seq experiments, we 

simply used the normalized protein abundance and RNA abundance of each gene. For each 

type of assay, we generated a data matrix in which the columns are the tissues from the four 

individuals and the rows are cCREs or genes, and each element is the signal of the functional 

genomic activity measured by the assay. For each assay type, we quantile-normalized the 

signals. For the joint analysis of the different experimental assays, we combined these 

matrices by column to form a meta-matrix. In each separate data matrix, some columns in 

each data matrix are not shared by all the assays, and thus these columns are excluded from 

the metamatrix.

To reduce computation burdens, we removed the rows that have low standard deviation. 

From this informative meta-matrix, we applied the JIVE algorithm to project the columns 

into a two-dimensional (2D) space (Figure S2C, Data S6M). As expected, this projection 

used all the information of the matrix. In addition, from the matrix of each assay, the JIVE 

algorithm excluded the information that can be explained by the other matrices, and then 

projected the matrix containing the information unique to the assay into a 2D space (Figure 

S2C, Data S6M). For example, in the 2D space of RNA-seq, the same tissues from different 

individuals are well clustered, and the different tissues are well separated. This tendency is 

weaker for the other assays. Taken together, this observation indicates that RNA-seq likely 

captures the most unique signatures of different tissues.

Using a Regression-based Approach to Quantify Activity Variation: With a linear 

regression approach, we used the explained variation of the regression to measure the 

similarity between two experiments. A larger explained variation of the regression indicated 
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a higher similarity between the two experiments. To elaborate on the variation, we use a 

concrete example: the H3K27ac signals of cCREs from the spleens of two individuals. In 

this example, each of these individuals had two technical replicates of the H3K27ac signals 

measured by ChIP-seq. In each replicate, the signal at a cCRE was the fold change of reads 

between the immunoprecipitation experiment and the control experiment. For each cCRE, 

we first calculated the percentage difference of the signals between the two replicates. We 

focused on the cCREs with differences smaller than a certain cutoff so that the signals of 

these selected cCREs in one replicate can be largely explained by their counterparts in the 

other replicate using linear regression (i.e., R2 > 0.95). To compare the two individuals, we 

used the common set of the selected cCREs with low technical noise. For each of the two 

individuals, we averaged the signals of the two replicates for the common cCREs. Therefore, 

we generated two sets of cCREs with H3K27ac signals having little noise, respectively, for 

the two individuals. Again, using a simple linear regression, we calculated the variance in 

one of the sets explained by the other. A high value indicates that the two sets of H3K27ac 

signals are very similar in terms of a linear relationship. As an example, the explained 

variation between replicates and the explained variation between experiments for different 

types of histone modifications in spleen is demonstrated in Data S5A–F.

The aforementioned calculation was used for all the available histone modifications and 

samples (examples shown in Data S6G–H) as well as normalized protein and RNA 

abundances (Data S6I–L). For each modification, we estimated the variance explained 

between individuals (i.e., the same tissues of different individuals) and between tissues (i.e., 

different tissues of the same individual). In addition, we estimated the variance explained 

between two different histone modifications (i.e., within the same tissue of an individual). 

For MS, to make the protein abundances of different genes comparable across different 

tissues, we normalized the protein abundances of each gene across tissues so that the highest 

and lowest protein abundances were one and zero, respectively. The MS approach we used 

pooled and labeled multiple samples together to determine protein abundances in a batch, 

resulting in little technical noise across the samples. To be comparable, we also normalized 

the RNA-seq data of the samples in the same way.

In general, histone modifications showed high similarity between the same tissue of two 

individuals; as expected, this number was smaller when comparing different tissues of 

the same individuals (Data S6G–H). The similarity between different types of functional 

genomic activities from the same tissue was extremely low (Data S6G–H). For example, 

H3K27ac between individuals was very similar in spleen and in transverse colon. However, 

the H2K27ac similarity between the two tissues was substantially reduced (Data S6G–H). In 

line with this disparity across tissues, the similarity between normalized gene expression and 

protein abundance also varied substantially across tissues. The lower similarity in prostate is 

consistent with previous observations113. Full details of the comparison are reported in the 

following files:

File: Similarity_of_functional_genomic_activities_of_cCREs.xlsx: Similarities 

between all the available histone modifications.

File: normalized_proteomics_RNA-seq.dat: Normalized proteomics and RNA-seq 

data of genes.
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Prior to the development of the EN-TEx resource, the similarities among assays were 

usually calculated from unmatched data. For example, a large number of histone 

modification signals were detected from many different human individuals in Roadmap12. 

The intrinsic difference between two individuals due to genetic and environmental factors is 

expected to bias the similarity of two histone modifications. For the histone modifications 

that are positively correlated to each other, their similarity is expected to be underestimated, 

whereas for the negatively correlated ones, the similarity may be overestimated. The degree 

of such bias due to unmatched data has not been investigated for the many types of 

functional genomic data generated from numerous human samples. With the EN-TEx data, 

we can finally estimate such bias quantitatively and reliably. For example, we measured both 

the H3K27ac and H3K4me3 signals from the spleens of two individuals, individual 1 and 

2; the average similarity between the two signals from the same individuals was 80% in 

terms of variance explained, but was reduced to 70% when comparing the two signals from 

different individuals. We used this approach for all the EN-TEx histone modifications, and 

thus estimated the influence of unmatched data on the similarity between different types 

of assays (Data S6N–O). The difference varies with the explained variance. For the two 

signals with high similarity (i.e., large explained variance), using unmatched data results in 

about 10% smaller explained variance than using matched data. As expected, this trend was 

the opposite for two signals with low similarity. In addition, we applied this approach to 

measure the influence on the similarity between different tissues (Data S6N–O).

AS Calling: Determining Individual AS Events (related to “Large-scale Determination of 

AS SNVs & Construction of the AS Catalog” in the main text and Figure S3A)

ASE, AS Binding (ASB), and AS Chromatin Accessibility (ASCA): ASE, ASB and 

ASCA were measured with an extended version of the AlleleSeq pipeline, dubbed 

AlleleSeq2 (see EN-TEx portal for Github with code). Broadly, the pipeline incorporates 

personal variation, including large SVs, to account for reference bias22,42,45 in a 

straightforward way. We have included additional filters to mitigate ambiguous mapping 

biases22,114. In order to account for the overdispersed nature of the functional genomics 

readcount data, the significance of the allelic imbalance is assessed with the beta-binomial 

test22 (Data S7A).

For each available replicate of the EN-TEx experiments, functional genomics reads were 

mapped to both personal haplotypes simultaneously using STAR-2.6.0c115. We required 

stringent mapping criteria, allowing the maximum number of mismatches to be 3% of the 

read length. For ChIP-seq, ATAC-seq and DNase-seq datasets, mapping was performed 

forbidding spliced alignments. Adapters were also removed from the ATAC-seq and DNase-

seq reads with cutadapt116. For RNA-seq data, we used GENCODE v24100 annotation 

converted to personal coordinates. RNA-seq mapping was performed in the two-pass mode 

to identify and incorporate novel junctions. Read duplicates were identified and removed 

from all alignments using picard (http://broadinstitute.github.io/picard/). The fraction of 

assay reads that were preferentially aligned to either haplotype and overlapped heterozygous 

SNVs (hetSNVs) across all samples ranged from 1.1–7.3%. The allelic imbalance is 

measured by the fraction of unique reads mapped to each haplotype.
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To visualize functional genomics reads on individual haplotypes (Figure 2A), we used 

SAMtools (ver. 1.9)117 to extract haplotype-specific reads from the BAM files generated 

by STAR from the last step. If an assay had multiple replicates, we merged all the BAM 

files. The number of reads mapped to a given region in the personal genome was calculated 

by bedtools (ver. 2.29.2)118 and stored in bedgraphs, lifted over to the reference genome 

with UCSC LiftOver119, and converted to bigwigs with bedgraphToBigWig (ver. 2.8)112. 

Data S7B summarizes the pipeline used to generate the haplotype-specific bigwigs. The 

bigwigs are displayed with the Integrative Genomics Viewer120. See Data S7C for accession 

numbers of the data used to generate the signal tracks in Figure 2 and Data S17. A script 

that generates the haplotype-specific read coverage from the BAM files is provided at 

https://github.com/gersteinlab/AlleleSeq2. An example of the process is demonstrated in the 

following files.

File: sample_signal_track.tar.gz: Example output of haplotype-specific signal tracks.

File: AlleleSeq2_workflow_examples.tar.gz: AlleleSeq2 workflow demonstrated 

using RNA-seq and H3K27ac ChIP-seq experiments from ENC-003 thyroid gland 

samples.

The number of reads overlapping each hetSNV and carrying the corresponding alleles was 

calculated after filtering. The filtering included:

• Potentially misphased loci;

• Reads bearing an incorrect allele;

• HetSNVs located in potential copy number variation sites through assessment of 

the surrounding read depth (+/− 1 Kb);

• Sites with potential ambiguous mapping22,114;

• Non-autosomal chromosomes (for most downstream analyses we used call sets 

that only include loci from autosomes).

We aggregated read counts from all replicates available for each experiment (sample). We 

then called AS sites at an FDR of 10% as described previously22,45 (Data S8) by calculating 

the significance of the imbalance at each heterozygous locus.

We provide the read counts and p-values for all the ASE and ASB sites that are either 

significantly imbalanced or accessible (SNVs that have at least the minimum number of 

reads needed to be statistically detectable for allele specificity), which can be found in the 

following file.

File: hetSNVs_default_AS.tsv: Full list of accessible heterozygous SNV loci with 

haplotype-specific read counts.

File: hetSNVs_default_AS_DNase.tsv: Full list of accessible heterozygous SNV loci 

with haplotype-specific read counts from the DNase-seq datasets.

Columns in the hetSNV files are:
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1) chr : chromosome

2–3) ref_start, ref_end : GRCh38 locus positions (0-based, half-open)

4) ref_allele : reference allele

5–6) hap1_allele/hap2_allele : haplotype 1/2 allele

7) experiment_accession : ENCODE experiment ID

8) donor : EN-TEx individual

9) tissue : tissue

10) assay : assay

11–14) cA/cC/cG/cT : number of reads with A/C/G/T

15) ref_allele_ratio : number of reads with reference / total number of reads

16) p_betabinom : p values calculated from the beta-binomial test

17) imbalance significance imbalanced site. : ‘1’ passes the FDR10% threshold, ‘0’ not a significantly

Since the EN-TEx samples have had independent genome sequencing completed for more 

than one tissue (i.e., transverse colon from EN-TEx and blood from GTEx), we can use this 

information to evaluate the impact of sequencing errors and somatic mutations on our AS 

call set. We have done this in a limited fashion in Data S35.

Allele-specific Methylation (ASM): We used WGS variant calls to determine the positions 

of hetSNVs and identify all homozygous CpG positions in the genome of each donor (Data 

S9). With such information, and with the fully processed tissue-specific WGBS-aligned 

reads, an in-house script was then used to identify positions exhibiting significant allelic 

differences in CpG methylation. Our script counted the number of times a methylated or 

unmethylated homozygous CpG occurred in the same read as each of the two possible 

alleles at the hetSNV position for autosomal chromosomes. If the same read overlapped 

multiple CpGs, they were each considered as independent observations. Reads that 

overlapped with indels, had a low-quality score (Phred < 20) on the SNP position, or had a 

base call that did not match either of the two alleles expected in that position based on the 

WGBS calls were discarded. Due to the nature of bisulfite sequencing data, where cytosines 

may be observed as thymines during bisulfite conversion, it was not possible to determine 

which allele the read came from in several cases. In such cases, the read was also discarded. 

If a low-quality score or an unexpected base call was observed on a CpG position for a 

particular read, that observation did not contribute to the final counts. The significance of 

the association between the allele at the hetSNV position and the methylation state of the 

CpGs in the 300 bp surrounding region was assessed using Fisher’s exact test. The 300 bp 

windows surrounding the hetSNV position were chosen as the WGBS dataset was composed 

of paired-end 150 bp reads. The test was only performed for hetSNV positions that showed 

a minimum of six observations of either a methylated or unmethylated CpG position for 

both alleles, and the p-values were subsequently corrected with the Benjamini-Hochberg 

method for FDR control. The difference in the level of methylation between alleles was also 

computed for each hetSNV. Finally, ASM calls were made by identifying the heterozygous 

SNP positions with FDR values below a specified threshold (10%), and absolute differences 
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in methylation between alleles above a minimum threshold of 10%. The result can be found 

in the following file.

File: ENTEx.TissueStacked.phased.final.txt: Assessment of allelic imbalance in CpG 

methylation.

Explanations of the columns are as follows:

• chromosome,start,end: position of the SNV. Coordinates are 0-based in hg38

• Allele1[2].[Un]Methylated (int): Number of [un]methylated CpG in the 300 bp 

region surrounding Allele1[2]

• Number.of.good.reads (int): Number of reads used to count methylated and 

unmethylated CpGs

• Is.on.heterozygous.CpG (binary): 0 indicates that the variant is not on CpG; 1 

indicates that the variant is on CpG

• P.Values (float): p-value of Fisher’s exact test based on Allele1.Methylated, 

Allele1.Unmethylated, Allele2.Methylated, and Allele2.Unmethylated

• FDR (float): Adjusted p-value based on Benjamini-Hochberg method

• Methylation.Allele1[2] (float): Fraction of methylated CpG in the 300 bp 

window of allele1[2]

• Methylation.Difference (float): Methylation.Allele1 - Methylation.Allele2

• Phasing.Set (string): Phasing set designated by individual VCF

• Tissue (string): Tissue from which the sequenced sample originated

• Individual (string): EN-TEx individual ID

AS Hi-C Interactions: Each pair of the paired-end reads are aligned separately to both 

of the parental haplotypes using BWA-MEM94. Sequencing reads are then paired based 

on their read names. Each paired-end read is then assigned to either one or both of the 

parental haplotypes as follows: for each paired-end read, a score is assigned to each parental 

haplotype based on the number of mismatches of the mapping to that haplotype. Paired-end 

reads are then assigned to either haplotype 1 or haplotype 2 based on their corresponding 

score. In brief, pairs of reads are assigned to a haplotype if they map exclusively or with 

a better score to that haplotype. Additionally, pairs of reads that exclusively map to one of 

the haplotypes are also assigned to that haplotype. After every paired-end read is assigned 

to a parental haplotype, chimeric reads and PCR duplicates are removed and we generate an 

interaction matrix for each haplotype of each tissue of each individual (Data S10A–B for the 

pipeline and Data S10C for the matrices).

For each significant interaction captured by Fit-Hi-C, we found the number of reads that 

map to haplotype 1 and haplotype 2 using the haplotype-specific interaction matrices. If 

there was a difference in the number of reads that mapped to one haplotype vs. the other, we 

then calculated the p-value for the significance of the allelic imbalance using a binomial test. 

The results are reported in the following file.
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File: hic_files.tar.gz: Allele-specific Hi-C interactions.

The above file contains two folders: “ref” and “pgenome”. The “ref” folder contains .hic 

files for each individual and tissue (each individual and tissue combination is a separate 

folder, totaling up to eight folders); these files contain information on the genome-wide 

interaction matrices. The information can be extracted using Juicer tools and the contact 

matrices can be visualized using Juicebox (Data S10C for an example). The “Pgenome” 

folder contains two subfolders: “hap1” and “hap2”. Each of these folders contain two .hic 

files for each chromosome of each individual and tissue. Chr*.hap*.hic files contain the 

Hi-C data for that chromosome in personal genome coordinates and Chr*.hap*2ref.hic 

files contain the Hi-C data for that chromosome in a reference genome coordinate (lifted 

over using personal genome chain files). Data S10D shows the total number of raw AS 

interactions and significant allelic imbalances per sample (calculated using the binomial test 

described above).

AS Peptide (ASP) Analysis: The proteomics data were mapped at the gene level and 

filtered to a set containing one or more ASPs in any donor. These fell into two categories: 

genes with ASPs for one allele only or those with peptides specific to both alleles. Both 

groups were considered for ASP ratios. The ASP ratios were calculated for each tissue and 

donor in which allelic peptides were quantified, based on the ratio of the summed peptide 

intensities of peptides specific to the two alleles. Individual ASPs were filtered to require a 

minimum of three distinct peptides unambiguously identifying a gene, an expression level 

for the tissue of not less than five-fold lower than the highest expressed tissue and an 

ASP ratio of greater than 0.75. Data S26D summarizes key numbers of genes with allelic 

peptides. A full list of allelic peptides is included in the Supp_data_proteomics.xlsx file 

described in the section “Proteomics”.

AS Elements—(related to “Large-scale Determination of AS SNVs & Construction of the 

AS Catalog” in the main text and Figure S3AB)

Genes and cCREs: We extended our pipeline to measure allelic imbalance at genomic 

regions and elements of interest. To do so, we aggregated read counts from all hetSNVs 

within the relevant region and assessed the significance of imbalances between personal 

haplotypes for individual hetSNVs as described above. We provide a large catalog 

of genomic elements measured for AS activity (e.g., ASE genes and cCREs) with 

corresponding haplotype-specific assay read counts and significance scores of the imbalance 

(Data S11A). Results are summarized in the following files.

