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otentials for accelerated
metadynamics of oxygen reduction kinetics at Au–
water interfaces†

Xin Yang, Arghya Bhowmik, Tejs Vegge and Heine Anton Hansen *

The application of ab initiomolecular dynamics (AIMD) for the explicit modeling of reactions at solid–liquid

interfaces in electrochemical energy conversion systems like batteries and fuel cells can provide new

understandings towards reaction mechanisms. However, its prohibitive computational cost severely

restricts the time- and length-scales of AIMD. Equivariant graph neural network (GNN) based accurate

surrogate potentials can accelerate the speed of performing molecular dynamics after learning on

representative structures in a data efficient manner. In this study, we combined uncertainty-aware GNN

potentials and enhanced sampling to investigate the reactive process of the oxygen reduction reaction

(ORR) at an Au(100)–water interface. By using a well-established active learning framework based on

CUR matrix decomposition, we can evenly sample equilibrium structures from MD simulations and non-

equilibrium reaction intermediates that are rarely visited during the reaction. The trained GNNs have

shown exceptional performance in terms of force prediction accuracy, the ability to reproduce structural

properties, and low uncertainties when performing MD and metadynamics simulations. Furthermore, the

collective variables employed in this work enabled the automatic search of reaction pathways and

provide a detailed understanding towards the ORR reaction mechanism on Au(100). Our simulations

identified the associative reaction mechanism without the presence of *O and a low reaction barrier of

0.3 eV, which is in agreement with experimental findings. The methodology employed in this study can

pave the way for modeling complex chemical reactions at electrochemical interfaces with an explicit

solvent under ambient conditions.
1 Introduction

Over the past several decades, density functional theory (DFT)
calculations have been extensively used for developing novel
electrocatalysts towards the oxygen reduction reaction (ORR) by
taking advantage of well-developed theoretical methods1–5 (e.g.,
free energy diagrams, volcano plots, and d-band theory) for
predicting catalytic activities. Nevertheless, most of these
calculations oversimplify the operating conditions of catalysts
by either modelling liquid water at the electrolyte–electrode
interface as static water layers,6–9 implicitly representing them
via dielectric continuum models,10–12 or even absolutely
ignoring the effect of solvents.13–16 These limitations may lead to
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erroneous evaluation of activity trends of catalysts as compared
to experiments, for example, the oxygen reduction reaction on
gold in alkaline electrolytes.17,18 Including solvent molecules for
electrolyte–electrode interface simulations and investigating
their dynamical effects could offer us a better understanding
towards the reaction mechanisms of the ORR and may resolve
the conicts between theoretical calculations and experiments.

While ab initio molecular dynamics (AIMD) is capable of
capturing the dynamics of liquid water, it is prohibitively
expensive for large length-scale and long time-scale simula-
tions. For instance, the time-averaged metrics (e.g., energy and
temperature) of AIMD simulations can differ signicantly if
started from different initial congurations, while these
discrepancies could be greatly mitigated if the model system is
equilibrated and sampled from long enough trajectories.19–21

The prohibitive computational cost severely limits the equili-
bration and sampling time scales of AIMD to only a few ps,
which may signicantly impair the reliability of such
studies.19,22–28

Recently, advances in machine learning have played great
roles in aiding the design and discovery of transition metal
based catalysts.29,30 By learning from data, machine learning
tools can make fast predictions to nd target catalysts and
Chem. Sci., 2023, 14, 3913–3922 | 3913
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Fig. 1 Active learning procedures used to train the neural network
potentials.
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provide valuable insights into the nature of the reaction, which
enable high-throughput screening of catalysts from a broad
chemical space and automated catalyst design.31–33 In partic-
ular, neural network potentials (NNPs) have shown great
promise at tting the potential energy surface (PES) of reactive
model systems by training on reference congurations that well
describe the representative atomic environments.34–37 This
approach could speed up MD simulations by several orders of
magnitude whilst retaining the accuracy comparable to AIMD,
which enables us to considerably extend the time scale and
length scale of MD simulations without compromising accu-
racy. Initially proposed architectures of neural network poten-
tials learned the force eld by leveraging handcraed features
based on distance and angle information to capture the char-
acteristics of local atomic environments.38–40 Behler–Parrinello
neural network potential is the rst example in which the
Cartesian coordinates of atoms are transformed to rotational
and translational invariant atomic-centered symmetry func-
tions.38,39 Recent advances in graph neural networks (GNNs) for
molecule graphs have made it possible to learn representative
features from the atomic structure via a graph message-passing
scheme.41–45 State-of-the-art GNN models leverage the rotation
equivariant representation of node features (i.e., features of
atomic environments) to provide more accurate force predic-
tions, which can be essential in MD simulations.44–46 In spite of
numerous novel machine learning methods for tting PES and
MD simulations driven by NNPs,20,21,47–50 there are few studies
on simulating nonequilibrium dynamics and reactions. We
have yet to nd out any study performing sampling of rare
events that govern chemical reactions with NNPs.28,51,52 Taking
the ORR as an example, although NNPs can signicantly
accelerate MD simulations, the time scale of reactive simulation
of the ORR is still inaccessible, not to mention the complex
ambient conditions of the catalysts. Due to the rapid develop-
ment of enhanced sampling techniques like metadynamics53,54

