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Abstract

The increased production of derivatives of molecular oxygen and nitrogen in the form of reactive 

oxygen species (ROS) and reactive nitrogen species (RNS) lead to molecular damage called 

oxidative stress. Under normal physiological conditions, the ROS generation is tightly regulated 

in different cells and cellular compartments. Any disturbance in the balance between the cellular 

generation of ROS and antioxidant balance leads to oxidative stress. In this article, we discuss 

the sources of ROS (endogenous and exogenous) and antioxidant mechanisms. We also focus 

on the pathophysiological significance of oxidative stress in various cell types of the liver. 

Oxidative stress is implicated in the development and progression of various liver diseases. We 

narrate the master regulators of ROS-mediated signaling and their contribution to liver diseases. 

Non-alcoholic fatty liver diseases (NAFLD) are influenced by a “multiple parallel-hit model” 

in which oxidative stress plays a central role. We highlight the recent findings on the role of 

oxidative stress in the spectrum of NAFLD, including fibrosis and liver cancer. Finally, we provide 

a brief overview of oxidative stress biomarkers and their therapeutic applications in various 

liver-related disorders. Overall, the article sheds light on the significance of oxidative stress in the 

pathophysiology of the liver.

The Concept and Definition

In 1936, Hans Selye introduced the “stress concept” in understanding the response of 

animals to acute nonspecific nocuous agents such as cold, surgical injury, and drugs (349). 

He defined stress as a nonspecific response of the body to any demand (348). In the later 

1970s, Paniker et al. showed that exposure of red blood cells to hydrogen peroxide (H2O2) 

induces “oxidative stress,” which is associated with glutathione reductase activity (299). In 

the 1980s, the term oxidative stress was introduced in redox and medicine biology in an 

introductory chapter (366). The review by Helmut Sies “Biochemistry of Oxidative Stress” 

described the biology of oxidative stress in biological systems, including the pro-oxidants, 

antioxidants, cause and effect, defense and repair mechanisms, and also control of oxidative 
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stress. Oxidative stress is defined as the “state of condition wherein the cellular pro-oxidant 

and antioxidant balance is altered in favor of a pro-oxidant state.” In other words, oxidative 

stress occurs in response to increased production of reactive oxygen species and decreased 

production of antioxidants (135, 364, 365).

The concept of oxidative stress is associated with free radicals in biology and medicine 

(317). Free radicals are the molecules or atoms characterized by highly reactive unpaired 

electrons or atoms (39, 313, 412). All the free radicals are not equally toxic. The degree of 

reactivity or chemical nature of free radicals and their reactants depends on the extent of 

damage to the biological system. The reactivity of free radicals estimated by one-electron 

reduction potentially reflects the molecule’s affinity compared with hydrogen. Thus, most 

free radical products are assumed to be oxygen-based hydroxyl radicals and nitrogen-based 

peroxynitrite anion (241, 317).

Oxidative Stress-classification

In modern biology and medicine, several reactive species were identified. Among them, the 

most well-studied reactive species in the mammalian system include reactive oxygen species 

(ROS), reactive nitrogen species (RNS), reactive carbonyl species (RCS), and reactive sulfur 

species (RSS). Other biologically critical reactive species include selenium, chlorine, and 

bromine species.

Reactive oxygen species (ROS)

ROS comprise radical and nonradical oxygen species formed by the partial reduction 

of oxygen. ROS are majorly represented by superoxide anions (O2
•−), hydroxyl radicals 

(HO•), and hydrogen peroxide (H2O2). Superoxide anions and hydroxyl radicals exist in 

a free-radical form characterized by highly unstable unpaired electrons (e.g., O2
•− and 

HO•). While H2O2 is a nonradical, chemically stable, freely diffusible, and long-lived 

molecule (282, 365). ROS is formed through endogenous mechanisms such as mitochondrial 

electron transport chain (ETC), flavin-dependent oxidation, and microsomal oxidation (188, 

280). ROS generation also occurs in response to exogenous pathways such as xenobiotic 

metabolism (e.g., antimycin and adriamycin) (285, 367). Furthermore, ROS could also be 

generated through exposure to nutrients, pollutants, and physical factors such as ultraviolet 

light, ultrasound, and X-rays (367). Auto-oxidation products such as flavins and hemoglobin 

also could lead to the formation of ROS (326, 347).