File: genes_default_AS.tsv: List of accessible genes with haplotype-specific read 

counts.

File: cCREs_default_AS.tsv: List of accessible regulatory elements with haplotype-

specific read counts.

Columns in these files are similar to those described in the section “ASE, AS Binding 

(ASB), and AS Chromatin Accessibility (ASCA)” with the following differences:
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4) region_id : gene name (GENCODE v24) or cCRE id

5–6) hap1_count/hap2_count : number of reads mapped to haplotype 1/2

Correlation Between AS Genes and Diseases: We compared the set of AS genes to a set 

of genes associated with certain diseases. The list of disease genes includes those known 

to be affected by disease-associated mutations and expressed in disease-related tissues121. 

For each tissue and individual, we noted the genes that were present in both the set of AS 

genes and the set of disease genes. Many of the correlations were sensible. For example, 

TSHR, TG, and PAX8, which are associated with hyperthyroidism, showed AS behavior in 

the thyroid, and TNNT2, LDB3, and SCN5A, associated with cardiomyopathy, showed AS 

expression in the heart. The list of the overlapping genes and their associated diseases can be 

found in the following file.

File: Associated_AS_Disease_Genes.xlsx: Allele-specific genes associated with 

diseases.

Gene Ontology Enrichment Analysis of AS Genes: To determine the characteristics 

of active AS genes, we performed gene ontology enrichment analysis of protein-coding 

genes that showed AS activity in different assays (Data S11B). DAVID Bioinformatics 

Resources 6.8122,123 was used to perform the functional annotation clustering. For ASB, the 

background list for each assay includes all protein-coding genes with accessible promoters 

in that assay; for ASE, the background list includes all protein-coding genes with an 

accessible expression level from RNA-seq. The AS gene list for each assay includes genes 

showing AS activity in any EN-TEx individual or tissue, and genes were ranked by p-value 

to be AS genes. For ASE analysis, since DAVID has a 3,000 gene limit, the top 3,000 

mostly ASE+ protein-coding genes were selected for the enrichment analysis, and the top 

20 enriched terms are shown. We found that protein-coding genes showing AS activity 

in assays are mostly enriched in phosphoprotein, and their sequences are featured with 

polymorphisms and variants.

Aggregation: Aggregating Individual AS Events Across Tissues and Assays (related to 

“Large-scale Determination of AS SNVs & Construction of the AS Catalog” in the main 

text, Figures 1C and S3CD)

We use two strategies for aggregating AS events across tissues and assays (see Figure 

1C and Figure S3A–D). The first is to simply take the union of AS SNVs from each 

individual tissue or assay. The second is to pool the reads across different tissues or assays 

and then re-perform the allelic calculation using the pooled reads as input. This increases 

the statistical power of the allelic calculation at the expense of distinguishing AS behavior 

between different tissues or assays. We employ both methods in constructing the EN-TEx 

AS catalog. In Alleleseq2, we developed an approach to pool reads from alignment files 

obtained from multiple tissue samples (or assays) to reassess AS imbalance and generate 

a “pooled” joint call set (see “ASE, ASB, and ASCA” below). We also provide a script 
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that allows for the union of call sets from donors/tissues/assays as part of the AlleleSeq2 

repository, creating “union” call sets.

ASE, ASB, and ASCA: We observed a large increase in detection power when we pooled 

reads for each hetSNV across all tissues in each individual. We calculated the significance of 

the imbalance at each hetSNV for the pooled call set in the same manner as for individual 

tissues and called ASE, ASB and ASCA sites at an FDR of 10%22,45. Figure 1C and Figure 

S3 provide a summary of the AS catalog, including the number of AS hetSNV and AS 

elements, with different aggregation methods and levels. Results of the aggregation can be 

found in the following file.

File: hetSNVs_pooled_AS.tsv: List of accessible hetSNVs with haplotype-specific 

read counts pooled across tissues.

File: hetSNVs_pooled_AS_DNase.tsv: List of accessible hetSNVs with haplotype-

specific read counts pooled across tissues from the DNase-seq datasets.

Methylation: We aggregated the counts of methylated and unmethylated homozygous 

CpG positions surrounding both alleles of each heterozygous SNV across tissues for each 

individual to assess the cross-tissue association between the allele at the hetSNV position 

and the methylation state of the homozygous CpGs. The significance of association was 

computed using Fisher’s exact test; the Benjamini-Hochberg method was used to control 

the FDR. For aggregated observation, the test was only performed for accessible hetSNV 

positions that showed a minimum observation of methylated or unmethylated homozygous 

CpG positions for both alleles. The number of positions n (around 12) was determined by 

maximizing the sum of p-values. ASMs were called at FDR values under 10% and absolute 

methylation differences larger than 10%.

We then generated a combined ASM call set that includes cross-tissue counts of methylated 

and unmethylated homozygous CpG observations surrounding accessible hetSNVs for all 

four individuals. Identical hetSNVs across individuals were included as separate records of 

CpG counts. All accessible hetSNVs, their associated gene, distance to gene, and genomic 

region were annotated based on the refGene database. Alternative allele frequency was 

annotated based on the Genome Aggregation Database (gnomAD) 3.0 database using 

ANNOVAR124. cCREs were annotated based on ENCODE. The aggregated result can be 

found in the following file, with columns similar to those described in the section “Allele-

Specific Methylation”.

File: ENTEx.TissueAggregated.final.txt: Assessment of allelic imbalance in CpG 

methylation with haplotype-specific methylated and unmethylated homozygous CpGs 

pooled across tissues.

Note that in Figure 2B, because DNA methylation tends to repress gene expression, the 

polarity (direction of AS imbalance) of the AS DNA methylation in the promoter region 

is in the opposite direction to that of the AS expression and chromatin active state in the 

gene body. As expected, the active epigenetic marks H3K4me3 and H3K27ac demonstrate 

consistent AS imbalances, and most of the AS SNVs associated with DNAH11 are known 

eQTLs from GTEx. One such SNV (rs11760336) lies within the DNAH11 promoter, likely 
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changing the gene expression directly. In addition, some of the AS SNVs overlap with 

known GWAS variants as indicated in the figure.

AS Catalog—(related to “Large-scale Determination of AS SNVs & Construction of the 

AS Catalog” in the main text, Figures 1C and S3BDEF)

Generalizability of the AS catalog: We discovered over one million SNVs that show AS 

activity in gene expression, DNA methylation, histone modification, and/or TF binding. This 

catalog should cover a large fraction of AS activity of common SNVs. To estimate the 

coverage, we started by using the 1,000 Genomes project high-coverage data125 to assign 

allele frequencies to the EN-TEx SNVs. We found that 76% (i.e., 5,276K) of the common 

SNVs (EUR MAF > 5%) in 503 European individuals (specifically, individuals of GBR, 

FIN, IBS, TSI, and CEU) were discovered in EN-TEx, 4,414K of which were heterozygous 

and unambiguously genotyped in at least one of the four EN-TEx individuals. Among these 

4,414K SNVs, 946K (21.4%) show AS activity in at least one assay (whereas 63K of the 

AS variants are rare, EUR MAF < 1%). If the EN-TEx project was conducted on all 503 

European individuals from the 1,000 Genomes project, which contains 6,946K common 

SNVs with AF < 1, then the number of AS SNVs would be 6,946K * 21.4% = 1,486K 

(assuming each of the 6,946K SNVs is heterozygous in at least one individual). This number 

is only a 540K increase from the 946K that are currently in the AS catalog, indicating that 

our catalog includes a majority of the AS events at common SNV loci in the European 

population.

While previous studies also compiled AS histone modifications and/or DNA methylation, 

our catalog is larger. For example, while Onuchic et al.28 reported 125K ASM loci, 36K 

loci with ASB H3K27ac, and 0.5K loci with ASB H3K27me3 (Table S1 of Onuchic et al.), 

our catalog includes 469K, 79K, and 96K loci, respectively. Similarly, Chen et al.22 used 

SNVs discovered by the 1,000 Genomes project (2,504 individuals) to construct a diploid 

genome for each of the 384 individuals compiled by Geuvadis. They mapped RNA-seq 

and ChIP-seq to these diploid genomes and identified 63K ASE hetSNVs and 6.1K ASB 

(ChIP-seq) hetSNVs, the latter of which is a much smaller number than the 361K in our 

catalog. In terms of AS activity in the regulatory regions, we also found more (28K vs. 

11.7K) AS cCREs than a similar study using the Roadmap data46. While we note that the 

EN-TEx resource does not have more ASE events than GTEx126 or AlleleDB22, we found 

that ASE is only a small fraction of all the AS events in the genome (Data S8B–C). Most AS 

events are related to the chromatin states of the regulatory regions.

Calling AS Events in External Datasets Used for Validation: In addition to the EN-TEx 

AS catalog, we have generated ASE and ASB call sets for the CEPH individual NA12878 

and Roadmap12 individuals STL002 and STL003. We used these call sets for external 

validation of our predictive models.

Personal genome sequences for STL002 and STL003 were constructed using variant 

calls generated previously28. For NA12878, we used SNVs and indels available from the 

Illumina Platinum Genomes project127 (2016–1.0) and large deletions generated by the 

1,000 Genomes Phase 3 SV Analysis Group128. All datasets with matching assays (and all 
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tissues for STL002 and STL003) that are available from the ENCODE portal were utilized 

to generate the AS call sets. These personal genome files are available as described below.

File: pgenome_NA12878.tar.gz: Personal genome for NA12878.

File: pgenome_STL-002.tar.gz: Personal genome for STL002.

File: pgenome_STL-003.tar.gz: Personal genome for STL003.

See Data S12 for the number of AS hetSNVs detected in each sample. The files are 

formatted as described in the section “ASE, AS Binding (ASB), and AS Chromatin 

Accessibility (ASCA)”. These call sets were used for validation of predictive models 

described in the sections “Prediction of Promoter AS Activity With a Random Forest 

Model” and “ASEffect Prediction with the BERT Model”.

High-confidence and High-power Call Sets: We also developed a “high-confidence” call 

set requiring that at least one read from both alleles was detected in the functional genomics 

assay, thus accounting for potential false-positive genotype calls. In addition, we generated 

a “high-power” tissue-specific call set by allowing a more relaxed threshold (FDR 20%) 

for loci that were detected as significantly imbalanced after read pooling-based joint calling 

across all tissues (Data S13A). These two call sets can be accessed in the following files.

File: hetSNVs_high-confidence_AS.tsv: List of hetSNVs with high-confidence allelic 

imbalance calculations.

File: hetSNVs_high-power_AS.tsv: List of hetSNVs with the high-power allelic 

imbalance calculations.

In addition, we tested two methods for increasing detection power of AS hetSNVs in 

datasets with low read counts. Both methods impose a less strict test for allele specificity on 

hetSNVs that have been determined to be AS in prior experiments. This prior knowledge can 

be taken from other experiments on the same individual, or from experiments on different 

individuals entirely. The first “high-power” method relaxes the FDR threshold from 10% 

to 20% for all hetSNVs that have prior evidence of allele specificity. All other hetSNVs 

are evaluated at the usual 10% FDR threshold. The second method uses a one-sided beta-

binomial test, instead of the default two-sided test, to determine whether the direction of 

imbalance is consistent with prior data. With both high-power methods, new AS hetSNVs 

are identified that did not meet the threshold using the default calling method.

To validate these high-power methods, we tested them on a deep RNA-seq experiment of 

the cell line GM12878 (Data S13B–E). We first identified ASE hetSNVs in the dataset 

using our default calling method. This was our “gold standard” list of 24,685 ASE hetSNVs. 

Then, we simulated a shallower sequencing experiment by downsampling by a factor of 4. 

Using the default ASE calling method on the downsampled dataset, we identified 6,928 ASE 

hetSNVs. Approximately 80% of these hetSNVs were in common with the gold-standard 

list. We expect that the error rate is a product of the randomness of downsampling. Then, 

both high-power calling methods were performed on the downsampled dataset.

We generated priors for the high-power methods using the pooled reads across all tissues 

from the four EN-TEx individuals. If a hetSNV was ASE in at least one individual, it 
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was included in the high-power test. If two or more individuals had ASE of the same 

hetSNVs, the direction of imbalance should agree (e.g., both favor the reference allele over 

the alternative allele), otherwise that hetSNV was excluded. We did not take into account the 

identity of the alternative allele for any hetSNV.

For the relaxed FDR method, 122 new ASE hetSNVs were identified that did not meet the 

threshold for allele specificity using the default method. For the one-sided method, 275 new 

ASE hetSNVs were identified. For both, approximately 60% of the new ASE hetSNVs were 

in common with the “gold standard” list. The validation shows that both methods can be 

used to identify a modest number of new ASE hetSNVs, at the cost of somewhat reduced 

specificity.

It should be noted that the results of the high-power methods are dependent on the nature 

of the prior. Both methods can only be used to evaluate hetSNVs for which there is prior 

information. Using data from the EN-TEx individuals as a prior for non-EN-TEx cell 

lines such as GM12878 captures most common hetSNVs but excludes most rare variants. 

If more of the individual’s hetSNVs are in common with the prior, it is likely that the 

high-power methods will identify more AS hetSNVs. In the case of the EN-TEx individuals, 

we circumvent this problem by using AS hetSNVs identified from the all-tissue pooled reads 

as the prior for high-power analysis of individual tissue datasets. Because both sets come 

from the same individual, they share both common and rare variants.

Integration with the ClinGen Allele Registry: The variants identified in all four EN-TEx 

individuals are registered in the ClinGen Allele Registry129, which provides unique variant 

identifiers for canonical alleles defined at the level of nucleic acid sequences or at the 

level of proteins. The unique identifier integrates different types of labels and definitions 

of the same allele across multiple databases including dbSNP130, gnomAD131, ClinVar132, 

and ExAC133; approximately 24K variants were previously recorded in ClinVar134. A total 

of 58 variants are classified as ‘pathogenic’ or ‘likely pathogenic’, 14 of which show AS 

behavior (including ASM) in at least one of the EN-TEx samples. All variants are bulk 

registered in VCF format using API specified by Allele Registry documentation (http://

reg.clinicalgenome.org/doc/AlleleRegistry_1.01.xx_api_v1.pdf). Variants can be queried 

either programmatically via APIs or via search interface using any type of ID associated 

with the variant. Metadata for allele(s) are available in machine readable form (JSON) on 

ClinGen and can be queried in bulk as well.

AS Examples: Illustrating the Coordination of AS Activity Across Assays (related to 

“Examples of Coordinated AS Activity, involving SNVs & SVs” in the main text, Figures 2 

and S4)

X-chromosome inactivation (XCI) presents an ideal opportunity to showcase coordinated 

AS activity inferred using the EN-TEx resource while allowing for important biological 

discoveries. We first categorized the AS activity into three categories: “gene expression”, 

“active histone mark enrichment”, and “repressive histone mark enrichment”. For gene 

expression, we used AS RNA-seq data. For the active and repressive histone mark 

enrichments, we pooled seven (CTCF, EP300, H3K27ac, H3K4me1, H3K4me3, POLR2A, 
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and POLR2AphosphoS5) and two (H3K27me3 and H3K9me3) histone marks for each 

tissue, respectively. We then analyzed the AS activity of each pooled dataset.

To determine which haplotype is inactivated, we calculated the log2 ratio of activity between 

the haplotypes as log2(haplotype1/haplotype2). This calculation was performed for all 

tissues of both female individuals (ENC-003 and ENC-004) as shown in Data S14A. For 

gene expression, the ratio relates individual gene read counts between haplotypes. For either 

active or repressive marks, the ratio relates the sum of activity within a +/− 10 Kb region 

surrounding each gene. We also computed a tissue-level score by calculating the mean log2 

ratio across all genes in each tissue (top bar in Data S14A). As shown in Figure 2A and Data 

S14A, most tissues have the same haplotype inactivated in both individuals. Active histone 

marks and gene expression showed bias in the same direction, highlighting the coordinated 

activity across the X chromosome. By contrast, activating and repressive histone marks 

showed limited (due to data sparsity) bias in opposite directions. These observations were 

quantified by a cosine similarity analysis in Data S14B.

We then sought to identify genes that escape XCI, denoted as “escaper”, using the EN-TEx 

resource. Escaper genes (Data S14C, top) were identified as those genes that were expressed 

in at least eight tissues and showed balanced expression (log2 ratio between −0.4 and 0.4 

[inclusive]) in 60% of their expressed tissues. Tissues that showed balanced expression 

were excluded from this analysis (ENC-003: LIVER and OVARY; ENC-004: ADPSBQ, 

ADRNLG, ESPMSM, ESPSQE, HRTAA, STMACH, SKINNS, and SKINS). A curated list 

of escaper genes in both individuals was created (Data S14C, bottom) and their status was 

validated by a literature review. Data S14D shows three examples of identified escaper 

genes that show balanced gene expression between both haplotypes despite tissues showing 

a strong bias towards one haplotype. We also provide a breakdown of haplotype specificity 

in XCI across different chromatin marks and gene expression in Data S14E–F.