(MetaD), high accuracy sampling of PES has been possible for
such rare events. We envision that combining enhanced
sampling methods together with high-delity NNPs can enable
full simulation of slow chemical reactions on an atomic scale
within affordable computational cost.

In this paper, we present the full atomic simulation of the
ORR at an Au(100)–water interface done using metadynamics
simulations accelerated by equivariant graph neural network
potentials.43 The gold electrode has been extensively studied as
an ORR electrocatalyst, while its exceptional activity, especially
in alkaline media, is still not well-explained.17,18,55,56 This case
could well demonstrate the power of our proposed simulation
paradigm towards modeling of rare chemical reactions at solid–
liquid interfaces. Compared to non-reactive MD performed with
NNPs, a major challenge of simulating rare events like the ORR
is to ensure that the machine learning model encompasses
a vast congurational space far away from equilibrium. This
requires adaptive sampling of representative reference struc-
tures from MD and MetaD simulations, particularly transition
states that are rarely visited. In addition, quantitatively evalu-
ating the reliability of NNPs for describing the PES in the
congurational space of interest is also indispensable. Here we
3914 | Chem. Sci., 2023, 14, 3913–3922
adopt an active learning approach based on CUR matrix
decomposition57,58 to sample representative reference struc-
tures fromMD andMetaD simulations. This method enables us
to representatively sample the vast congurational spaces of the
ORR at the solid–liquid interface with minimal human inter-
vention and signicantly reduced computational cost. Our MD
and MetaD simulations are uncertainty aware, demonstrating
robust and reliable modeling of full atomic simulation of the
ORR with NNPs.
2 Computational details
2.1 Active learning framework

Our neural network potentials are constructed based on an
active learning framework utilizing CUR decomposition based
selective sampling as demonstrated in Fig. 1. First, an initial
dataset was generated by selectively sampling reference struc-
tures from several AIMD trajectories of Au(100)–water inter-
faces. Multiple interface structures with different numbers of
hydroxyl or oxygen molecules are considered to ensure the
diversity and versatility of the training dataset and to further
study the impact of adsorbates on the dynamics of solvents. The
initial AIMD trajectories contain several hundreds of thousands
of congurations. Using all of them would make the training of
NNPs very slow. Many structures are similar, and thus models
do not capture new correlations when all of those are used
simultaneously. Therefore, it is crucial to sample only those
structures that are representative and informative from these
trajectories. We rst select structures from AIMD trajectories
one in every 50 MD steps, reducing the number of candidate
congurations to several tens of thousands. Then the CUR
matrix decomposition method57,58 is employed to further rene
the training dataset without losing too much information.
Given an N × M data matrix X with its rows corresponding to N
atoms and its columns corresponding to M ngerprints, the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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objective of CUR is to minimize the information loss aer ruling
out some rows and columns, while minimizing the number of
rows and columns to be selected. We also add an extra term in
the objective function to maximize the Euclidean distance
between different atomic environments to ensure the diversity
of sampled structures. In this process, the importance of each
row and column in the data matrix can be evaluated, and the
representative congurations and ngerprints can be jointly
sampled. Here the ngerprints of atoms in candidate structures
are described by Behler–Parrinello symmetry functions,38,39

which have been extensively used for tting the PES for solid–
liquid interface systems.20,21,47–50 CUR matrix decomposition
also provides an efficient way for automatically selecting
symmetry function parameters that are typically non-trivial.