In the biological system, H2O2 is considered as the major ROS that plays a critical role 

in redox regulation (129, 324, 379). The production of H2O2 takes place in response to 

metabolic cues, cytokine, and chemokines (343). Under physiological levels, the redox 

signaling of H2O2 is mediated through oxidation of sulfur proteins, reversible methionine 

oxidation, selenoprotein, oxidation of metal centers, and lipids (408). However, the 

generation of higher amounts of H2O2 results in unspecific oxidation of proteins leading 

to cell growth arrest and death (128). The major endogenous enzymatic sources for H2O2 are 

NADPH oxidases and the mitochondrial ETC. Excess H2O2 is removed by peroxiredoxins 

and glutathione peroxidases, apart from catalases (141, 249). Besides, H2O2 levels are 
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maintained by the exchange between organelle systems such as ER, mitochondria, and 

peroxisomes (453).

Reactive nitrogen species (RNS)

RNS is a family of nitrogen-associated molecules produced when nitrogen interacts with 

oxidants and reductants like superoxide and hydrogen peroxide, either endogenously 

or exogenously. The most common RNS includes nitric oxide (NO•) and peroxynitrite 

(ONOO−). Like ROS, RNS also exists in a free radical form (nitric oxide, nitrogen dioxide, 

and nitrite) or nonradical form (nitrous acid, peroxynitrite, and nitrosyl anions). The half-

life, solubility, and biological reactivity of RNS depend on their precursors (1, 82, 297, 320).

Nitric oxide is the foremost and critical RNS known to play a significant role in redox 

biology. Nitric oxide is an easily diffusible free radical with a short half-life and is central 

to the formation of other RNS (320, 328). The generation of RNS begins with the synthesis 

of nitric oxide by the enzyme nitric oxide synthase (NOS), which exists in three forms; 

includes neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS). 

The eNOS and nNOS are constitutively expressed by the endothelial cells and neuronal 

cells, respectively, while iNOS expression is regulated at the transcriptional level in various 

cells (104, 105). In addition to nitric oxide, peroxynitrite is considered a major cellular 

nitrating agent, which derives from the reaction of NO with superoxide anion. Peroxynitrite 

is generated by the plasma membrane NADPH oxidases and mitochondrial respiratory 

chain. Although peroxynitrite is short-lived, it is a potent inducer of cell death (319, 320, 

388).

Other species

In addition to ROS and RNS, several other highly reactive species regulate redox 

signaling. Among them, reactive sulfur species (RSS) comprises sulfur-containing reactive 

biomolecules that range from small molecules to proteins. The common RSS includes 

hydrogen sulfide (H2S), protein thiols, low-molecular-mass compounds such as glutathione, 

trypanothione, sulfenic acids (RSOH), and nitrosothiols (RSNO) (76, 122). Most of the 

RSS formed as a by-product of major thiols or oxidation of sulfite or sulfate molecules. 

Importantly, the per/polysulfides encompassing cysteine persulfide and polysulfide are the 

most abundant RSS identified in the mammalian and other biological systems (182, 203). 

Besides, several studies have shown that H2S is the most common short-lived RSS that 

has prolonged biological effects in the mammalian system (329). Recent studies have 

demonstrated a role for RSS in various diseases, including atherosclerosis, fatty liver, 

inflammation, and viral hepatitis (65, 189, 217). Further, a recent work by Zhang et 

al. shows that cellular polysulfides inhibit lipopolysaccharide-induced proinflammatory 

responses in the macrophages through toll-like receptor 4 (TLR4) signaling (462).

RCS are the biological compounds with one or more carbonyl groups that include 

metabolically generated aldehydes and electronically excited carbonyl molecules. Some 

of the RCS include acrolein, crotonaldehyde, glyoxal, acetone, and formaldehyde (350). 