We found an example of AS activity for a less-characterized locus in ENC-003. We 

detected AS Hi-C interactions in the XACT locus (Data S14G) on the active copy of the 

X chromosome. We first determined the active copy of the X chromosome by considering 

the gene expression distribution on both haplotypes and found that haplotype 2 has more 

gene expression than haplotype 1. We then looked at the differential interaction of the 

X chromosome by subtracting the Hi-C matrices of the haplotypes. We found that an 

interaction between the XACT locus and an upstream region is significantly elevated in the 

active haplotype. We also found that both the XACT locus and the upstream region are 

bound to CTCF, which might be mediating the interaction. XACT is a long non-coding 

RNA (lncRNA) found to be active in the active copy of the X chromosome early in 

cell development. This CTCF-mediated haplotype-specific interaction could play a role 

in activating the XACT locus established at early stages of cell development. While such 

observations are interesting, they are provisional on additional supportive data. Our analysis 

of haplotype-specific Hi-C data revealed an AS skew in Hi-C interactions between another 

gene, XACT, and its potential distal regulatory element on the active haplotype of the X 

chromosome (see Data S14G).
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SVs: Illustrating the Impact of Structural Variants (related to “Examples of Coordinated AS 

Activity, involving SNVs & SVs” in the main text, Figures 2DEF and S4BC)

Analysis of SVs: We focused our analysis on SVs that are larger than or equal to 50 

bp, although the VCF files of each individual also contain smaller “SVs.” Note that the 

SVs identified from Oxford Nanopore data had fewer large insertions than those identified 

from the PacBio data (Data S15). This likely resulted from differences between the two 

sequencing technologies79,135.

To analyze the sequence composition of the SVs, we used RepeatMasker (ver. 4.0.7, 

slow search mode, http://www.repeatmasker.org) to classify the sequences that are inserted, 

deleted, or inverted. We also estimated the allele frequencies of the SVs. For this purpose, 

we checked for overlaps in the location between the EN-TEx SVs and those reported by 

Audano et al. (2019)36. To increase the chance of finding an overlap between these two 

datasets, we used the confidence intervals (CIs) of an EN-TEx SV’s coordinates as the 

location of the SV. Specifically, the CIs of the breakpoints were denoted by CI_POS and 

CI_END in the VCFs of individuals 2 and 3. The SVs of individuals 1 and 4 were called 

by different tools; therefore, the corresponding VCFs did not have CI_POS and CI_END. 

Instead, we used +/− 2*STD_quant_start as the Cl of the POS and +/− 2*STD_quant_stop 

as that of the END. For DELs and INVs, we extended the POS upstream by its CI and 

the END downstream by its CI. For INSs, we extended the POS upstream and downstream 

but did not extend the END. When an overlap was found, we further checked whether the 

two SVs were of the same type (e.g., both are deletions). If the two SVs were not the 

same type, we considered the two SVs to be different. Through this analysis, we matched 

SVs in Audano et al. (2019) with 68.3%, 65.9%, 63.4%, and 65.3% of the SVs in the four 

individuals, respectively. We assigned these EN-TEx SVs an allele frequency in European 

populations estimated by Audano et al. (2019)36. We performed a similar analysis by using 

more recent SVs called from long-read DNA sequencing data136 and gnomAD SVs131. A 

total of 71.4%, 68.9%, 66.5%, and 68.0% of the SVs in the four individuals, respectively, 

overlap with the former dataset. Because gnomAD annotates SVs differently, we allowed 

EN-TEx “INS” to match “INS”, “DUP”, “BND”, and “MCNV” in gnomAD, EN-TEx 

“DEL” to match gnomAD “DEL”, “BND”, and “MCNV”, and EN-TEx “INV” to match 

gnomAD “INV” and “BND”. In this way, we found a match for 63.4%, 61.4%, 60.3%, and 

63.1% of the SVs in the four individuals, respectively.

To understand how SVs distribute in the genome, we generated a null expectation of SV 

distribution by shuffling the locations of SVs, using a method similar to that used in the 

1,000 Genomes SV study128. Specifically, we placed the SVs in random locations on the 

same chromosome while avoiding gaps in the assembly. We calculated the ratio of the 

number of unshuffled SVs intersecting a given genomic region over the number of shuffled 

SVs. We repeated the shuffling 1,000 times.

Associating SVs with eQTLs: We aimed to identify heterozygous SVs that potentially 

cause AS gene expression and underlie the action of known eQTLs. To do this, we first 

identified eQTLs73 that are compatible with the ASE of the associated genes. For each 

ASE gene, we checked if the two alleles at each associated eQTL locus had the expected 
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regulatory effect. The numbers of heterozygous SNPs and indels that were identified as 

compatible eQTLs in at least one tissue were 219K, 190K, 184K, and 137K in the four 

individuals, respectively (Data S16A–B). We used the compatible eQTLs associated with a 

given ASE gene to define a window spanning from –10 Kb of the compatible eQTL on the 

far 5’ end to +10 Kb of the compatible eQTL on the far 3’ end. For a heterozygous SV 

that intersects with this window, we determined whether the SV and the compatible eQTLs 

may locate on the same linkage block by comparing their allele frequency and haplotype. 

Specifically, for each SV identified in the last step, we identified all compatible eQTLs (with 

respect to the given ASE gene) that fell within +/− 10 Kb of the SV. Suppose the SV is on 

haplotype 1, then we calculated the allele frequencies of the alleles of the compatible eQTLs 

on haplotype 1. Here, we used the allele frequency in the European population reported by 

the 1,000 Genomes project125 for the alleles at each compatible eQTL. For each individual, 

about 500 ~ 800 compatible eQTLs carried an alternative allele that could be found in the 

1,000 Genomes project. These compatible eQTLs were excluded from the next steps. If 

at least 30% of the haplotype 1 alleles of the compatible eQTLs within +/− 10 Kb of the 

SV had similar allele frequencies as the SV’s allele frequency (defined as 80–120% of the 

SV’s allele frequency), then we considered the SV to be potentially linked to the compatible 

eQTLs and that it may contribute to the ASE of the given gene. We listed SVs that meet this 

criteria, the associated ASE gene, and the compatible eQTLs +/− 10 kb from the SVs in the 

following file.

File: Supp_Data_SVs_associated_with_eQTL.xlsx: List of SV associated with allele-

specific expressed genes and eQTLs.

We identified known eQTL-associated SVs (including SV-eQTLs)128,137 in our list of 

potential eQTL-associated SVs. We considered that an SV was a match if a reported 

eQTL-associated SV was found within +/−100 bp of this SV and both SVs were associated 

with the same gene. We searched for matches in tissue-specific and non-tissue-specific 

ways. For individual 1, our list includes 337 SVs that are associated with eQTLs in at 

least one tissue, of which 67 match known eQTL-associated SVs. The fractions are 84/317, 

70/304, and 46/215 for individuals 2 to 4, respectively. Details of these results are listed 

in Supp_Data_SVs_associated_with_eQTL.xlsx. For comparison, we also calculated the 

fraction of known eQTL-associated SVs in our SVs that are close to genes with ASE (Data 

S16C–E). We pooled genes that have ASE in at least one tissue. Because GTEx eQTLs fall 

within +/− 1 Mb of the TSS of genes73, we used the same window to look for SVs near 

the genes with ASE, requiring the SVs to at least partially overlap with the windows. We 

further required SVs to be heterozygous, clearly phased, and relatively common (i.e., present 

in Audano et al. (2019)36). We found 4,912 SVs in individual 1 that meet these criteria, of 

which 596 match known eQTL-associated SVs. This fraction is significantly lower than the 

observed fraction of 67/337 (p = 3.4e-5, Chi-square test). We observed similar enrichment in 

the other three individuals (p = 4.2e-12, 3.1e-4, 4.9e-6).

See Data S17 for examples of indels potentially changing the gene expression and examples 

of splicing variants.
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Aggregating the Impact of SVs on Neighboring Chromatin: Our goal is to calculate 

potential changes in the chromatin state in the neighborhood of SVs. Intuitively, this can be 

done by comparing the chromatin state near heterozygous SVs between the haplotypes of an 

individual. We excluded heterozygous SVs within 5 Kb of other SVs in the same individual.

In the remaining heterozygous SVs, we focused on those that have relatively precise 

breakpoints. Specifically, we kept SVs where the total lengths of the start position’s 

confidence interval and the end position’s confidence interval are at most 50 bp. To 

minimize the influence of SVs on mapping sequence reads, we further excluded SVs for 

which the average mappability of a window +/− 500 bp of the SV is below 0.9. Because 

EN-TEx requires the length of a ChIP-seq read to be at least 50 bp, we used 50-mer multi-

reads Umap mappability138 to filter SVs when calculating potential disruption to chromatin 

openness (measured by ATAC-seq) and histone modifications (measured by ChIP-seq). We 

used 100-mer multi-reads Bismap mappability138 to filter SVs when working with WGBS 

data. We also excluded SVs that fall in blacklist regions that are known to give problematic 

ChIP-seq reads139. When Umap mappability was used, the numbers of SVs that passed 

the filters were 3,931, 3,636, 3,006, and 3,258 for the four individuals, respectively. When 

Bismap mappability was used, the numbers were 4,522, 4,246, 3,497, and 3,777.

For each SV that passed the above filters, we calculated the average chromatin state in 

the SV’s flanking regions. We defined flanking regions of an SV as the −500 bp ~ −100 

bp region and the 100 bp ~ 500 bp region (Data S18A) – the extra 100 bp upstream and 

downstream of the SV are extra buffer regions that should reduce the influence of SVs on 

mapping sequencing reads. Because the chromatin state can be tissue specific and individual 

specific, we treated the SV-sample combinations as independent data points. We summed 

the allelic ATAC-seq and ChIP-seq reads on hetSNVs that fall into the flanking regions 

of a given SV in a given sample. For ATAC-seq and each ChIP-seq assay, we excluded 

SV-sample combinations in which the total reads from both haplotypes were less than 15. 

This step left about 4.4 K ~ 7.2 K SV-sample combinations (each SV has 2.9 ~ 3.8 samples 

on average) for the ChIP-seq assay. If the haploid that carries the SV had 70% or less 

reads (e.g., ATAC-seq reads) than the other haploid, we considered that the SV reduces 

the given chromatin state (e.g., chromatin openness). For CpG methylation measured by 

WGBS, we averaged the ASM levels around hetSNVs that fall into the flanking regions 

of SVs. About 58% of the SV-sample combinations lacked suitable hetSNVs in the SV 

flanking regions. We similarly required at least 70% reduction in the methylation levels 

near SVs, but we included all 45.6 K SV-sample combinations (6.2 samples per SV), since 

the general methylation levels of CpGs were high (in 98% of SV-sample combinations the 

methylation levels of the SV flanking regions averaged over the two haplotypes were above 

50%). For each chromatin state, we reported the fraction of SV-sample combinations where 

the chromatin state was reduced near the SVs (Data S18B–D).

We also repeated the analysis by comparing one individual that carries the SV with one who 

does not. In this case, we excluded SVs within 5 Kb of any other SVs in individual 2 or 

individual 3, and SVs that fall on the sex chromosomes. We similarly filtered out SVs that 

have imprecise breakpoints and/or low mappability in the neighborhoods. A total of 1,974 
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SVs in individual 2 and 2,154 in individual 3 passed the filters when Umap mappability was 

used; the numbers were 2,294 and 2,478 when Bismap mappability was used.

We calculated the average fold-change over control of ATAC-seq and histone ChIP-seq, and 

the average methylation levels of CpG sites, in the flanking regions of SVs. For ATAC-seq 

and histone ChIP-seq, we also excluded SV-assay combinations in which the sum of the 

fold-change over the two individuals is less than 1.0, leaving 43 ~ 93% of the SV-assay 

combinations to determine reduction in chromatin state. For DNA methylation, we included 

all SV-assay combinations. To qualify a reduction in chromatin state, the above signal in 

the individual who carries the given SV must be 70% or lower than in the individual who 

does not. The right panels of Data S18C show the fraction of SV-assay combinations where 

a given chromatin state is reduced near the SVs. Again, transposable element-related SVs 

tended to reduce chromatin openness and H3K27ac levels in the neighboring regions.

Decoration Process: Layering EN-TEx Information on ENCODE cCREs (related to 

“Application 1: Decorating ENCODE Elements with EN-TEx Tissue & AS Information” in 

the main text, Figures 3A and S5A)

Signal Normalization Method: In order to overcome batch effects, matrices of 

gene expression and histone marks’ values were quantile-normalized across samples 

(tissues and donors). The choice of the quantile normalization method was made after 

performing benchmarking of several normalization methods. The methods selected for 

the benchmarking are among the ones analyzed in a recent publication140: quantile 

normalization, smooth quantile normalization, upper-quartile normalization, variance 

stabilization normalization, and local regression normalization (two variants: LoessF and 

LoessCyc). These normalization techniques are widely applied in other bioinformatics 

fields, such as microarray and proteomics analyses. The pilot analysis was performed 

independently for two cell lines, K562 and GM12878, for which different polyA+ RNA-

seq evaluation datasets were produced by the Wold, Gingeras, and Graveley labs during 

ENCODE Phase II. The benchmarking consisted of three steps: i) for each method, we 

computed the distribution of Pearson’s and Spearman’s correlation coefficients across all 

genes between each pair of samples; ii) we ranked the methods based on the mean of the 

distribution of all genes’ variance across samples141, and iii) we calculated the relative log 

expression distribution (distribution of log2 ratio for a given gene between one particular 

sample and the median across all samples), which should be close to 0142. Overall, the 

quantile and smooth quantile normalization techniques performed similarly between each 

other and better than the other methods. We thus opted for quantile normalization. For 

each of the histone modifications used in the decoration procedure below, we provide 

the quantile-normalized fold-change signals of cCREs across all the available tissues and 

individuals. The data file for each of the histone modifications is a data matrix, in which 

each row corresponds to a cCRE and each column corresponds to a tissue from an 

individual. As a result, the element in the matrix is the quantilenormalized signal of the 

histone modification observed in the cCRE from a tissue. These data are available in the 

following file.
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File: cCRE_histoneSignals_qnorm.tar.gz: Normalized signal matrix of histone 

modifications in cCREs.

Decoration of Regulatory Annotations: We used the ChIP-seq datasets of both active and 

repressed marks to decorate (i.e., re-annotate) the cCREs from ENCODE, which are based 

on a set of high-quality DNase hypersensitive sites75. The ENCODE regulatory elements 

consist of 0.9 million cCREs averaging ~400 bp. For each type of functional genomic 

data, we normalized the activity signals of the cCREs from all tissues and focused on the 

cCREs with relatively strong signals (Data S19A). In the decoration, we considered three 

active marks (H3K27ac, H3K4me1, and H3K4me3) and three repressed marks (H3K27me3, 

H3K9me3, and DNA methylation). ChIP-seq datasets were uniformly processed using the 

ENCODE standard pipeline, including alignment, quality control, and peak calling. With 

the uniformly processed ChIP-seq datasets, the average epigenomic signals were calculated 

and normalized for a registry of cCREs from ENCODE (Data S19A). Namely, we first 

calculated the average fold-change against the control, typically input DNA, for each cCRE. 

The average fold-change was quantile normalized independently across experiments but 

jointly between individuals and tissues. Finally, the scores for each experiment were scaled 

from 1 to 10. For a particular tissue type, we defined a set of cCREs for each epigenomic 

mark that are considered as “active” (i.e., thresholding the normalized and scaled quantile 

values of the cCREs). The thresholding value was calculated for each assay by maximizing 

the similarity – the fraction of shared active cCREs – among the four individuals across 

tissues. We used the average threshold score across the transverse colon, spleen, and 

esophagus, since those were the most commonly comprehensive assays across individuals.

For each tissue, we then defined a set of active, repressed, and bivalent cCREs based on 

their active and repressed epigenomic signals, respectively (Data S19B; Figure S5A as an 

example from spleen). Briefly, the active cCREs show high activity for only the active marks 

(i.e., H3K27ac, H3K4me1, and H3K4me3); the repressed cCREs show high activity for only 

the repressed marks (i.e., H3K27me3, H3K9me3, and DNA methylation); and the bivalent 

cCREs show high activity for both the active and the repressed marks. Note that repressed 

and bivalent categories are not included in the current ENCODE encyclopedia. The cCREs 

were then separated into distal and proximal groups according to their distance to TSSs 

(proximal as those within 2 Kb of annotated TSSs). We also intersected these cCREs with 

the CTCF binding sites from the matched tissue type to define CTCF+ and CTCF− cCREs. 