An ensemble of neural network potentials (NNPs) was then
trained on the initial dataset with 5000 reference structures aer
CUR selection. In order to extend their capability of exploring
larger congurational space, the trained NNPs are updated
adaptively in the following steps: (i) propagating MD trajectories
with the trained NNP ensemble as an energy/force calculator; (ii)
selecting representative reference structures fromMD trajectories
by using CUR decomposition; (iii) calculating these selected new
data points with DFT; (iv) retraining NNPs with the expanded
training dataset. Instead of propagating MD using only one NNP,
we choose to combine all the trained NNPs together for the
prediction of energy and forces. This strategy not only improves
the predictive accuracy of our model but also provides a practical
way to quantify if the model is still condent enough in the
congurational space of interest. The quantication is achieved
by evaluating the energy uncertainty and force uncertainty for
every step via calculating the variance of NNPs during the MD
simulation. Fig. S1† compares the calculated uncertainty and true
prediction error, indicating that uncertainty is an excellent indi-
cator for true model error. Based on the query-by-committee
method, which has been widely used in active learning,46,59,60

the congurations with relatively large uncertainty are collected
to reduce the number of candidate congurations. Subsequently,
the obtained structures are further sub-sampled by CUR decom-
position for DFT evaluation. By adding these carefully chosen new
data in the training set, we constantly improve the model
prediction for new congurational space visited by MD simula-
tions. Combining this strategy and CUR matrix decomposition
signicantly reduces the number of candidate structures and
ensure the diversity of structures in a sampled batch. The simu-
lations are stopped if the uncertainties are too large or too many
structures with large uncertainties are collected. The iterative
training of the NNP ensemble stops once all the MD simulations
can be propagated to more than tmin steps, where tmin is selected
as 5 ns to ensure that themodel systems are properly equilibrated
and all the dynamical events are fully captured.21,47,48 To further
investigate the ORR kinetics at the gold–water interface, the
iterative training procedures are repeated in the case of MetaD
simulations. Notably, as the transition states are rarely visited
during MetaD runs, it is critical to include enough such cong-
urations into our training dataset and validate our MetaD simu-
lations via uncertainty quantication.
© 2023 The Author(s). Published by the Royal Society of Chemistry
2.2 CUR matrix decomposition

Reference structures are adaptively sampled by CUR matrix
decomposition57,58 from MD simulations driven by the NNPs.
CUR matrix decomposition is a low rank approximation to the
input matrix, indicating that the information of the matrix can
be maintained aer discarding some columns and rows. Given
an n × m data matrix X, our objective is to select the least
number of rows and columns from X to construct a subset
matrix ~X while minimizing the information loss. To address
this issue, Li et al. proposed the ALFS algorithm58 to minimize
the following objective function by using an augmented
Lagrange multiplier:

min
W˛ℝm�n

L ¼ kX � XWXkF2 þ akWk2;1 þ bkWTk2;1
þlkT � ðWXÞk1

(1)

where W˛ℝm�n is an auxiliary matrix that determines which
rows and columns should be selected. Minimizing the l2 norm of
its rows and columns corresponds to minimizing the number of
selected columns and rows, respectively. The weight matrix T
that encodes the Euclidean distance between different rows is
used to maximizing the distance between selected rows, which
could effectively increase the diversity of datapoints selected in
an active learning batch. The regularization parameters a, b, and
g are used to determine the priority to minimize the row
numbers, column numbers or row distance, respectively. The l2
norm of rows and columns of optimized W will be regarded as
the importance score of each column and row in the data matrix,
and the importance score of a conguration will be calculated as
the average of the importance score of atoms inside it.

One thing that should be noted is that the overall data matrix
obtained from an MD run can typically contain a few million to
several billion entries with a feature size of more than one
hundred, on which the implementation of CUR decomposition
can be intractable. Instead of using the data matrix as a whole, we
will split the large data matrix into smaller ones by rows, and then
assess the importance of every row and column via CUR decom-
position of the smaller matrices on-the-y. This strategy signi-
cantly improves the efficiency and computational cost of CUR
selection while hasminor impact on the performance of CUR. The
size of dividedmatrices is selected as 1000 entries and 90 features
for each element generated by Behler–Parrinello symmetry func-
tions. The parameters of symmetry function are also selected by
CUR decomposition from a pool of 3000 symmetry functions.