Finally, the active and repressed cCREs were further annotated using their allelic signature 

to identify a set of AS and non-AS cCREs, respectively. In the AS decoration, we used 

the allelic signature from the matched epigenomic marks to define the active/repressed AS 

and non-AS cCREs. Any active/repressed cCREs intersecting with the AS cCREs were 

considered to be active/repressed AS cCREs. The active/repressed AS cCREs from different 

individuals were pooled together to generate a set of active/repressed AS cCREs in the 

corresponding tissue. We found that the numbers of repressed cCREs are comparable to 

those of active cCREs in many tissue types, highlighting the necessity of decoration using 

the repressed markers (Data S19C). Finally, we provided the cCRE decoration results (Data 

S19D) in all the tissue types in the following files.
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File: cCRE_decoration.matrix: Candidate cis-regulatory elements annotated by the 

EN-TEx resource.

File: active.combined_set.txt.zip: Active candidate cis-regulatory elements of all the 

human tissues.

File: bivalent.combined_set.txt.zip: Candidate cis-regulatory elements that have both 

active and repressive signals.

File: repressed.combined_set.txt.zip: Repressed candidate cis-regulatory elements of 

all the human tissues.

To further explore the association between DNA methylation and other repressive histone 

modifications (i.e., H3K27me3 and H3K9me3), we partitioned the repressive cCREs from 

each tissue type into diverse groups, which contain only DNA methylation or only repressive 

histone modifications or both (Data S20D). We found that on average 53.2% of the 

repressive cCREs contain DNA methylation (Data S20E), and very few repressive cCREs 

are supported by multiple repressive epigenomic modifications (i.e., DNA methylation and 

H3K27me3/H3K9me3) (Data S20D).

File: Repressive_cCRE_DNAmethy_repressiveHM.zip: Binary tables showing 

whether the repressive cCREs are supported by DNA methylation or repressive 

histone modifications (H3K27me3 and H3K9me3) in each tissue type.

File: Repressive_cCRE_DNAmethy_repressiveHM_summary.csv: Summary of the 

binary tables showing the number and percentage of the repressive cCREs 

with specific patterns of repressive epigenomic modifications (DNA methylation, 

H3K27me3 and H3K9me3) in each tissue type.

A focused subset of the above just giving the cCREs that are methylated is:

File: cCRE_DNAme_subset.tsv.zip: A set of repressed cCREs with DNA methylation 

signals.

The first column is the cCRE ID and the second column is the tissues in which the cCRE 

was found. On average, there are 144K methylated repressed regions per tissue.

In order to further subdivide the active cCREs, we created an annotation set that focuses 

on regions with high H3K27ac signals. We call this set the “stringent” annotation set. To 

create this stringent annotation, we intersected the cCRE regions with the top 1% of scored 

regions as prioritized by the H3K27ac feature from the MatchedFilter program143. This 

stringent annotation was further used in other analyses and labeled as “stringent” in the main 

manuscript and figures. A file containing these stringent regions (bed file) can be found in 

the following file.

File: stringent.regions.MF.hg38.bed: Stringent regions with high MatchedFilter 

scores.

Completely Repressed Regions: Gene activation and repression can be mediated through 

the combination of different histone marks. Historically, much effort has been devoted to 

elucidating how genes are activated; however, emerging evidence suggests that appropriate 
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heterochromatin formation is required for the preservation of genome stability and the 

cell type-specific silencing of genes144. In the mammalian genome, H3K9me3 and 

H3K27me3 are well-documented histone marks enriched for “constitutive” and “facultative” 

heterochromatin, respectively. For genomic regions not containing any active regulatory 

elements (cCREs), we have identified a set of elements that are marked by either 

H3K9me3 or H3K27me3 and do not have any active marks (H3K27ac, H3K36me3, 

H3K4me1, or H3K4me3) or transcriptional activities as fully repressed in the EN-TEx 

tissues. Regions within the ENCODE4 GRCh38 blacklist (ENCSR636HFF) and GENCODE 

gene list (GRCh38_v24) were removed. In summary, 45,207 non-overlapping elements 

of at least 200 bp in size (roughly approximate nucleosome size) are uniquely marked 

by H3K9me3, spanning 12,655,795 bp (less than 0.4%) of the reference genome, and 

24,006 elements by H3K27me3, spanning 7,474,178 bp (less than 0.3%). As shown in 

Data S20, nearly 75% of these elements are specifically repressed in a certain tissue, and 

the rest show some degree of tissue specificity. It was previously known that H3K27me3-

enriched facultative heterochromatin contains repressed genes in a cell-type-specific manner, 

whereas H3K9me3-enriched constitutive heterochromatin mainly occurs at the same gene-

lacking regions in every cell type145,146. Observations also suggest that large domains of 

H3K9me2/3 form in a cell-type-specific manner and can influence cell identity by silencing 

lineage-inappropriate genes and impeding the conversion of terminally differentiated cells 

into a different cell type, highlighting a role for H3K9me3 in cell-type-specific gene 

regulation144,147–150. Identified elements can be found in the following file.

File: ENTEx_fully_repressed_regions_independent_of_cCREs.bed: Genomic regions 

not containing any active regulatory elements and marked only by repressive histone 

marks, not by active marks or transcriptional activity.

DNA methylation is a major contributor to gene repression and has been reported to interact 

with H3K9me3 in chromatin repressive pathways151. We further analyzed the methylation 

rate of CpG sites within these repressed elements. WGBS of CpG sites were available for 

11 EN-TEx tissues that also have H3K9me3 and H3K27me3 ChIP-seq data. For the same 

tissue from different donors, we aggregated the CpG reads by taking the sum of reads from 

all donors, and considered a CpG site to be methylated (meCpG) when it is covered by at 

least 5x reads and the ratio of meCpG reads is at least 50%. The overall meCpG rate in 

each tissue was calculated and used as a control to evaluate the meCpG rate in H3K9me3- 

and H3K27me3-marked elements. As shown in Data S20A–C, elements uniquely marked 

by H3K9me3 show significantly (t-test, p-values < 0.05) higher meCpG rates than elements 

uniquely marked by H3K27me3. Compared with the control, H3K9me3-marked regions 

seem to be hypermethylated, whereas H3K27me3-marked regions are hypomethylated. This 

is consistent with the current understanding of constitutive heterochromatin and facultative 

heterochromatin, of which the former is defined by high levels of DNA methylation and 

H3K9me3 and the latter displays DNA hypomethylation and high H3K27me3152.

Validating Annotations Using the 3D Genome Organization: Chromosome 

compartments that are observed from principal component analysis (PCA) on a Hi-C 

correlation matrix give insight into the activity level of the chromatin. Chromosomes 

are divided into two distinct compartments, A and B, at a megabase scale153. The A 

Rozowsky et al. Page 47

Cell. Author manuscript; available in PMC 2024 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



compartment (positive values) corresponds to the active regions on the chromosome and the 

B compartment (negative values) corresponds to the inactive regions. Chromatin interactions 

are constrained within the compartment types, e.g., the loci in A compartment interact with 

the loci in the same compartment. Since A/B compartment assignments are proxies for 

the activity level of different loci, our tissue-specific regulatory element annotations can be 

validated by looking at their corresponding compartment in the tissue-level Hi-C data. We 

showed that our annotated tissue-specific active regulatory elements are dominantly located 

in the active compartment of the chromosomes of corresponding tissues, with a significantly 

higher number of regulatory elements per megabase observed in the positive compartment 

values when layered onto the first principal component of the Hi-C data.

We have assessed where the cCREs are located with respect to the chromatin compartments. 

To do so, we first binned the genome into 1 MB consecutive bins. We then counted the total 

number of cCREs in each bin and divided that number by the total number of cCREs in 

the genome, resulting in the cCRE density per 1 MB. We then plotted this density against 

the A/B compartment score obtained by the first eigenvector of the correlation matrix 

calculated from the Hi-C contact matrix. We performed this analysis for the master cCRE 

list from ENCODE3, tissue-specific active cCRE list derived in this study, more restrictive 

tissue-specific active cCRE list derived in this study, and tissue-specific repressed cCRE list 

derived in this study. The scatter plots for two tissues and four individuals are included in 

Data S21.

Tissue Specificity—(related to “Application 1: Decorating ENCODE Elements with 

EN-TEx Tissue & AS Information” in the main text, Figures 3BCD and S5B)

There are many methods for determining tissue specificity, most of which are based 

on continuous positive values154. Here, we chose the simple method of tissue count to 

determine the tissue specificity of genes/cCREs based on thresholds154. We chose this 

method because we can consistently apply it across different annotations including cCREs, 

genes, TSSs, and epigenomic peaks. Most of the other methods that are based on continuous 

positive values can be only applied on one annotation category (e.g., genes). Briefly, all 

genes and cCREs (as well as peaks and TSSs) were defined as active or inactive by 

thresholding their expression/activity level in a particular tissue type. The numbers of tissue 

types in which these genes/cCREs are active were then summarized. For each gene/cCRE 

annotation category, we then calculated a tissue-specificity score using the number of genes/

cCREs that are active in only one tissue type divided by the total number of genes/cCREs in 

the category. The uniqueness scores range from 0 to 1, with higher scores indicating stronger 

tissue specificity.

For the genes, we included three gene types: protein-coding genes (from MS and RNA-seq), 

lncRNAs, and pseudogenes. To better estimate the expression level of pseudogenes, we 

applied our previously developed pipeline to quantify the expression level of pseudogenes, 

which can minimize the effects of multiple mapping bias in RNA-seq data155 (Data 

S22C). We then applied this pipeline to all three gene types and defined a set of active 

genes in the tissues by thresholding the FPKM (fragments per kilobase of transcript per 

million mapped reads) values (FPKM > 1 for protein-coding genes; FPKM > 0.5 for 
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lncRNAs and pseudogenes) (Data S22A). Over 40% and 35% of the detected pseudogenes 

and lncRNAs, respectively, were actively transcribed in a single tissue, confirming that 

non-coding RNAs exhibit higher tissue specificity than protein-coding genes156,157. Of the 

pseudogenes demonstrating tissue specificity, a large fraction showed transcriptional activity 

only in testis (Data S22B). For the cCREs, we used the decorated annotations in the tissues 

to calculate the tissue-specificity scores as described above (Figure S5B and Data S22D). 

We also explored the tissue specificity of regulatory elements and epigenomic peaks (Figure 

3B). The epigenetic profiles analyzed, including H3K27ac and DNase-seq, demonstrated 

tissue specificity, with the exception of DNA methylation, which exhibited ubiquity. An 

example of the tissue specificity of RAMPAGE data (for TSSs) is shown in Data S22E. The 

tissue specificity of the genes, cCREs, and epigenomic peaks are shown in the following file.

File: Tissue_Specificity.zip: The tissue specificity of gene expression and functional 

signals of cis-regulatory elements.

Tissue Specificity of ASB and ASE: Similar to H3K27ac-ASB cCREs (Figure 3), 

most ASE genes were detected in a single tissue (Data S22F). For the ~20 genes that 

were detected as ASE across all tissues, the allelic imbalance is in the same direction 

(Data S22G). We further compared our pan-tissue H3K27ac-ASB and ASE genes with 

housekeeping genes. Annotation results are shown in Data S22H–I. Furthermore, the non-

AS categories show a “U” shape trend between fraction of elements and tissue specificity, 

indicating that there are many non-AS cCREs either extremely tissue specific or ubiquitous, 

whereas (bottom) the AS categories demonstrate an “L” shape trend between fraction of 

elements and tissue specificity, indicating that there are many AS cCREs extremely tissue 

specific but not ubiquitous. In particular, “fraction” refers to the fraction of elements falling 

in a given bin of the histogram. In other words, we take the original frequency from the 

histogram and divide it by the total number of elements for that category.

The Effect of Tissue Specificity on Conservation: The tissue-specificity influence on 

conservation is shown in Data S23A. Candidates are separated into categories of active, 

bivalent, and repressed. The number of candidates, rare derived allele frequency (DAF) 

values, and corresponding total SNP counts (from gnomAD) are given as a function of 

increasing tissue specificity (shared tissue count). In order to select rare variants, a minor 

allele frequency (MAF) of 0.05 was used.

Various decorations further subdivide the categories and affect the conservation level, based 

specifically on whether elements are distal or proximal as well as if they are CTCF 

bound or not. Conservation is shown for both phastCons (cross-species) and rare DAFs 

(cross-population) in Data S23B. Furthermore, we check the statistical significance of 

the difference in conservation and tissue specificity of non-AS and AS active (distal or 

proximal) cCREs. A proportion test is used in each case and all differences are measured to 

be p-value<2.2e-16.

We show the conservation across active and repressed cCREs in both ubiquitous and tissue 

specific cases in Data S23C. We include the results across the 1,000 Genomes, Pan Cancer 

Analysis Working Group, and gnomAD projects. Additionally, we show an increase in 
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conservation when filtering for high H3K27ac signals (using stringent definitions for active 

elements with MatchedFilter143), which is supported by all three datasets. The overall 

conservation calculation is described in the section below.

The Relationship Between Purifying Selection and Regions Exhibiting Allele 
Specificity: The fraction of causative variants may be estimated by purifying selection. 

The analysis by the NIH Roadmap Epigenome project of epigenomes from 36 distinct cell 

and tissue types from 13 donors suggests that the donor genomes harbor on average at least 

200 regulatory variants that are under purifying selection and therefore detrimental28.

In order to calculate the purifying selection on AS events, population-scale variants from 

three cohorts were used. We used two measures of purifying selection and conservation for 

this analysis. The first is the fraction of rare variants, which is calculated as #rare/(#rare + 

#common) for variants falling in a given AS region. In order to categorize variants as rare or 

common, ancestral alleles (i.e., the measurement was a DAF) and a MAF threshold of 0.05 

were used. MAF is a commonly used metric for calculating selection in populations22,28,44. 

When considering the number of variants in each category, we found that across all tissues 

and individuals, 8,294 out of 128,448 ASB variants were rare. Of the 2,711,078 total non-

ASB variants, 274,287 were rare. In total there were 40,123 ASE+ variants, of which 2,961 

were rare. Finally, of the 624,210 ASE− variants, 70,370 were rare. The second method 

we used is phastCons, which measures the cross-species conservation158. All purifying 

selection analyses (rare DAF and phastCons) were performed for AS/non-AS cCREs, ASB/

non-ASB H3K27ac regions, and ASE/non-ASE genes. The results are shown in Data S23D–

G. Furthermore, we found that proximal AS events in the promoter were under stronger 

selection as compared to distal AS events.

Decoration Enrichments: Relating Encyclopedia Decorations to QTLs and GWAS Loci 

(related to “Application 1: Decorating ENCODE Elements with EN-TEx Tissue & AS 

Information” in the main text and Figures 4BC)

We utilized various methods to evaluate the regulatory impact of our cCRE decorations. 

QTL and GWAS SNPs are important functional genomic variants and are useful for 

interpreting the function of our decorations. We performed GWAS enrichment analysis using 

eQTL and GWAS SNPs to assess the disease relevance of our cCRE decorations.

QTL Enrichment Analysis: We estimated the QTL (eQTL and splicing QTL [sQTL]) 

enrichment in the cCREs by calculating an odds ratio (OR) score using the numbers of real 

QTL SNPs and control SNPs located in the cCREs compared to those in the baseline regions 

(Data S24A).

OR = a/b
c/d

in which a is the number of QTL SNPs in the cCREs; b is the number of control SNPs in the 

cCREs; c is the number of QTL SNPs in the baseline region; and d is the number of control 

SNPs in the baseline region.
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The eQTL and sQTL SNPs were downloaded from GTEx v8159. The baseline regions 

are the union of all the functional and putative functional regions in the human genome, 

including coding regions, untranslated regions, noncoding RNA genes, open chromatin 

regions, TF binding sites, active and repressed histone peaks from multiple tissue and cell 

types, and evolutionary conserved regions160. The set of control SNPs was generated with 

the same number and same MAF distribution as the real QTLs, and this procedure was 

repeated 30 times to calculate a standard deviation for the SNP enrichment. The results of 

the QTL enrichment are in the following file.

File: QTL_enrichment.zip: The enrichment of QTL in cis-regulatory elements 

(cCREs).

We also compared the eQTL/sQTL enrichment in the regulatory elements from EN-TEx 

with those from Roadmap (Data S24B–C). First, we found that the distal regulatory 

elements from EN-TEx show stronger enrichment than the enhancer annotation from 

Roadmap. In addition, the active proximal regulatory elements from EN-TEx show stronger 

eQTL/sQTL enrichment than the TSS-associated annotations from Roadmap.

GWAS Enrichment Analysis: We downloaded the GWAS tag SNPs from the GWAS 

Catalog161. We performed several steps of quality control to generate a set of high-quality 

GWAS tag SNPs by removing some insignificant SNPs (p-values > 5*10–8), low-confidence 

SNPs, and SNPs from non-European studies. We also removed all SNPs in the human 

leukocyte antigen locus (for hg38: chr6:29,723,339–33,087,199). Next, we extended the set 

of tag SNPs by including the SNPs in high linkage disequilibrium (LD scores > 0.6) with the 

tag SNPs, which can generate more SNPs to increase the statistical power in the enrichment 

analysis. Some GWAS with very few LD-extended SNPs were removed. This approach 

resulted in a clean dataset with ~70K unique tag SNPs from 1,140 GWAS covering 717 

unique traits. In Figure 4B, we show the LD score regression (LDSC) (left two panels) and 

GWAS enrichment (right panel) results for the analysis detailed here.

We then applied the hypergeometric test to estimate the enrichment of the GWAS tag SNPs 

in the cCREs from a particular tissue type (Data S25A).

P X = k =
K
k

N − K
n − k

N
n

in which N is the total number of cCREs in the genome; K is the total number of cCREs 

that carry GWAS tag SNPs; n is the number of cCREs in a particular tissue type; and k is 

the number of cCREs in a particular tissue type that also carry GWAS tag SNPs. Notably, we 

extended the cCREs 500 bp on both sides in the calculation (Data S25C). The results of the 

GWAS tag SNP enrichment are shown in the following file.

File: GWAS_enrichment.zip: GWAS enrichment of cis-regulatory elements (cCREs).

For the active distal cCREs, we identified 141 GWAS that are enriched in at least one tissue 

type (Data S25D). However, for the active proximal cCREs, we did not find any enriched 
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GWAS in any tissue type. These results are consistent with previous studies showing that the 

causal GWAS SNPs are enriched in the enhancers instead of the near-gene promoters64,162 

and also suggest that the active distal cCREs from our decoration are indeed significantly 

enriched in enhancers as we observed in the original Roadmap annotations (Data S25E).

Stratified LDSC values were also calculated for each tissue using 1,000 Genomes LD 

scores and GWAS summary statistics provided by Bulik-Sullivan, et al. This approach 

regresses chi-square statistics from the GWAS summary statistics with LD scores to estimate 

partitioned heritability in a disease-specific manner. The p-value indicates enrichment for a 

particular trait within an annotation.

In Data S25D, we show the p-value enrichment of each tissue with respect to various 

GWAS traits. Notably, distal active AS regions experienced higher enrichment compared 

to distal active non-AS regions (Data S25F), and both types of regions experienced 

higher enrichment compared to the original Roadmap annotations (Data S24C). For LDSC 

enrichment analysis of distal active elements in coronary artery (Data S25B), we found 

stronger associations between AS elements with respect to celiac disease, neuroticism, and 

type II diabetes, which were elucidated in previous clinical studies163–165. These results 

demonstrate that AS elements can significantly improve GWAS trait enrichment compared 

with the total set of elements across different traits as well as diverse tissue types, indicating 

that AS elements are valuable for the interpretation of GWAS data and that they potentially 

help pinpoint small subsets of regulatory elements driving a trait in specific tissues.

Compatibility: Analysis of the Compatibility Between Assays (related to “Application 2: 

Relating AS SNVs to GTEx eQTLs & Modeling eQTLs in Hard-to-obtain Tissues” in the 

main text, Figures 4AD and S5CD)

Compatible and Incompatible: Single Chromatin Mark vs. Gene Expression: Using 

the methods described in previous sections, we identified promoters (± 2 Kb from the 

TSS) with allelic imbalance in the chromatin states measured by H3K27ac, H3K27me3, 

etc. We determined the compatibility between AS promoter chromatin states and AS gene 

expression in a straightforward way. The allele with more active promoter chromatin should 

have higher expression levels, otherwise the promoter and the gene are incompatible. 

Similarly, alleles with more repressed promoter chromatin are compatible with lower 

expression levels. We treated histone marks H3K27ac, H3K4me3, and H3K4me1, chromatin 

openness indicated by ATAC-seq or by DNase-seq, and the binding of EP300, POLR2A, 

POLR2AP, and CTCF, as marks of active chromatin. Histone marks H3K27me3 and 

H3K9me3, and CpG methylation were considered as marks of repressed chromatin.

Because AS gene expression and/or AS chromatin state can be tissue specific and/or 

individual specific, we did not merge compatible (or incompatible) promoter-gene pairs 

that appeared in multiple samples. Overall, the average number of ASE genes compatible 

with at least one of the 13 marks was 35 per tissue per individual, while the average number 

of ASE genes suitable for the compatibility analysis (i.e., the promoters of these genes were 

accessible for measuring the potential AS chromatin state indicated by any of the 13 marks) 

was 226 per tissue per individual.
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We note that some assays were performed twice for a given tissue of a given individual. 

For example, the RNA-seq data of individual 3’s liver includes two experiments 

(ENCSR226KML and ENCSR504QMK), while there is only one H3K27ac ChIP-seq 

experiment for the same sample. In another example, there are two CTCF ChIP-seq 

experiments for individual 3’s spleen (ENCSR756URL and ENCSR773JBP), while there is 

only one RNA-seq experiment for the same sample. In these cases, we combined ASE genes 

or ASB promoters that were called from either of the duplicated experiments, excluding 

those where the directions of the allelic imbalance were the opposite in the two experiments. 

The combined ASE genes and ASB promoters were analyzed for compatibility and the 

results are listed in the following file.

File: Supp_Data_Compatibility.xlsx: The compatibility of genes with ASE in each 

tissue and individual.

To test the numbers of compatible vs. incompatible promoter-gene pairs, we identified genes 

that have ASE in at least one tissue of at least one individual. We shuffled the gene-promoter 

relation for these genes and calculated the ratio of N_compatible vs. N_incompatible. We 

repeated this process 1,000 times for each chromatin mark (after excluding replicates where 

N_incompatible is zero) to calculate a Z-score of the ratios shown in Figure S5D.

Compatibility of AS expression and binding with eQTL effect: We used the GTEx v8 

catalog of known tissue-specific eQTLs (GTEx Consortium, 2020) to evaluate compatibility 

of AS expression and binding in the EN-TEx individuals with eQTL effect. For ASE, we 

identified all eGene-eQTL pairs where the eGene is AS in matching EN-TEx tissues and 

the eQTL is a heterozygous variant present in the EN-TEx donors. We used the slope (beta 

coefficient) of the eQTL and calculated the AS gene ratio of the number of reads mapped 

to the haplotype with the alternative allele. For ASB, we identify all GTEx eQTLs that are 

H3K27ac ASB hetSNVs in matching tissues and calculate the AS ratio of reads with the 

alternative allele. The slope is positively correlated with the AS ratio (see Figure 4A and 4D 

and more details in Data S26B–C and in the following file).

File: AS_ratios_and_eQTL_effect.tsv: Compatibility between GTEx eQTLs and EN-

TEx allele-specific expression and binding.

Compatibility with AS Proteomics: Of the high-stringency ASP set, 114 were overlapped 

with ASE events calculated from RNA-seq data, 58 showed compatibility, and 56 showed 

incompatibility (Data S26D). The Z-score 0.26 of the ratio of the compatible to the 

incompatible (based on ASP/ASE pairs being randomized 1,000 times) was not significant 

(p<0.05), indicating that the compatibility between the RNA-seq and protein-level allele 

expression is near random. Although some of this incompatibility is likely due to technical 

issues, manual examination of the most biased ASPs-overlapping ASEs showed compelling 

evidence for ASP expression, implicating post-translational regulation (Data S26E)166,167. 

For some of the incompatible cases, there are clear biological reasons for the difference 

between the ASP and ASE ratios such as frameshift variants. More results of the 

compatibility between ASP and ASE are included in the Supp_data_compatibility.xlsx file 

described in the previous section “Compatible and Incompatible: Single Chromatin Mark vs. 

Gene Expression”.
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Enrichment of ASE Genes Near ASM Promoters: We evaluated the association between 

the ASM of the promoters and the ASE of the corresponding genes while ignoring the 

compatibility between the two. We annotated all hetSNVs showing ASM with the closest 

associated gene based on the refGene database168 using ANNOVAR124. Chi-squared tests 

were used to determine whether ASE is significantly enriched among genes associated with 

ASM hetSNVs in promoter-like sequences (PLSs) identified by ENCODE75 with or without 

AS of TF binding compared to that among genes only associated with ASM hetSNVs in 

non-cCREs75. Significant enrichment was called at p-values < 0.05 and error in enrichment 

was estimated based on binomial distribution. Data S26F shows that genes with ASE are 

more highly enriched near PLSs with ASM and/or TF binding than near non-cCREs with 

ASM.

transferQTL Model: Extending eQTL Annotation of Hard-to-obtain Tissues (related to 

“Application 2: Relating AS SNVs to GTEx eQTLs & Modeling eQTLs in Hard-to-obtain 

Tissues” in the main text, Figures 5 and S6)

Correlation Between Chromatin Features and eQTL Activity: We overlapped chromatin 

(histone marks and TFs ChIP-seq, DNase-seq, ATAC-seq) peaks with GTEx catalogs 

of eQTLs and fine-mapped eQTLs for every EN-TEx sample and observed a higher 

overlapping proportion in the case of fine-mapped eQTLs (Figure S6A and Data S27A). 

We obtained fine-mapped eQTLs after intersecting eQTLs with a posterior probability ≥ 0.8 

from the three GTEx fine-mapping eQTL catalogs (CAVIAR, CaVEMaN, and DAP-G; see 

https://gtexportal.org/home/datasets#filesetFilesDiv15).

Next, we identified 1,353,101 SNVs that show tissue-specific eQTL activity: these SNVs are 

GTEx eQTLs in ≥ 5 EN-TEx tissues and are not GTEx eQTLs in ≥ 5 other EN-TEx tissues. 

Thus, for every SNV we defined two groups of tissues: i) tissues in which the SNV is an 

eQTL, and ii) tissues in which the SNV is not an eQTL. In this way, we could compute at 

which frequency the SNVs are marked by a particular histone modification when they do 

or do not show eQTL activity. We observed that SNVs are more likely to be marked by a 

given histone modification in the tissues in which they are eQTLs, compared to the tissues in 

which they are not eQTLs (Figure S6B and Data S27B). For each histone mark, we excluded 

lowly marked SNVs, i.e., SNVs overlapping with chromatin peaks in < 10% of all EN-TEx 

ChIP-seq samples for that particular histone mark.

Predictive Model That Transfers eQTLs From a Donor Tissue to a Target Tissue: In 

this section, we explain how we trained a machine learning model that can predict the 

tissue-specific activity of a set of eQTLs. Specifically, one such model takes as input a set of 

SNV-eQTLs previously identified in a given tissue (i.e., donor tissue) and predicts whether 

each of these SNVs is also an eQTL in another tissue (i.e., target tissue). Practically, the goal 

is to transfer eQTLs from a donor tissue to a target tissue (Figure 5A and S6C). Because of 

this, we called this application “transferQTL”.

For a given donor-target tissue pair, we first retrieved the set of GTEx donor-tissue SNV-

eQTLs associated with a single eGene, and randomly partitioned them into training and test 

sets (containing 70% and 30% of SNV-eQTLs, respectively). Next, we trained a random 
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forest model by providing, for every SNV-eQTL, a number of features related to either the 

donor or target tissue (see Data S28A). The response class was defined as “yes” if the SNV-

eQTL was annotated as GTEx eQTL in the target tissue, and otherwise was defined as “no”. 

We trained the random forest model using the R package caret169 and by implementing a 

5-fold cross-validation schema.

Only chromatin data from EN-TEx assays (histone marks and TFs ChIP-seq, DNase-seq, 

ATAC-seq) were employed. For this reason, the number of features employed in the 

model for a given target tissue depends on the type of EN-TEx experiments available for 

that particular tissue (i.e., if no ATAC-seq experiments were performed for lung tissue, 

then features “ATAC” and “ATAC_k” would not be employed to predict eQTLs in lung 

tissue). We downloaded a BED file containing repeated regions annotated in GRCh38 from 

http://genome.ucsc.edu/cgi-bin/hgTables, after setting “group” = “repeats” and “track” = 

“Repeatmasker.” We downloaded a BED file containing ENCODE candidate cCREs from 

https://api.wenglab.org/screen_v13/fdownloads/GRCh38-ccREs.bed.

Because GTEx eQTLs catalogs are available for matched EN-TEx tissues, we considered all 

possible pairs of donor-target tissues among 28 deeply sampled EN-TEx tissues, leading to 

a total of 756 (28*27) predictive models. For simplicity, we can consider these as different 

tissue-specific parameterizations of the general predictive model. We hereafter refer to the 

756 donor-target models as “submodels.” Thus, a submodel is defined as the model for a 

particular donor-target tissue pair. For each target tissue, we have 27 submodels, each using 

a different donor tissue.

In the case of artery aorta, we combined data from experiments performed on both 

ascending aorta (individuals 1 and 2) and thoracic aorta (individuals 3 and 4).

The pipeline code to obtain the input matrices and train the predictive models can be 

found at https://github.com/gersteinlab/transferQTL. The model objects are available in the 

following ancillary files.

File: R6_RData.objects: All transferQTL sub-models obtained using eQTLs from a 

given donor tissue.

File: R6_RData.4hm.objects: All transferQTL sub-models obtained using chromatin 

features from only four histone marks (H3K36me3, H3K27ac, H3K4me1, 

H3K27me3), in addition to the non-chromatin features.

Model Performance, Validation, and Application: We used several metrics (see Data 

S28B) to evaluate the performance of each submodel on either the five cross-validation folds 

(Data S28C) or the test set (Figure 5B and Data S28D). The mean balanced accuracy across 

donor tissues is 0.86.

We further decomposed the submodels’ performance by considering different sets of SNVs 

(Figure 5C). Specifically, within a given submodel’s test set, we identified sets of true 

positives (TPs: SNVs classified as eQTLs in a given target tissue that are also GTEx eQTLs 

in the same tissue), false negatives (FNs: SNVs not classified as eQTLs but that are GTEx 

eQTLs in the target tissue), false positives (FPs: SNVs classified as eQTLs but that are not 
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GTEx eQTLs), and true negatives (TNs: SNVs not classified as eQTLs that are not GTEx 

eQTLs) SNVs. The violin plots in Figure 5C show distributions of GTEx nominal p-values 

in the corresponding target tissue for these four sets of SNVs (each point of the distribution 

corresponds to the median p-value of an SNV set in one of the 756 submodels). Of note, the 

significance of the TP and FP sets is stronger compared to the FN and TN sets. This suggests 

that our model i) predicts the strongest among all GTEx eQTLs in a target tissue and ii) 

could help prioritize some of the SNVs with marginally significant p-values discarded by 

GTEx. The number of “additional likely eQTLs” (i.e., the SNVs classified as eQTLs by our 

model but that are not present in the GTEx catalog) can be found in Data S28E. We identify 

an average of ~160K additional “likely” eQTLs per tissue. This list of eQTLs can be found 

in the following ancillary file.

File: perTissue.likely.eQTLs.tsv: Additional “likely” eQTLs in each target tissue 

predicted across all transferQTL submodels.

For 4 of the 28 tissues, we focused on additional eQTL catalogs other than GTEx, 

available from66: i) pancreatic islets eQTLs (van_de_Bunt_2015 dataset) matched to 

pancreas (PNCREAS); ii) muscle eQTLs (FUSION dataset), matched to skeletal muscle 

(GASMED); and iii) skin eQTLs (TwinsUK dataset), matched to both suprapubic (SNINNS) 

and lower-leg (SKINS) skin. Thus, for these four tissues we evaluated the proportion of 

eQTLs identified by these studies (SNVs with p-value < 10−5) that were also classified 

as “eQTLs” in the test set of the relevant target tissue (pancreas, muscle, or skin) by our 

submodels (see Figure 5D). The eQTL catalogs used in this analysis were downloaded from 

http://ftp.ebi.ac.uk/pub/databases/spot/eQTL/sumstats/ (files “.all.tsv.gz”).

Currently, large-cohort eQTL studies are restricted to tissues such as blood that can be 

easily obtained from donors (e.g., over 30,000 donors in67), while most other tissues are 

difficult to profile in a large number of individuals. For this reason, and to showcase 

the utility of our predictions, we have directly applied our model to a set of >1.5 

M blood eQTLs from67. In this way, we could predict which of these blood eQTLs 

are active in every EN-TEx tissue (Figure 5E and Data S28F–G). We downloaded the 

eQTL catalog from https://molgenis26.gcc.rug.nl/downloads/eqtlgen/cis-eqtl/ (2019–12-11-

cis-eQTLsFDR0.05-ProbeLevel-CohortInfoRemoved-BonferroniAdded.txt.gz). Specifically, 

we selected 1,547,430 blood eQTLs found to be associated with only one eGene in 

the original study and lifted them over to the assembly GRCh38 using LiftOver (https://

genome.ucsc.edu/cgi-bin/hgLiftOver). The metric “GTEx v8 eQTL-eGene regression 

slope”, which was one of the predictive features employed in the training step (Data S28A), 

was not available in this second eQTL catalog; thus, for these predictions we instead used 

the metric log2(Z-score). Since blood tissue is not included in the EN-TEx collection and 

given that we do not currently have any submodel using blood as donor tissue, we applied 

each of the 756 submodels trained on GTEx data to this blood eQTL set. As an example, 

when using artery aorta as donor tissue, we transferred up to 60% of the blood eQTLs to 

some of the EN-TEx tissues, such as thyroid and tibial artery (Figure 5E and Data S28F–G). 