2.3 AIMD and DFT single point calculations

The Au(100)–water interface is modelled as 30 H2O molecules
on top of a (3 × 3) tetragonal Au(100) surface with four atomic
layers, which will be denoted as Au(100)–30H2O hereaer. A
vacuum layer larger than 15 Å is perpendicularly added into the
model to eliminate the spurious interaction between periodic
images. In order to simulate the interface with ORR interme-
diates, we also consider structures with one and two hydroxyls
by removing the hydrogen atoms from water molecules near the
slab, and a structure with one oxygen molecule on top of an
Au(100) slab. These structures are denoted as Au(100)–1OH/
29H2O, Au(100)–2OH/28H2O, and Au(100)–1O2/30H2O,
Chem. Sci., 2023, 14, 3913–3922 | 3915
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respectively. Constant temperature MD simulations are then
performed in VASP61–64 by using these initial congurations with
a timestep of 0.5 fs and the temperature is kept at around 350 K
with a Nosé–Hoover thermostat.65 The bottom two layers are
kept xed during the MD run for all model systems. 50 ps, 15 ps,
15 ps, and 15 ps MD simulations are conducted for Au(100)–
30H2O, Au(100)–1OH/29H2O, Au(100)–2OH/28H2O, and
Au(100)–1O2/30H2O, respectively. The reason for running
shorter MD simulations on the model systems with adsorbates
is that their most local structures are similar to the Au(100)–
30H2O system. Density functional calculations are used to
calculate the potential energy and the forces for propagating
AIMD and labeling representative congurations sampled by
active learning. We employ an energy cutoff of 350 eV for plane-
wave basis expansion and a 2 × 2 × 1 Monkhorst–Pack k-grid
for Brillouin zone sampling.66 The exchange-correlation effects
are approximated by using the PBE functional combined with
D3 van der Waals correction.67,68
2.4 Production molecular dynamics simulations

The production MD simulations driven by the NNP ensemble
have been performed using the MD engine of the Atomic
Simulation Environment (ASE) python library.69 The simulation
box in AIMD is too small to accommodate more adsorbates and
to simulate the full reaction. Furthermore, previous studies also
demonstrated that notable noise in the structural properties of
the model systems could be observed when using small cell
sizes.47,70 Considering both effects and the increased computa-
tional cost for MD and labelling, we constructed a larger model
with 59 H2O molecules on top of a (4 × 4) tetragonal Au(100)
surface with four atomic layers, on which more adsorbates can
be accommodated. With the presence of one to six *OH, the
corresponding hydrogen atoms are removed at the interface,
producing interface structures that could be denoted as
Au(100)–1OH/58H2O, Au(100)–2OH/57H2O, Au(100)-3OH/
56H2O, Au(100)–4OH/55H2O, Au(100)–5OH/54H2O, and
Au(100)–6OH/53H2O, respectively. In order to investigate the
kinetics of the ORR, the initial state structure Au(100)–1O2/
57H2O is also built by removing two H2O molecules and placing
a O2 molecule on top of Au(100). The momentum of model
systems is initiated by a Maxwell–Boltzmann distribution with
the temperature set to 350 K. The MD simulations are propa-
gated for 5 ns by Langevin dynamics with a target temperature
of 350 K, a timestep of 0.25 fs, and a friction coefficient of 0.02.
It is noteworthy that a smaller time step is selected for
production as it can help the MD simulations reach a longer
time scale with smaller uncertainty. The uncertainties of frames
in MD simulations are quantied as the variance and standard
deviation (SD) of model outputs:

Evar ¼ 1

N

XN
i¼1

�
Ei � Ei

�2

(2)

Fvar ¼ 1

3NM

XN
i¼1

XM
j¼1

X3

k¼1

�
F

jk
i � bFi

jk
�2

(3)
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Fsd ¼ 1

3M
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j¼1

X3

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

�
Fi

jk � bFi

jk
�2

vuut (4)

where N is the number of models in the ensemble, M is the
number of atoms in a frame, and E&x0304; and F&x0304; are
the average predicted energy and force, respectively. In order to
ensure the reliability of MD results, the simulations will stop if
Fsd is larger than 0.5 eV Å−1 or more than 2000 structures with
Fsd larger than 0.05 ev Å−1 are collected.

Following the method in ref. 19, we calculated the formation
energy of *OH as the internal energy of the Au(100)–nOHOH/(59-
nOH)H2O interface structure, plus the internal energy of gas
phase nOH/2H2 molecules, minus the internal energy of the
Au(100)–59H2O interface structure.

DE ¼ �
EAuð100Þ�nOHOH=ð59-nOHÞH2O

�
t
þ nOH

2

�
EH2

þ 3

2
kBT

�
��

EAuð100Þ�59H2O

�
t

(5)

The internal energy of interface structures is calculated as
the time averaged potential energy plus kinetic energy. And the
internal energy of H2 gas molecules is calculated as the poten-
tial energy plus 3/2kBT because their center-of-mass motions are
not included in the MD simulations. Likewise, the adsorption
energy of O2 is calculated as follows.