These results were computed after excluding those eQTLs contained in the original training 

sets. The number of additional “candidate” eQTLs transferred from this external blood 
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eQTL catalog to each GTEx tissue is shown in Data S28G. On average, we identified ~500K 

candidate eQTLs per tissue. Results are available in the following ancillary file.

File: predictions.blood.eQTLs.tar.gz: Predictions of transferQTL submodels using the 

blood eQTLs from Vosa et al., Nat Genet 2021.

Please note that these “candidate” eQTLs represent a more speculative set of novel eQTLs 

compared to the average-per-tissue ~160K “likely” eQTLs mentioned above. The main 

difference is that the 160K “likely” eQTLs are obtained by leveraging donor-tissue eQTL-

eGene pairs identified in GTEx tissues, while the ~500K “candidate” eQTLs are obtained by 

leveraging donor-tissue eQTL-eGene pairs identified in the large-cohort eQTL blood study, 

many of which are not reported by the GTEx catalog (see67).

Model Interpretation: To facilitate the interpretation of the model, we computed, across 

the test set of each submodel, the correlation between the level of a particular feature at a 

donor-tissue eQTL and the probability of classifying the donor-tissue eQTL as an eQTL in 

the target tissue. In Figure 5F we show, for the first 15 features in Data S28A, the strongest 

correlation coefficient (i.e., the coefficient with the largest absolute value) obtained across 

all 756 submodels. This analysis highlights that most chromatin features, with the exception 

of H3K27me3, are positively correlated with predicting eQTLs in a given tissue, while other 

features are negatively correlated (e.g., tissue specificity of the eGene and distance from the 

eGene’s TSS).

Data S29A shows a comprehensive representation of these correlation patterns across 

all predictive features and submodels. In this case, we discarded 4 of the 39 features 

(“POLR2A”, “POLR2Aphospho5”, “EP300”, and “POLR2A_k”) since they were not used 

in a large proportion of the submodels (because ChIP-seq assays for these TFs were 

performed on a limited number of tissues; for more details on these features see Data 

S28A). We thus focused on 432 donor-target submodels that did not have missing data 

for the remaining 35 features. The heatmap in Data S29A shows, for each of these 432 

submodels (rows), Pearson’s correlation coefficients between the level of predictive features 

(columns) at donor-tissue eQTLs in the target tissue and the probability of donor-tissue 

eQTLs being classified as eQTLs also in the target tissue (clustering method: “Ward.D2”, 

clustering distance: “manhattan”). The vast majority of the chromatin features show stronger 

correlations in a specific set of submodels, as highlighted by hierarchical clustering (cluster 

at the bottom). We found that these submodels use donor tissues with larger GTEx 

sample sizes (Data S29A, right side). Thus, chromatin features have a stronger impact 

when transferring eQTLs from donor tissues with larger sample sizes, which tend to 

detect more eQTLs albeit with lower effects73,159. By contrast, certain features appear to 

be systematically either negatively (“tissue_specificity”, “tss_distance”, “H3K27me3_k”) 

or positively (“sum”, “is_proximal”, “H3K36me3”, “H3K36me3_p”) correlated with the 

SNV’s probability of being an eQTL, independent of the donor tissue. These results suggest 

that donor-tissue eQTLs with a higher number of chromatin peaks and/or marked by 

H3K36me3 in the target tissue are more likely to be eQTLs in the target tissue as well. 

Conversely, donor-tissue eQTLs associated with tissue-specific genes, or that are located far 

from the eGene’s TSS, are less likely to be transferable from one tissue to another.
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Because of this, and with the goal of simplifying the interpretation of these models, we 

evaluated whether two simple rules could help transfer eQTLs from one tissue to another. 

In Figure 5G we show that, on one hand, donor-tissue eQTLs either characterized by strong 

chromatin activity (feature “sum” ≥ 3) in the target tissue, or whose eGene is constitutively 

expressed across EN-TEx samples (feature “tissue_specificity” < 0.8), tend to be eQTLs also 

in the target tissue (rule #1: 67% eQTLs, 33% not eQTLs). On the other hand, donor-tissue 

eQTLs that have low chromatin activity (feature “sum” = 0) in the target tissue and whose 

eGene shows tissue-specific expression (feature “tissue_specificity” > 5) are less likely to be 

eQTLs in the target tissue (rule #2: 23% eQTLs, 77% not eQTLs). Figure 5G refers to the 

specific case employing testis as the donor tissue and thyroid as the target tissue. Data S29B 

shows that these findings are generalizable across all the 756 donor-target tissue pairs.

Evaluating the Impact of Tissue-specificity on Predicted eQTLs: Many of our predicted 

eQTLs are fairly ubiquitous, but we also report a considerable fraction of predicted eQTLs 

that are active only in a small fraction of GTEx tissues (see Data S29C). To demonstrate 

that our random-forest model (transerQTL) is not simply predicting ubiquitous eQTLs, 

we built a simple strawman model that transfers eQTLs to a given tissue based on the 

tissue specificity of the eQTLs. We transferred eQTLs based on different thresholds of 

tissue specificity, from including very tissue-specific eQTLs (active in at least 10% of 

GTEx tissues) to transferring only very ubiquitous eQTLs (active in at least 90% of GTEx 

tissues). In Figure S6D and Data S29D we show that the performance of this simplified 

model, combined with different thresholds of tissue specificity for eQTL activity, is worse 

compared to the performance of our transferQTL model.

Sensitive Motifs: The Relationship Between AS SNPs and TF Motifs (related to 

“Application 3: Modeling AS Activity from Variant Impact on the Nucleotide Sequence, 

Highlighting “Sensitive” TF Motifs” in the main text, Figures 6AB and S7A)

We collected 660 human TF motifs from the Cis-BP database68. Specifically, we required 

the motifs to be from protein-binding microarray and SELEX-based experiments. Position 

weight matrices (PWMs) from multiple motifs are combined into a single PWM file for each 

TF. We used FIMO170 with p<10-e4 to scan the motif occurrence in the human genome. We 

then intersected the AS SNV file with each motif occurrence file with bedtools and retrieved 

the contingency table of counts of SNPs depending on whether a SNV was AS and whether 

a SNV was in a motif. An OR was used as the measurement of AS enrichment and Fisher’s 

exact test was used for statistical significance (p<0.05). The motifs were then ranked based 

on the OR. For H3K4me3 ChIP-seq-based or any other assay-based ranking, only the SNVs 

that were accessible in that assay were used to intersect with the motifs. In addition, we 

annotated all EN-TEx SNVs with whether they overlap with TF motifs and whether they 

overlap with cCRE regions. The full result of the motif ranking and SNV annotation can be 

found in the following files.

File: motif_ranking.tsv: List of motifs with their odds ratio, p-values and rank in 

overall or in a specific assay.

File: SNPs_motif_cCRE.txt.gz: Relationship among SNVs, motifs, and cis-regulatory 

elements.
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In the SNV annotation file, the first three columns show the coordinates of the SNV. The 

fourth column is a list of names of TFs whose motifs overlap with this SNV. The sixth 

column is the ID of the overlapping cCRE regions.

For the conservation score of the motifs, we downloaded the genome-wide phyloP score 

from the UCSC Genome Browser. For each occurrence of the motif, the conservation 

score of the region was determined by the mean of each base (from UCSC Kent_tool 

bigWigAverageOverBed). The conservation of the TF was the mean of the scores from all 

occurrences of its motifs. The entropy of a motif was calculated by sum(−plog(p)) where p 

is the relative frequency of each base in each position. The fraction of CG of a motif was 

calculated as the number of positions where C or G was the most frequent base, divided by 

the length of the motif. Spearman’s correlation was used for all pairs of the rank and each 

motif property (Data S30F–G).

To test whether the GC content and motif entropy biased our result, we tried to remove 

their effect under a linear model. We used the GC content and motif entropy as variables to 

predict the AS enrichment score, and then re-ranked the TF motifs using the residual of the 

model only (Data S30H). The formula is:

OR = β1 * GC_content + β2 * motif_entropy + ε

where OR is the odds ratio and ε is the residual. We solved the linear regression by 

minimizing the ordinary least squares to get the estimated β1 and β2 as β1 and β2. The 

residual with GC content and motif entropy effect corrected is calculated as:

εcorrected = OR − β1 * GC_content + β2 * motif entropy

We then re-ranked the TF motifs by εcorrected. We found that the rankings of original top 100 

motifs were largely preserved (Data S30H). For example, the Pearson correlation between 

the original rank and the new residual-corrected rank was 0.64 (p<1.1e-12) for the top 100 

but dropped to 0.03 (p<0.416) for the rest of the TF motifs. This result suggests that the top 

100 motifs are not strongly affected by the GC content and further justifies using the top 100 

for the downstream analysis.

Each motif’s family information was obtained from Cis-BP as well. We noticed that the 

top-ranked motifs were more likely to be in the C2H2 zinc finger family. A C2H2-ZF 

domain typically contains 3–4 base-contacting residues, and zinc finger proteins usually 

contain multiple tandem C2H2-ZF domains. The individual DNA motifs of these tandem 

domains often overlap with each other and assemble into the full-length motifs we observed 

in SELEX (e.g., 4-mer and another 4-mer overlapping by one base results in a 7-mer)69. 

Thus, mutations in the overlapping base in the middle of the motif might be more likely to 

affect the binding affinity of the TF. Consistent with this reasoning, we observed that AS 

SNVs occurred more frequently in the “conjunction” base while non-AS SNVs occurred 

relatively randomly across all positions of the motif (see FOXO3 in Figure 6).
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AS Promoter: Prediction of Promoter AS Activity with a Random Forest Model (related 

to “Application 3: Modeling AS Activity from Variant Impact on the Nucleotide Sequence, 

Highlighting “Sensitive” TF Motifs” in the main text, Figures 6C and S7B)

We trained a random forest model that could predict the ASB state of the gene promoters 

in an assay and in an individual tissue-specific manner. We call this the “reverse” model 

as it goes from gene to promoter. The models achieved good performance on both internal 

EN-TEx and Roadmap STL002/3 data (Data S31A). After testing different combinations 

of features, models were built using four features (Data S31B) according to Gini impurity-

based importance scores. The first feature is the number of the top 100 AS sensitive TF 

motifs that intersect the SNV. The second feature is those within 100 bp of the SNV that do 

not intersect. The third feature is the number of the 660 TF motifs distal to the SNV (i.e., 

>100 bp away). AS bound promoters have significantly more motifs than non-AS bound 

promoters (also see Data S31D). The fourth feature is the AS imbalance ratio between 

transcripts from haplotype 1 and haplotype 2. In addition to the feature importance score 

from the random forest model, we investigated the association of each feature with ASB 

promoters, indicated by an R2 score (Data S31C). Other features (including gene expression 

level, eQTL, all 660 non-ranked TF features in the promoter) were tested but proven to not 

be informative (Data S31D). We applied our model on a large scale to the entire GTEx 

cohort (>800 people) to predict AS promoters from the available genotypes and ASE data. 

The GTEx individuals, gene names, assay types, predictions of the associated promoter, and 

additional results of the model are included in the following file.

File: ASB-predictions-on-GTEx-cohort.tsv: Results of allele-specific binding 

prediction model on GTEx.

We also constructed a “forward” model to predict ASE from ASB. Specifically, to interrelate 

AS activities of genes and promoters (Data S31E), a random forest model was trained 

using assay-based annotations of the promoters. The assay-based ASB of the promoters 

was informative for the prediction of ASE genes (Data S31F), but we did not have enough 

validation data for a full evaluation.

Transformer Model: Prediction of AS Effect with a BERT Model (related to “Application 

3: Modeling AS Activity from Variant Impact on the Nucleotide Sequence, Highlighting 

“Sensitive” TF Motifs” in the main text, Figures 7 and S7CDE)

Strawman Random Forrest Model for AS Prediction of CTCF Binding Regions: A 

random forest model was trained with the following features to predict the tissue-specific AS 

effect labels for CTCF:

1. the prediction score of the sequence-based transformer model

2. the tissue-specific epigenomic signals (DNase and histone marks, but excluding 

CTCF) averaged across the input sequence region

We considered the transformer model score as an indicator of sequential patterns that are 

genetically related to AS effects, which was then modified with tissue-specific epigenomic 

features to predict the tissue-specific AS effect.
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Training and testing data were split by a 3:1 ratio for each tissue of each individual. For 

each of the four individuals, we trained a separate model using all the tissue data of the 

individual. The max depth for the random forest was chosen using a grid search from 2 to 9.

BERT Model: BERT is a natural language model based on the Transformer neural network 

architecture. This model has been widely applied to natural language processing due to its 

ability to incorporate long-range contextual information171. Thus, it can also be applied 

to extract meaningful sequential patterns from genomic sequences, such as to predict AS 

effects of SNPs.

We extracted the 128 bp sequence upstream and downstream of the SNP in question as the 

input. The sequences were labeled as positive or negative based on their AS effects. For 

balancing considerations, the negative set was randomly downsampled to the same size as 

the positive set. The dataset was then split into training, cross-validation, and testing sets at a 

8:1:1 ratio.

We initialized the BERT model with the weights of the pre-trained DNABERT model70. 

A single-layer classifier was added on top of the output of DNABERT and the model was 

fine-tuned on the AS datasets. For fine tuning, we selected from a range of hyperparameters 

(learning rate=1e-5, 5e-5; training epoch = 5, 10, 20). As the pre-trained DNABERT model 

has different versions with k-mer sizes of 3–6, we report the model with the highest 

performance.

The model was first trained with only SNPs from donor individual 3 to predict the “pooled” 

AS SNVs (i.e., SNVs that were active in at least one tissue). For many of the prediction 

tasks, the model achieved a performance of area under the receiver operating characteristic 

(AUROC) > 0.7 on the validation set, significantly higher than logistic regression and 

random forest on sequence embeddings (Data S32; see below for more details). We then 

tested the model performance on validation sets composed of SNPs exclusive to the 

other three donors. The validation sets for these three individuals have been randomly 

downsampled to the same size as the validation set for individual 3. The sampling was 

repeated ten times and average results are reported. As expected, the performance was lower 

compared to individual 3. Specifically, the model showed exceptional performance on the 

prediction for CTCF (AUROC = 0.7936) and generalized well to the other three donors 

(average AUROC = 0.6876). The model for H3K27ac AS SNVs also showed high validation 

performance on the test set (AUROC = 0.8001), other individuals (average AUROC = 

0.7286), and an external validation set from Roadmap individuals (average AUROC = 

0.7426).

For model interpretation, we used the method implemented by70, where the attention scores 

of the last layer for the first token are averaged over all 12 attention heads, and then 

regularized by k-mer coverage. As a comparison, we used the dna2vec model released by172 

to transform k-mers to continuous-valued vectors, preserving their contextual preference. 

Using the same training, test, and validation data as above, we represented each input 

sequence as an average over the embedding of all its k-mers. We then trained a logistic 
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regression classifier based on the average embedding vector. We performed embedding with 

k-mer sizes of 3–8 and reported the one with the highest performance.

We also implemented a much simpler model based on motif information only (Figure 7). 

We overlapped the hetSNVs from the same training set as above with identified CTCF 

motifs from the Cis-BP database. The following features were used to build a random forest 

classifier:

Feature Feature frequency

A: SNP overlaps with a CTCF motif 287/28,891 (positive)
45/28,891 (negative)

B: SNP overlaps with conserved positions in a CTCF motif 161/28,891 (positive)
27/28,891 (negative)

C: Presence of a CTCF motif within the 256 bp window 1489/28,891 (positive)
689/28,891 (negative)

D: # of TF motifs within the 256 bp window Average 56.8 (positive)
Average 62.2 (negative)

A logistic regression model using only features A and B has almost no predictive 

performance (AUROC=0.504). By adding features C and D, which include some contextual 

information, the performance increases to AUROC=0.5618, which is still much lower than 

other models in comparison. This is expected because the frequency of CTCF motifs is quite 

low and only accounts for a very small portion of the dataset.