Eads ¼
�
EAuð100Þ�1O2=57H2O

�
t
þ 1

2

�
EO2

þ 3

2
kBT

�
��

EAuð100Þ�57H2O

�
t

(6)

2.5 Metadynamics simulations

In this study, all the enhanced sampling simulations are per-
formed with a well-tempered version of metadynamics.71 The
production metadynamics simulations are propagated by Lange-
vin dynamics for 2.5 ns in ASE. The calculation of collective
variables and bias potential of metadynamics is achieved by using
PLUMED72–74 which is interfaced to the ASE library. To construct
the path CVs as described in the main text, the Au(100)–1O2/
57H2O and Au(100)–4OH/55H2O interface structures are selected
as two reference structures. And the coordination numbers
(CO2

–O) and (CO2
–H) are used to dene the congurational space of

the path. The corresponding equations and parameters for
calculating (CO2

–O) and (CO2
–H) are shown in Table S1†

With the dened path, the progress along the path s and the
distance from the path z can be computed as:

s ¼

XN
i¼1

ie�lkX�Xik2

XN
i¼1

e�lkX�Xik2
(7)

z ¼ �1

l
ln

"XN
i¼1

e�lkX�Xik2
#

(8)
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where N is the number of reference structures and X is the
structure described by (CO2

–O) and (CO2
–H). The parameter l is

selected as 0.25. The Gaussians adopted have an initial height
of 0.1 eV and a width of 0.05 and 0.1 for s and z collective
variables, respectively. The metadynamics are carried out at 350
K, employing a bias factor of 5 and a deposition rate of 125 fs
(every 500 steps). For every metadynamics run (except for O2

migration as O2 is metastable in bulk water), the system is rst
equilibrated for 0.5 ns.
2.6 Training neural network potentials

The NNP ensemble we used for production consists of ve
neural network potentials with different architectures of the
polarizable atom interaction neural network (PaiNN) model.43

In this model, all the atoms in a given conguration are treated
as nodes in a graph and the information of their connections
will be collected and processed by a message function, which
will then be passed to an update function for updating node
features. Aer several message passing iterations, the node
features will be used as the input of a multilayer perceptron to
get its atomic energy or other scalar properties. By summing up
the atomic energies of a given structure, we can get its potential
energy and forces by calculating the negative derivatives of
energy to atomic coordinates. The model can automatically
learn the relationship between chemical properties and the
positions of atoms by optimizing several hundreds of thou-
sands of model parameters in message and update layers. In
contrast, only a few hyperparameters need to be selected (the
size of node features, the number of message passing layers,
loss ratio of energy and forces, the cutoff radius for collecting
distance information of atoms, etc.), avoiding the need to
manually select and test handcraed features like Behler–Par-
rinello symmetry functions.38,39 Besides, the model uses both
scalar and vector node features to realize rotational equivar-
iance of directional information (e.g., forces) in the graph,
providing better prediction of forces.

Table S2† reports the architectures of ve models constituting
our NNP ensemble and their error metrics aer training on the
same dataset for up to 1 000 000 steps. Thesemodels use different
node feature sizes and the number of message-passing layers to
induce model diversity, while their cutoff radii are all set to 5 Å.
Both themodel training and subsequent productionMD (MetaD)
simulations are conducted on an NVIDIA GeForce RTX 3090 GPU
with oat32 precision. Theweight parameters in thesemodels are
randomly initialized and then optimized on the same data split
using stochastic gradient descent to minimize the mean square
error (MSE) loss, which can be expressed as:

L ¼ 1� l

N

XN
i¼1

�
Ei � Êi

�2

þ 1� l

NM

XN
i¼1

XM
j¼1

X3

k¼1

�
F

jk
i � bFi

jk
�2

(9)

where N is the number of congurations, M is the number of
atoms in a conguration, and l is the force weight that controls
the relative importance between energy and force loss. Here the
force weight is set to 0.99 as our tests show that using
© 2023 The Author(s). Published by the Royal Society of Chemistry
a relatively large force weight can well improve the force
prediction while only slightly undermines the precision of
energy prediction. Our model parameters are trained by the
Adam optimizer75 as implemented in PyTorch76 with an initial
learning rate of 0.0001, the default parameters b1= 0.9 and b2=

0.999, and a batch size of 16. An exponential decay learning rate
scheduler with a coefficient of 0.96 is used to adjust the learning
rate for every 100 000 learning steps. The dataset is split into
a training set (90%) and a validation set (10%), where the vali-
dation set is used for early stopping when the error of forces is
small enough. Note that several different error metrics are used
to evaluate the performance of the trained model, including
mean absolute error (MAE) and root mean squared error
(RMSE) for both energy and force predictions. These error
metrics can be expressed as follows:

EMAE ¼ 1

N

XN
i¼1
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		 (10)
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3 Results and discussion
3.1 Validation of models