Portal: A Central Location for Accessing EN-TEx Data, Analyses & Visualization Tools

The EN-TEx Portal Website—We have a dedicated website (portal) for the EN-TEx 

resource: entex.encodeproject.org. The portal is organized into three organized sections: (i) 

data files, (ii) interactive visualization tools, and (iii) source code, as described below.

i. (i) DATA FILES. The raw and processed EN-TEx data, including the personal 

genomes, are accessible via a dedicated data-slice page built into the ENCODE 

data center. In the data-splice page, the EN-TEx assays and data are displayed 

with a graphic interface for users. The website provides a search function 

where users can look for the data of particular assays/tissues in which they 

are interested. In addition, the EN-TEx portal hosts the ancillary analysis 

files for EN-TEx (e.g., the AS catalog and the cCRE decorations). All data 

contained in the EN-TEx resource are fully open-consented and accessible 

without registration as of the date of publication. Accession numbers are listed in 

the key resources table or the STAR Methods.

ii. (ii) INTERACTIVE VISUALIZATION. The EN-TEx portal provides multiple 

tools for users to visualize the EN-TEx data in a genomic context. In particular, 

the genome annotation by EN-TEx data can be visualized using the ENCODE 

SCREEN Viewer. We also provide Chromosome Painter and the Explorer Tool 

to visualize the EN-TEx data in a large-scale and high-dimensional fashion. See 

section “Visualization of the EN-TEx Data” for more information.
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iii. (iii) SOURCE CODE. All original code has been deposited on Github and is 

publicly available as of the publication date. DOIs are listed in the key resources 

table. Specifically, the EN-TEx portal provides GitHub links to the source codes 

of the Chromosome Painter, the Explorer Tool, the AlleleSeq2 pipeline, the 

transferQTL model, and the transformer model for predicting AS activity from 

sequence (“Application #3”).

Explorer Tool—The EN-TEx Explorer Tool, which can be run in R, installed as an offline 

executable, or hosted on a website through integration with Amazon Web Services, allows 

for the interactive exploration of low-dimensional visualizations created by an in-house 

data analysis pipeline (Data S33A–E). This pipeline performs dimensionality reduction 

on cCRE signals, genomic data, and proteomic data. Methods include PCA, variational 

autoencoder, Umap173, potential of heat diffusion for affinity-based transition embedding174, 

set intersection plots generated by user-specified thresholds, and t-distributed stochastic 

neighbor embedding175. The pipeline then generates the tool programmatically in R Shiny in 

one of the three forms above.

The visualizations generally cluster samples from common tissues together. Through 

extensive precomputation, the tool allows users to interactively adjust analysis parameters, 

including scaling, normalization, feature subsetting, method-specific hyperparameters, the 

type of visualization used (ggplot2, plotly 2D, plotly 3D, boxplot, heatmap, UpSetR, Venn 

diagram), and the appearance of the resulting figures. Users are able to save figures as 

images, download analysis results as Excel spreadsheets, or bookmark their sessions as short 

URLs that can be easily shared (Data S33A–E). To install the tool, please consult the Github 

README. Instructions and documentation regarding tool usage can be found by pressing 

the “Instructions” button on the tool. The following input files for the explorer tool are 

available.

File: ENTEx.Explorer.cCRE.Combined.zip: Candidate cis-regulatory elements used 

in EN-TEx.

File: ENTEx.Explorer.Expression.Combined.zip: Expressed genes analyzed in EN-

TEx.

File: ENTEx.Explorer.Expression.Combined.zip: Expressed genes analyzed in EN-

TEx. File: ENTEx.Proteomics.cCRE.Combined.zip: Results of mass spectrometry.

Chromosome-Level Data Visualization Tool—Because the EN-TEx data span a wide 

range of the human genome, it may be useful to visualize the distribution over each 

chromosome. Accordingly, we present the EN-TEx Chromosome-Level Data Visualization 

Tool, which generates heatmaps for datasets for all assays, individuals, and tissues present in 

the EN-TEx data catalog. The data, which were initially in BED format, were preprocessed 

with in-house Bash and Python scripts and converted to GRCh38 coordinates using 

LiftOver176 prior to the generation of the plots using the R package chromoMap177. The 

EN-TEx Chromosome-Level Data Visualization Tool was also used to generate the plots in 

Figure 2C of the main text.
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The EN-TEx Chromosome-Level Data Visualization Tool can be accessed at 

ENTEx.gersteinlab.org. Users can specify any combination of parameters (individual, assay, 

ploidy, and color) for a track and subsequently generate interactive plots containing one 

to four tracks each by pressing the “Submit” button (Data S33F–G). By default, the tool 

generates heatmaps for the data of each chromosome at a fixed resolution of 2.5 Mb. The 

user can get information about the data displayed in a specific bin by hovering over the bin 

with a mouse cursor.

The “Advanced” tab contains tools for custom chromosome and region selections. To 

view the data in only one chromosome, one can select the chromosome of interest in 

the “Chromosomes” dropdown menu. To view a subregion of the chromosome, the user 

can input the region in the format initial_position:final_position in the “Region” text box 

(e.g., if the user wishes to visualize data between 1 Mb and 2 Mb, the user would input 

1000000:2000000). The tool automatically sets the resolution of the data for subregions of 

the chromosome to the length of the inputted interval divided by a factor of one hundred 

(e.g., for the 1000000:2000000 interval, the resolution would be 10 Kb). Users can also 

visualize the data as heatmaps accompanied by either histograms or scatterplots by selecting 

the desired option in the “Plot Type” dropdown. A series of plots generated with this tool is 

shown in Data S33H.

Additional Data Exploration with SCREEN—The SCREEN website (https://

screen.encodeproject.org/) is a center for the ENCODE cCRE registry and annotation. This 

website is routinely used by researchers all over the world. The annotations of cCREs using 

our EN-TEx data are also available at the SCREEN website (Data S33I). The EN-TEx data 

provide many unique annotations. For example, different from the annotation from other 

datasets, the EN-TEx data indicate the repressed states of cCREs. In addition, the EN-TEx 

data specify whether each cCRE is AS in terms of functional genomic signals. Data S33I 

shows a step-by-step guide from the main webpage of SCREEN to an cCRE with repressed 

states in multiple human tissues. In line with the repressed states, this cCRE has no CTCF 

binding and is not AS.

Buffering Hypothesis:  Providing Evidence Connecting AS Elements and Housekeeping 

Genes (related to the “Discussion” in the main text)

Genetic variants in cCREs can change functional signal and gene expression. For these 

changes to occur, the variants must escape from buffering effects28. Such effects are strong 

in important genomic regions. We used allele specificity as a proxy for escaping buffering. 

Based on our allelic decoration, we evaluated the allele specificity of housekeeping genes 

expressed in EN-TEx tissues, as shown in Data S22J. For each tissue, expressed protein-

coding genes were split into housekeeping genes and non-housekeeping genes according to 

the Housekeeping and Reference Transcript Atlas (http://www.housekeeping.unicamp.br)58. 

A two-sided Fisher’s exact test was performed to measure the enrichment of AS 

housekeeping genes. We found that, compared with non-housekeeping genes, the expression 

of housekeeping genes show less allele specificity, supporting the buffering hypothesis. 

We further examined the allele specificity of proximal active (pAct) cCREs in a ± 10 Kb 

window centered on the TSS (defined by the gene starting site) of each housekeeping and 
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non-housekeeping gene. The cCREs flanking housekeeping genes were significantly (Data 

S22J, paired-tissue two-sided t-test, p-value < 2.2e-16) longer than the cCREs flanking 

non-housekeeping genes. To control for this factor, we split genes into 20 bins based on 

the total length of the flanking cCREs. Within each bin, cCRE length remained similar 

(paired-tissue two-sided t-test, p-value > 0.05) between housekeeping and non-housekeeping 

genes. The bins with less than 30 housekeeping or non-housekeeping genes were removed 

from further analysis. The pAct cCREs flanking housekeeping genes were less likely AS 

than the ones flanking non-housekeeping genes (two-sided t-test).

The buffering effect is likely due to redundant TFs. To test this, we counted the number 

of TF motifs that intersect with each CTCF+ and CTCF− cCRE in each tissue. For this 

calculation, we used the motifs of 206 TFs (CTCF excluded) from Cis-BP68. The total 

count of all TF motifs was compared between CTCF+ cCREs and CTCF− cCREs using 

a two-sided t-test. As shown in Data S30K, for both distal and proximal cCREs, CTCF+ 

cCREs have significantly (p-value < 0.05) more TF motifs than CTCF− cCREs. In addition, 

we tested whether the genetic variants in large motif clusters tend to be associated with 

ASB. To this end, we identify the locations of the motifs of 660 TFs in the human genome. 

For each motif, we counted the number of all motifs within 500 bp of the motif. A larger 

number suggests that the motif likely has many functionally redundant motifs. According to 

the proxy of redundancy, we divided all the motifs evenly into two groups: likely redundant 

or not. The genetic variants were considered ASB if significantly imbalanced reads were 

observed in any of the tissues of the four individuals with any assays. As a result, we found 

that the genetic variants in the motifs that are likely redundant tend to not be AS, consistent 

with the buffering effect.

Quantification and Statistical Analysis

Quantitative and statistical methods are described above within the context of individual 

analyses in the Method Details section.

Additional Resources

Ancillary files and guidance on raw data of this study can be found on the EN-TEx portal: 

http://entex.gersteinlab.org/index.html. All files are described in detail in their corresponding 

sections of STAR Methods. When mentioned, these files are referred to as “File: file_name: 

short_description.”

Highlights:

• EN-TEx includes 1635 datasets mapped to 4 personal genomes, ~30 tissues × 

~15 assays

• Comprehensive catalog of allele-specific activity, decorating regulatory elements

• Model to transfer known eQTLs to difficult-to-profile tissues (e.g., skin→heart)

• Transformer model for predicting allelic activity based on local sequence context
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Uniform Multi-tissue Data Collection, Diploid Mapping and Construction of the AS 
Catalog
(A) Data matrix. The 13 core assays are indicated in bold; tissue colors from GTEx. (Details 

in Figure S1A.)

(B) The personal diploid genome of individual 3. The chromosomes are phased with known 

imprinting events (yellow), allowing the maternal (red) or paternal (blue) origin of many 

of the phased blocks to be identified. A schematic diagram of a region in chr13 shows the 

differences between the personal diploid genome and the reference genome, in particular 

their different coordinate systems and sequences. (Details in Data S2G and STAR Methods 

“Personal Genome” Section.)

(C) The AS catalog. Key statistics are shown at each level of pooling and averaging. By 

aggregating across tissues, individuals or assays, we were able to identify a large number 

of AS SNVs and AS genomic elements, resulting in an AS catalog. “*” indicates the 

aggregation was done by pooling of reads, instead of the default union method, which 

significantly increased detection power. Representative numbers in the “Ex. SNVs” row are 

initially based on a specific H3K27ac experiment in the spleen of individual 1. The I/T/A 

row shows whether this choice is continued in subsequent columns or whether averaging or 

pooling is done over “ALL” the individuals, tissues, or assays, respectively. “†” indicates AS 

SNVs from DNase and WGBS in addition to the 12 RNA/ChIP/ATAC assays. (Details in 

Figure S3A–D and STAR Methods “AS Catalog” Section.)
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Figure 2. Examples of Coordinated AS Activity, Involving SNVs and SVs
(A) Detecting coordinated AS activity across a chromosome. Signal tracks (bottom) show 

that for chrX in the tibial nerve of individual 3, hap1 generally has lower expression levels, 

lower H3K27ac levels, and higher H3K27me3 levels than hap2. The top bar-graphs show the 

expression and active promoter chromatin of 6 selected genes. (Details in Data S14.)

(B) AS events at a disease-associated locus: the DNAH11 gene. The lollipop diagrams show 

the degree of AS imbalance for various assays at heterozygous SNPs in individual 1. Those 

that are GTEx eQTLs and GWAS loci are highlighted. (Details in STAR Methods “AS 

Examples” Section.)

(C) The chromosomal distribution of SVs on the diploid genome. Colors indicate the density 

of SVs. Genomic regions of chr7 and chr8 (in individual 3) are enlarged to show the 

positions of detected SVs and the levels of H3K27ac and RNA expression obtained from 

transverse colon.

(D) The effect of a 2.6 kb deletion. The deletion in hap2 removed several H3K27ac peaks 

and reduced ZFAND2A expression in thyroid. (Details in Data S17C–D.)

(E) The effect of a 98-bp deletion. The deletion in hap2 in individual 3 removed a H3K27ac 

peak in colon downstream of PSCA, potentially contributing to reduced expression. The 

heights of the green bars indicate the allele frequencies of the deletion and the surrounding 

GTEx eQTL SNVs, indicating they are potentially in linkage disequilibrium. (Details in 

Data S17G–H.)
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(F) Overall effect of TEs on chromatin. The genomic regions neighboring the TE insertions 

show reduced chromatin accessibility more often than those of the non-TE insertions. 

(Details in Data S18 and STAR Methods “SVs” Section.)
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Figure 3. Aspects of Application 1: Decorating ENCODE Elements with EN-TEx Tissue & AS 
Information
(A) Workflow decorating cCREs with EN-TEx data. The workflow starts with the master list 

of 0.9M cCREs from ENCODE, which have no tissue-specific information. Representative 

numbers from spleen are shown along the flowchart. (Details in Figure S5.)

(B) Tissue specificity and conservation of annotations. The tissue specificity of an 

annotation category is the fraction of the cCREs observed in the category active in only 

a single tissue. A smaller value indicates that the category members are more ubiquitous. 

Conservation score is determined by the fraction of rare variants in the genomic regions of 

an annotation category. Stars indicate statistically significant differences. (Details in in Data 

S22 and STAR Methods “Tissue Specificity” Section.)

(C) Correlation between tissue specificity and conservation for active and repressed cCREs. 

Repressed cCREs with methylation show increased significance.

(D) Comparing the tissue distribution of AS and non-AS proximal active cCREs. (Top) 

Non-AS categories show a “U-shaped” trend, whereas (Bottom) AS categories have an “L-

shaped” one. Fraction of Elements is described in the STAR Methods “Tissue Specificity” 

Section.

(E)AS events occurring in 1 or 2 assays and their relationship to purifying selection. 

AS events are for chromatin accessibility (Hi-C, DNAse-seq and ATAC-seq), histone 

modification (H), methylation (M). The change in conservation between an AS category 

and the corresponding non-AS one is shown as the log ratio of their conservation scores 

(from B). This ratio is negative for AS events in one assay and positive for AS events in two 

assays, suggesting that an AS SNV with multiple events is more conserved.

(F)Consistency of AS imbalance across tissues. The heatmap shows the direction of the 

allelic imbalance across the most ubiquitous AS cCREs (in individual 3). The imbalance 
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direction is consistent across tissues; however, a few tissue-specific cCREs show directional 

flips. (Details in Data S22G.)
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Figure 4. Aspects of Applications 1 and 2: Relating Decorations and AS SNVs to GWAS & eQTL 
Loci
(A) Schematic showing the inter-relationship of AS activity, GWAS SNPs and eQTLs.

(B) Higher GWAS enrichment for AS elements compared to the corresponding non-AS 

ones. Top left shows one tissue and one trait, compared to the Roadmap Project. Bottom left 

shows an extension to many traits for one tissue, and right shows many tissues for one trait. 

(Details in Data S25 and STAR Methods “Decoration Enrichments” Section.)

(C) QTL enrichment for decorated cCREs. Colored dots show the enrichment for each 

tissue (GTEx colors, Figure 1A and Data S2I). Each bar shows the median enrichment over 

all tissues for a given annotation subset. As a reference, median enrichment of Roadmap 

“Enh” and “TssA” annotations are shown as dashed and dotted lines, respectively. The 

enrichments for the liver are highlighted. Robustness is estimated by resampling genetic 

variants, providing a range of enrichments shown with whiskers (Details in Data S24 and 

STAR Methods “Decoration Enrichments” Section.)

(D) Compatibility between AS gene expression, AS binding in the upstream promoter, and 

eQTL effect. eQTL effect is measured by the beta coefficient, and for AS, the imbalance 

ratio is plotted. (Details in Figure S5C–D; all correlations are statistically significant.)
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Figure 5. Aspects of Application 2: Modeling eQTLs in Hard-to-obtain Tissues
(A) Schema of the transferQTL model. For a catalog of eQTLs active in a source tissue 

(donor), we transfer them to another tissue (target) by leveraging the chromatin in the target 

and other features. (Details in Figure S6C.) For several representative target tissues the 

balanced accuracy is shown for transferring skin eQTLs.

(B) Performance of the model. The X-axis indicates the tissues used as the donors (GTEx 

coloring), and the Y-axis indicates the average performance (balanced accuracy) across the 

target tissues. The whiskers indicate variation across targets (standard deviations). (Details in 

Data S28CD.)

(C) Performance decomposition. For the confusion matrix resulting from applying the model 

to known GTEx eQTLs, we plotted the distribution of mean p-values on each subset.