Following the active learning framework, we have obtained
a nal dataset with 18 731 congurations. Fig. S2† shows the
learning curves of our NNPs trained on the nal dataset, and
Table S2† reports the detailed error metrics of best models on
the validation set. It is remarkable that our NNPs exhibit
exceptional accuracy towards the prediction of energy and
forces, where the mean absolute errors (MAEs) of energy range
between 0.4 and 0.8 meV per atom, and the MAEs of forces
between 12.6 and 16.3 meV Å−1. To illustrate the performance of
our models on different interface structures, we also report the
composition of the nal dataset and corresponding error
metrics for different structures as shown in Table S3.† The
precision of force predictions for each species in our research
system is also shown in Fig. 2a, indicating close numerical
agreement with DFT results. All these results suggested that the
trained NNPs can provide accurate energy and force predictions
for different structures across the ORR congurational space in
the production MD simulations. Table S4† exhibits the
comparison of model performance in terms of energy and force
predictions between our model and other studies for complex
systems, illustrating that our model outperforms most of these
studies, especially force predictions.43,44,77–80 The role of accurate
Chem. Sci., 2023, 14, 3913–3922 | 3917



Fig. 2 (a–c) Comparison between forces derived from DFT calcula-
tions and NNP predicted forces for H, O, and Au. The RMSE of forces
for each element are denoted inside. (d–f) Comparison between RDFs
obtained from AIMD simulations and NNP MD simulations on the
Au(100)–water interface structure. The red points denote RDFs
generated by AIMD calculation and the grey solid line denotes RDFs
generated by NNP calculation.
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force prediction is emphasized in our study since it is critical in
MD simulations. The performance of the trained NNP ensemble
is further validated in terms of its ability to reproduce the
structural properties of AIMD trajectories. Fig. 2b shows the
match of the radial distribution functions (RDFs) of all involved
species in the case of the Au(100)–water interface (without
hydroxyls or oxygen molecules). Apparently, the RDFs generated
by NNP MD simulations (solid black line) exhibit excellent
agreement with AIMD results (red points), indicating that the
NNP ensemble captures the structural arrangement of the gold–
water interface well. Apart from validating NNPs with the
existing dataset, a more important assessment for the quality of
NNPs is their application domain, which can be conrmed by
uncertainty measurements. Concretely, the MD runs should be
ergodic to ensure the reliability of information derived from
them, which indicates that all energetically relevant states must
be sampled and within the manifold accessible by NNPs. For all
MD simulations in this study, we not only sample the properties
of interest along long-time scale MD simulations but also
present the uncertainties of all steps by calculating the variance
of NNPs. The low force uncertainty of MD simulations for
different interface structures veries the robustness and reli-
ability of the trained NNP ensemble in the given congurational
space (the energy and uncertainty proles in Fig. S3 to S10†).
The agreement of the density proles of water between AIMD
and NNP MD with the same box size (3 × 3) is reported in Fig.
S11.† It can be observed that the density prole of water in NNP
MD simulation is more smooth than that in AIMD, and some
disagreements are exhibited in the bulk water area. We ascribe
the disagreements and the uctuation of AIMD density proles
to the inadequate equilibration of AIMD simulations. Moreover,
the average energy proles of Au(100)–water with four *OH that
3918 | Chem. Sci., 2023, 14, 3913–3922
started from different points are well converged as shown in
Fig. S12,† indicating that our MD simulations are ergodic and
the time scale is long enough.

Except for the validation of model accuracy and reliability,
we also evaluated the overall computational efficiency of the
proposed scheme in terms of training the initial model, model
retraining, CUR matrix decomposition, production MD simu-
lations for 5 ns and DFT labelling as demonstrated in Fig. S13.†
For the systems in this study, the required computational time
for 1000 AIMD steps is approximately 650 CPU hours, corre-
sponding to 1543.8 hours in total for generating the initial
AIMD dataset if using 80 CPU cores for each job. Training on the
initial dataset takes about 40 hours, while the cost of retraining
the new models can be substantially reduced by loading pre-
trained model parameters. The MD simulation driven by NNPs
accounts for the highest computational cost in an active
learning iteration, which takes approximately 7 days to run 5 ns
simulations on an NVIDIA RTX3090 GPU. In comparison, AIMD
needs more than 7 years to run 5 ns using 80 CPU cores, being
about 3–400 times slower than NNP MD. To train the NNPs for
a system to runmore than 5 ns MD, 5 to 10 iterations are usually
needed, which corresponds to 1000–2000 labelled structures as
indicated in Table S3.† It is worth noting that the ASE MD
engine used in this study is not specialized for GPU computing,
resulting in high overheads of data transfer between the GPU
and CPU. It can be expected that the computational efficiency of
NNP MD can be further improved in the future by using a GPU-
specialized MD code.

The validation of NNPs via application in MetaD simulations
is crucial as the congurational space of the full reactive process
can be huge while the transitional states are rarely visited. As
shown in Fig. 3, our training data points are evenly distributed
in the congurational space described by path collective vari-
ables,81 and the force uncertainties along 2.5 ns MetaD simu-
lations are all considerably small (all smaller than 0.05 eV Å−1).
Bothmetrics build condence that the trained NNPs are reliable
to capture the characteristics of all energetically relevant states,
especially transitional states, of the ORR. Furthermore, the
trained models have shown excellent transferability when using
them for the inference of Au(110)–water and Au(111)–water
interfacial systems as demonstrated in Fig. S1a.† Despite
missing structural information for the two similar systems, the
trained models still well predicts the energy and forces with
both low errors and uncertainties for all Au(110)–water and
Au(111)–water interfacial structures, which indicates that the
proposed scheme and trained models can easily generalize to
systems across a wide range of metals and their different facets.
3.2 Full metadynamics simulation of the ORR

Aer systematic validations, the trained NNPs are used to study
both adsorption energetics and kinetics of the ORR at the gold–
water interface. It is well known that the ORR on Au(100) in
alkaline electrolytes proceeds via the complete four-electron
transfer mechanism, while the partial two-electron transfer
mechanism dominates on other Au facets, such as Au(111) and
Au(110).17,55,56 Despite the use of new techniques and persistent
© 2023 The Author(s). Published by the Royal Society of Chemistry



Fig. 3 (a) Distribution of reference structures in the configurational space described by path collective variables s and z, where s represents the
progress along the path between reactants and products and z represents the distance from the path. (b) Evolution of s and force standard
deviation (SD) along 2.5 ns MetaD simulation.
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efforts devoted by researchers, the reason why ORR activity is
exceptional and facet-dependent on gold remains elusive. There
are several assumptions that may provide a clear answer to this
question, including the outer-sphere mechanism of the
ORR,17,82,83 and the role of preadsorbed species and solvents.84,85

All these assumptions call for a full atomic simulation that
elaborately considers the ambient conditions of Au(100) and
models the reaction without any simplication.

The rst step of the ORR on Au(100) is O2 activation, which is
also considered a key step that determines the activity of cata-
lysts that weakly interact with adsorbates. According to whether
O2 closely adsorbs on Au(100), the reaction can be initiated via
the inner-sphere mechanism in which the slab directly transfers
electrons to closely adsorbed O2, or the outer-sphere mecha-
nism in which the ORR occurs away from the slab by several
solvent layers. The adsorption energy of the *O2 molecule and
*OH with different coverage is summarized in Table S5,† sug-
gesting weak interaction between these species and the Au(100)
slab. As demonstrated in Fig. S9,† our 5 ns MD simulations at
the Au(100)–water interface with one O2 molecule have shown
that the O2 molecule will be in close contact with the Au(100)
surface, yielding a density peak at 2.1 Å. We further carried out
a MetaD simulation that models the migration of O2 from bulk
water to the Au(100) surface as shown in Fig. 4a. It is found that
there are no stable local minima for O2 saturating in bulk water,
and the migration barrier can be easily overcome by the thermal
uctuation of the model system. As shown in Fig. S14,† a simple
MD simulation modeling the movements of O2 in the bulk
water part of the interface also proves this conclusion. Aer 350
ps simulations, the O2 molecule nally moved from bulk water
to the Au(100) surface. Based on these results, we model the
reaction process with O2 directly adsorbed on Au(100) and
believed that the bond breaking of the O2 molecule could be the
rate-determining step of the ORR on Au(100).

The full atomic simulation of the ORR is then conducted to
investigate the bond-breaking process in the O2 molecule and
the formation of hydroxyls by using metadynamics simulations.
© 2023 The Author(s). Published by the Royal Society of Chemistry
The reaction coordinates of the ORR are described by path
collective variables (CVs)81 with the initial state (Au(100)–1O2/
57H2O) and nal state (Au(100)–4OH/55H2O) selected as two
reference structures. The distance to reference structures is
quantied by the number of oxygen atoms (CO2

–O) and
hydrogen atoms (CO2

–H) around the O2 molecule. As summa-
rized in Table S6,† these two descriptors can well capture and
differentiate the structural characteristics of different possible
intermediate states of the ORR, including *O2, *OOH, *H2O2,
*O, and *OH. The well-designed CVs enable us to automatically
search the reaction path without using any prior knowledge
about the reaction mechanism. In this approach, instead of
modeling multiple possible reaction pathways and verifying
which one is energetically most favorable, we only need to
incrementally extend the explored PES (with our NNPs) from
equilibrium states to non-equilibrium transitional states by
using active learning. Furthermore, this strategy can be easily
generalized to simulate more complex model systems and
chemical reactions.