(D) External validation. We validated our transferred eQTLs against four eQTLs catalogs 

other than GTEx: pancreas (PNCREAS), skeletal muscle (GASMED), suprapubic skin 

(SKINNS), and lower-leg skin (SKINS). The Y axis corresponds to the sensitivity of the 

prediction (TP / (TP + FN)). (Details in the STAR Methods “transferQTL Model” Section.)

(E) Large-scale application. We applied the model to a set of ~1.5 M eQTLs from blood (as 

donor). We were able to transfer a large proportion of these to EN-TEx target tissues. The 

plot shows the five tissues with the largest fractions transferred. (Details in Data S28F–G.)

(F) Importance of the features in the model. We computed the correlation between 15 

selected features and the model’s probability of classifying donor-tissue eQTLs as eQTLs 

in the target tissue. The bar plot shows, for each feature, the strongest correlation observed 

across all 756 donor-target tissue pairs. (Details in Data S29A.)

(G) Schematic showing how two simple rules help predict eQTLs in a target tissue. To 

summarize F, we have found that two observations help define transferQTL. As an example, 
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we show the results obtained when transferring eQTLs from testis (donor) to thyroid 

(target). (Details in STAR Methods “transferQTL Model” Section and Data S29B.)
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Figure 6. Aspects of Application 3: Highlighting “Sensitive” TF Motifs
(A) TF Motifs ranked by enrichment of AS SNVs. We calculated the enrichment of AS 

SNVs for each TF using 2-by-2 contingency tables, with representative ones shown in the 

figure. For the representative TFs we also show a motif logo (and, for FOXO3, the location 

of the overlapping AS or non-AS SNVs). In the scatter plot, the dots correspond to TF 

motifs, which are ranked by AS enrichment. Colors indicate different histone modifications. 

(Details in Data S30 and STAR Methods “Sensitive Motifs” Section.)

(B) TF motif ranking is correlated with conservation of the motif regions. (Details in STAR 

Methods “Sensitive Motifs” Section.)

(C) Schematic of a statistical model predicting AS promoter activity. The model predicts 

whether a promoter exhibits AS H3K27ac activity. Motifs of ranked TFs (colored short 

lines) were used as features of the model in addition to AS expression ratio. Right-hand-side 

bar charts show feature weights and the overall performance of the model, in comparison to 

Roadmap. Model performance is dominated by the motifs, with only marginal improvement 

from adding AS expression imbalance. (Details in the STAR Methods “AS Promoter” 

Section.)
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Figure 7. Aspects of Application 3: Deep-learning Model Predicting AS Activity from Nucleotide 
Sequence.
(For all sub-panels, details are in Figure S7, Data S32, and STAR Methods “Transformer 

Model” Section.)

(A) Schematic of the sequence-based predictive model. A transformer model was trained on 

the flanking regions (128 bp) of accessible SNVs to predict whether or not they are AS. The 

attention score (magenta lines) reflects the weights the model attaches to different nucleotide 

positions in the input sequences.

(B) Average performance of models predicting AS activity. As a reference, the CTCF 

model was compared to simple logistic regression models with the only information being 

(1) CTCF-motifs overlapping the SNV or (2) CTCF-motifs in a neighborhood around the 

SNV. For the H3K27ac model, the prediction was also validated against external data from 

Roadmap.

(C) Performance of a tissue-specific model for CTCF. Adding epigenomic features only 

marginally improved the performance over just sequence features.

(D) Attention patterns learned by the model. Those in the flanking regions of a selected 

CTCF AS SNV (magenta) show strong consistency with motif enrichment (gray). The 

central peak surrounding the SNV contains a CTCF motif, highlighted in red.

(E) Average attention pattern of sequence-based models for various assays.

(F) Motif enrichment surrounding the AS CTCF SNV agrees with the average attention 

pattern in E.

Rozowsky et al. Page 88

Cell. Author manuscript; available in PMC 2024 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rozowsky et al. Page 89

Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Tissues from 4 individuals from ENCODE project This paper https://www.encodeproject.org/entex-matrix/?
type=Experiment&status=released&internaltags=ENTEx

HG002 Human Pangenome 
Reference Consortium

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
AshkenazimTrio/HG002_NA24385_son

Critical commercial assays

Express Kit V2 PacBio N/A

SQK-LSK110 Kit Oxford Nanopore N/A

TruSeq DNA PCR-Free Library Preparation Kit Illunmina N/A

Deposited data

Spectra, results, and supporting files, including the personal 
proteome database

This paper PRIDE: PXD022787

imprinted_genes_in_ENTEx_ASE.tsv This paper http://entex.encodeproject.org/data/
imprinted_genes_in_ENTEx_ASE.tsv

phased_block.tar.gz This paper http://entex.encodeproject.org/data/phased_block.tar.gz

fithic2_out.tar.gz This paper http://entex.encodeproject.org/data/fithic2_out.tar.gz

TopDomTADcalls.tar.gz This paper http://entex.encodeproject.org/data/TopDomTADcalls.tar.gz

Supp_data_proteomics.xlsx This paper http://entex.encodeproject.org/data/
Supp_data_proteomics.xlsx

table.DE.genes.tsv This paper http://entex.encodeproject.org/data/table.DE.genes.tsv

table.DE.genes.techReps.liver.tsv This paper http://entex.encodeproject.org/data/
table.DE.genes.techReps.liver.tsv

table.DE.genes.GM12878.tsv This paper http://entex.encodeproject.org/data/
table.DE.genes.GM12878.tsv

differentially_marked_H3K27ac_cCREs.txt This paper http://entex.encodeproject.org/data/
differentially_marked_H3K27ac_cCREs.txt

Similarity_of_functional_genomic_activities_of_cCREs.xlsx This paper http://entex.encodeproject.org/data/
Similarity_of_functional_genomic_activities_of_cCREs.xlsx

normalized_proteomics_RNA-seq.dat This paper http://entex.encodeproject.org/data/
normalized_proteomics_RNA-seq.dat

sample_signal_track.tar.gz This paper http://entex.encodeproject.org/data/
sample_signal_track.tar.gz

AlleleSeq2_workflow_examples.tar.gz This paper http://entex.encodeproject.org/data/
AlleleSeq2_workflow_examples.tar.gz

hetSNVs_default_AS.tsv This paper http://entex.encodeproject.org/data/hetSNVs_default_AS.tsv

hetSNVs_default_AS_DNase.tsv This paper http://entex.gersteinlab.org/data/
hetSNVs_default_AS_DNase.tsv

ENTEx.TissueStacked.phased.final.txt This paper http://entex.encodeproject.org/data/
ENTEx.TissueStacked.phased.final.txt

hic_files.tar.gz This paper http://entex.encodeproject.org/data/hic_files.tar.gz

genes_default_AS.tsv This paper http://entex.encodeproject.org/data/genes_default_AS.tsv

cCREs_default_AS.tsv This paper http://entex.encodeproject.org/data/cCREs_default_AS.tsv

Associated_AS_Disease_Genes.xlsx This paper http://entex.encodeproject.org/data/
Associated_AS_Disease_Genes.xlsx
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REAGENT or RESOURCE SOURCE IDENTIFIER

hetSNVs_pooled_AS.tsv This paper http://entex.encodeproject.org/data/hetSNVs_pooled_AS.tsv

hetSNVs_pooled_AS_DNase.tsv This paper http://entex.gersteinlab.org/data/
hetSNVs_pooled_AS_DNase.tsv

ENTEx.TissueAggregated.final.txt This paper http://entex.encodeproject.org/data/
ENTEx.TissueAggregated.final.txt

pgenome_NA12878.tar.gz This paper http://entex.encodeproject.org/data/pgenome_NA12878.tar.gz

pgenome_STL-002.tar.gz This paper http://entex.encodeproject.org/data/pgenome_STL-002.tar.gz

pgenome_STL-003.tar.gz This paper http://entex.encodeproject.org/data/pgenome_STL-003.tar.gz

hetSNVs_high-confidence_AS.tsv This paper http://entex.encodeproject.org/data/hetSNVs_high-
confidence_AS.tsv

hetSNVs_high-power_AS.tsv This paper http://entex.encodeproject.org/data/hetSNVs_high-
power_AS.tsv

Supp_Data_SVs_associated_with_eQTL.xlsx This paper http://entex.encodeproject.org/data/
Supp_Data_SVs_associated_with_eQTL.xlsx

cCRE_histoneSignals_q norm.tar.gz This paper http://entex.encodeproject.org/data/
cCRE_histoneSignals_qnorm.tar.gz

cCRE_decoration.matrix This paper http://entex.encodeproject.org/data/cCREdecoration.matrix

active.combined_set.txt.zip This paper http://entex.encodeproject.org/data/
active.combined_set.txt.zip

bivalent.combined_set.txt.zip This paper http://entex.encodeproject.org/data/
bivalent.combined_set.txt.zip

repressed.combined_set.txt.zip This paper http://entex.encodeproject.org/data/
repressed.combined_set.txt.zip

Repressive_cCRE_DNAmethy_repressiveHM.zip This paper http://entex.encodeproject.org/data/
Repressive_cCRE_DNAmethy_repressiveHM.zip

Repressive_cCRE_DNAmethy_repressiveHM_summary.csv This paper http://entex.encodeproject.org/data/
Repressive_cCRE_DNAmethy_repressiveHM_summary.csv

cCRE_DNAme_subset.tsv.zip This paper http://entex.encodeproject.org/data/
cCRE_DNAme_subset.tsv.zip

stringent.regions.MF.hg38.bed This paper http://entex.encodeproject.org/data/
stringent.regions.MF.hg38.bed

ENTEx_fully_repressed_regions_independent_of_cCREs.bed This paper http://entex.encodeproject.org/data/
ENTEx_fully_repressed_regions_independent_of_cCREs.bed

Tissue_Specificity.zip This paper http://entex.encodeproject.org/data/Tissue_Specificity.zip

QTL_enrichment.zip This paper http://entex.encodeproject.org/data/QTL_enrichment.zip

GWAS_enrichment.zip This paper http://entex.encodeproject.org/data/GWAS_enrichment.zip

Supp_Data_Compatibility.xlsx This paper http://entex.encodeproject.org/data/
Supp_Data_Compatibility.xlsx

AS_ratios_and_eQTL_effect.tsv This paper http://entex.encodeproject.org/data/
AS_ratios_and_eQTL_effect.tsv

R6_RData.objects This paper http://entex.encodeproject.org/data/R6_RData.objects.html

R6_RData.4hm.objects This paper http://entex.encodeproject.org/data/
R6_RData.4hm.objects.html

perTissue.likely.eQTLs.tsv This paper http://entex.encodeproject.org/data/
perTissue.likely.eQTLs.tsv

predictions.blood.eQTLs.tar.gz This paper http://entex.encodeproject.org/data/
predictions.blood.eQTLs.tar.gz

motif_ranking.tsv This paper http://entex.encodeproject.org/data/motif_ranking.tsv
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http://entex.encodeproject.org/data/QTL_enrichment.zip
http://entex.encodeproject.org/data/GWAS_enrichment.zip
http://entex.encodeproject.org/data/Supp_Data_Compatibility.xlsx
http://entex.encodeproject.org/data/Supp_Data_Compatibility.xlsx
http://entex.encodeproject.org/data/AS_ratios_and_eQTL_effect.tsv
http://entex.encodeproject.org/data/AS_ratios_and_eQTL_effect.tsv
http://entex.encodeproject.org/data/R6_RData.objects.html
http://entex.encodeproject.org/data/R6_RData.4hm.objects.html
http://entex.encodeproject.org/data/R6_RData.4hm.objects.html
http://entex.encodeproject.org/data/perTissue.likely.eQTLs.tsv
http://entex.encodeproject.org/data/perTissue.likely.eQTLs.tsv
http://entex.encodeproject.org/data/predictions.blood.eQTLs.tar.gz
http://entex.encodeproject.org/data/predictions.blood.eQTLs.tar.gz
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REAGENT or RESOURCE SOURCE IDENTIFIER

SNPs_motif_cCRE.txt.gz This paper http://entex.encodeproject.org/data/SNPs_motif_cCRE.txt.gz

ASB-predictions-on-GTEx-cohort.tsv This paper http://entex.encodeproject.org/data/ASB-predictions-on-
GTEx-cohort.tsv

ENTEx.Explorer.cCRE.Combined.zip This paper http://entex.encodeproject.org/data/
ENTEx.Explorer.cCRE.Combined.zip

ENTEx.Explorer.Expression.Combined.zip This paper http://entex.encodeproject.org/data/
ENTEx.Explorer.Expression.Combined.zip

ENTEx.Proteomics.cCRE.Combined.zip This paper http://entex.encodeproject.org/data/
ENTEx.Proteomics.cCRE.Combined.zip

Software and algorithms

AlleleSeq2 This paper https://github.com/gersteinlab/AlleleSeq2

transferQTL This paper https://github.com/gersteinlab/transferQTL

Chromosome Painter This paper https://github.com/gersteinlab/ChromosomePaintingTool

EN-TEx Data Explorer This paper https://github.com/gersteinlab/shiny-dim-reduction

Transformer model This paper https://github.com/gersteinlab/entexBERT

CrossStitch https://github.com/
schatzlab/crossstitch

https://github.com/schatzlab/crossstitch

Long Ranger (ver. 2.1.2) 10X Genomics https://support.10xgenomics.com/genomeexome/software/
pipelines/latest/what-is-long-rang

HapCUT2 (ver. 1.1) Edge et al., 2017 https://github.com/vibansal/HapCUT2

Sniffles (ver. 1.0.11) Sedlazeck et al., 2018 https://github.com/fritzsedlazeck/Sniffles

pbsv (ver. 2.2.1) PacBio https://github.com/PacificBiosciences/pbsv

SURVIVOR (ver. 1.0.6) Jeffares et al., 2017 https://github.com/fritzsedlazeck/SURVIVOR

Iris (ver. 1.0) Kirsche et al., 2021 https://github.com/mkirsche/Iris

NanoSV Cretu Stancu et al., 
2017

https://github.com/mroosmalen/nanosv

vcf2diploid Rozowsky et al., 2011 https://github.com/abyzovlab/vcf2diploid

ngmlr Sedlazeck et al., 2018 https://github.com/philres/ngmlr

Genomestudio (v2011.1) Illumina https://support.illumina.com/downloads/
genomestudio_software_20111.html

Juicer Durand et al., 2016 https://github.com/aidenlab/juicer

BWA-MEM Li and Durbin, 2010 https://github.com/lh3/bwa

FitHiC2 (ver. 2.0.7) Kaul et al., 2020 https://github.com/ay-lab/fithic

Knight-Ruiz matrix-balancing algorithm Knight and Ruiz, 2012 https://doi.org/10.1093/imanum/drs019

TopDom (ver. 0.9.0) Shin et al., 2016 https://github.com/jasminezhoulab/TopDom

GFFRead Pertea and Pertea, 2020 https://github.com/gpertea/gffread

DecoyPYrat Wright et al., 2016 https://github.com/wtsi-proteomics/DecoyPYrat

ProteomeDiscoverer (ver. 2.4) Thermo Fisher 
Scientific

https://www.thermofisher.com/us/en/home/industrial/mass-
spectrometry/liquid-chromatography-mass-spectrometry-
lc-ms/lc-ms-software/multi-omics-data-analysis/proteome-
discoverer-software.html

Mascot (ver. 2.4) Matrix Science http://www.matrixscience.com/mascot_support_v2_4.html

Percolator Spivak et al., 2009 https://github.com/percolator/percolator

OpenMS Weisser et al., 2016 https://www.openms.de
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REAGENT or RESOURCE SOURCE IDENTIFIER

STAR (ver. 2.7) Dobin et al., 2013 https://github.com/alexdobin/STAR

DESeq2 Love et al., 2014 https://bioconductor.org/packages/release/bioc/html/
DESeq2.html

Metascape Zhou et al., 2019 https://metascape.org

Joint and Individual Variance Explained (JIVE) Hellton and Thoresen, 
2016

https://cran.r-project.org/web/packages/r.jive/index.html

Cutadapt Martin, 2011 https://cutadapt.readthedocs.io/en/stable

Picard http://
broadinstitute.github.io/
picard/

http://broadinstitute.github.io/picard

SAMtools Danecek et al., 2021 https://github.com/samtools/samtools

BEDTools Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/latest

Integrative Genomics Viewer (IGV) Robinson et al., 2011 https://software.broadinstitute.org/software/igv

DAVID Huang da et al., 2009a; 
2009b

https://david.ncifcrf.gov

ANNOVAR Wang et al., 2010 https://annovar.openbioinformatics.org/en/latest

RepeatMasker (ver. 4.0.7) http://
www.repeatmasker.org

https://www.repeatmasker.org

Umap and Bismap mappability Karimzadeh et al., 
2018

https://bismap.hoffmanlab.org

BERT Devlin et al., 2019 https://huggingface.co/docs/transformers/model_doc/bert

DNABERT Ji et al., 2021 https://github.com/jerryji1993/DNABERT

dna2vec Ng, 2017 https://github.com/pnpnpn/dna2vec
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