Fig. 4b shows the obtained free energy landscape of the ORR
as a function of path CVs, where s is the progress along the
reference path, and z is the distance to the reference path. The
landscape is composed of two basins which correspond to the
initial state and nal state of the ORR. Fig. 3b also shows the
time evolution of the s collective variable. It can be seen that the
rst basin in the landscape has been completely lled aer
approximately 100 ps, which corresponds to the transition from
O2 to hydroxyls. Filling the second basin, which can be regarded
as the transition from hydroxyls to O2, becomes much more
difficult than the rst one with the employed CVs in this study.
However, it should be pointed out that the depth of the rst
basin is enough to evaluate the activation energy of bond
breaking in O2. The energy barrier of the transition from O2 to
hydroxyls is estimated to be 0.3 eV, which is in good agreement
with experimental ndings that Au(100) displays high ORR
activity. It is noteworthy that the simulation box in this study is
small in comparison with the realistic interface structure. The
Chem. Sci., 2023, 14, 3913–3922 | 3919



Fig. 4 (a) Free energy landscape of O2 migration from bulk water to the Au(100) surface. (b) Free energy landscape of *O2 reduction to *OH
described by path collective variables. (c) Snapshots for O2 in bulk water, the initial state, the transitional state, and the final state.
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limited cell size can result in slightly higher formation energies
of hydroxyl as demonstrated in Table S5,† which can be
ascribed to the stronger repulsion between hydroxyl in smaller
boxes and the possible lateral correlation of solvation shells.
Besides, we also expect that the bond breaking of the O2

molecule can be more difficult because of the easier recombi-
nation of individual oxygen atoms. Both effects can make the
ORR in a small cell less facile, while further supporting our
conclusion that the ORR is facile on Au(100) even when
modeled with a limited number of water molecules. The snap-
shots for O2 in bulk water, the initial state, the transition state,
and the nal state are displayed in Fig. 4c. At rst, the O2

molecule is partially protonated by neighboring water mole-
cules to *OOH, suggesting the associative reaction pathway
proposed by Nørskov et al.1 However, the subsequent formation
of *O is not observed in the overall reaction as the remaining
oxygen atom is immediately protonated by reacting with water.
Therefore, the reaction pathway observed from our simulations
can be summarized as follows:

*O2 + H2O / *OOH + *OH

*OOH + H2O / 3*OH

The MetaD simulation highlights the role of water molecules as
a reactant of the ORR, suggesting that the explicit modeling of
solvents is indispensable in theoretical electrocatalysis.
3920 | Chem. Sci., 2023, 14, 3913–3922
4 Conclusions

In summary, the reactive process of the ORR is investigated by
MetaD simulations that are signicantly accelerated by high
delity NNPs in this study. By using an active learning strategy
underpinned by CUR matrix decomposition, we obtained an
NNP ensemble that exhibits exceptional performance and reli-
ability for the prediction of structural properties and forces in
the congurational space of an Au(100)–water interface. By
leveraging well-designed path collective variables, the ORR can
be fully and automatically simulated without the need to elab-
orately consider multiple reaction pathways. Our MetaD simu-
lations suggest that the ORR proceeds in the associative
reaction pathway, while the *OOH reaction intermediate is
directly reduced to two *OH with the participation of neigh-
boring water molecules rather than dissociating into *OH and
*O. The low energy barrier of the ORR predicted in this study
well explains the outstanding experimental ORR activity. The
longer time-scale simulations enabled by NNPs can give us
deeper insight into the nature of chemical reactions, such as the
facet-dependent ORR on different Au facets which will be
pursued in our future work. Besides, the effect of cations on the
ORR activity of gold is also a meaningful extension of this work.
The full atomic simulation conducted here can be conveniently
extended to other model systems and become a valuable tool for
investigating complex chemical reactions in a straightforward
manner.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Data availability

The code for training the PaiNN model, performing MD and
MetaD simulations, and CUR matrix decomposition is available
in the following GitHub repository: https://github.com/
Yangxinsix/painn-sli. The dataset in this study is openly
available in the DTU data repository.86
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