RCSs are majorly generated through nonenzymatic processes such as lipid peroxidation, 

amino acid oxidation, and glycation (253, 369). Although RCSs exert beneficial effects, 
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their overproduction, known as carbonyl stress, is the major contributing factor for aging, 

metabolic diseases, and other neurodegenerative diseases (95, 144). Mechanistically, RCS 

induce biological damage by forming α- and β-unsaturated aldehydes, dialdehydes, and 

keto-aldehydes, which are more reactive than saturated forms (5, 254). In aging, RCS 

accumulates in various tissues and peripheral blood in the form of advanced glycation end 

products (AGEs) (304, 400).

Physiological Significance of ROS

The cells generate ROS during oxidative metabolism by various chemical, environmental, 

and dietary cues, as described above (12). Maintaining a delicate balance between the 

oxidant-antioxidant mechanisms is modulated by its production, location, and inactivation. 

At physiological levels, ROS, considered as “redox biology,” plays a significant function 

in regulating signal transduction, gene expression, and cell proliferation (268, 292, 458). 

Recent studies have emphasized their role in blood pressure control (410, 418) and 

embryonic development (222, 437). Thus, ROS monitors cell fate indicating the existence of 

a “ROS rheostat” in the cells.

Under physiological conditions, mitochondrial reactive oxygen species (mROS) regulates 

biological functions such as autophagy, immunity, differentiation, longevity, and adaption to 

hypoxia (79, 351). As a defense mechanism, mitochondria are equipped with antioxidant 

enzyme machinery to minimize the risk of aberrant increases in ROS. For example, 

superoxide dismutase (SOD) families of enzymes such as SOD1, 2, and 3, peroxiredoxins, 

glutathione peroxidase (GPX), and catalases are localized in mitochondrial intermembrane 

space or matrix (172, 175, 421). Peroxiredoxins turn ROS signaling off (303), while GPXs 

buffers the excess ROS and bring them to normal levels (250).

The physiological significance of ROS is well-studied in mitophagy, a quality control 

process wherein damaged mitochondria are continuously removed from the cells (185). 

Impairment of mitophagy results in the accumulation of damaged mitochondria leading to a 

further increase in mROS/total ROS. Several studies have shown that mROS is required to 

induce mitophagy (92, 208). For instance, under starvation mROS drives the formation of 

autophagosome through the activation of PI3K pathway (342). Besides, mitophagy preserves 

mitochondrial bioenergetics, attenuates cell injury and progression of liver diseases by 

reducing oxidative stress (33, 243, 432). The other important physiological significance of 

mROS was demonstrated under hypoxic conditions. This concept has arrived from the data 

that the cells depleted of mitochondrial DNA do not stabilize HIFs under hypoxia (55). 

Thus, when the cells encounter low oxygen levels, they undergo an adaptive mechanism 

triggered by enhanced mROS generation. Similarly, several studies have shown that mROS 

regulate the immune system (106, 325), aging (211, 266, 332), and stem cell differentiation 

(161, 295). Thus, the level of ROS serves as an alarm to report the changing environment in 

the cell.
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Liver and Oxidative Stress

The liver is the second-largest and key metabolic organ in the mammalian system (271). 

The liver consists of parenchymal (hepatocytes) and nonparenchymal cells. Hepatocytes are 

the major structural and functional units of the liver. The nonparenchymal cells include 

Kupffer cells, sinusoidal endothelial cells, stellate cells, periportal fibroblasts, and hepatic 

dendritic cells (404). The liver is the main site for synthesis, secretion, degradation, and 

coupled inter-conversion and biotransformation of amino acids, carbohydrates, and lipids. 

It is also involved in the storage and transport of micronutrients such as vitamins and 

minerals. In addition, the liver is the major site of detoxification of drugs, alcohol, and 

hormone metabolism and to some extent, filtration of blood. Collectively, it performs five 

essential functions, namely, (i) metabolism, (ii) storage, (iii) excretion and secretion, (iv) 

detoxification, and (v) blood filtration. These activities account for approximately 25% of 

the total metabolic rate. The liver is considered as the metabolic hub as it connects various 

organs in coordinating whole-body homeostasis of bio-molecules, hormones, macro-, and 

micronutrients (201, 314, 404).

Given its role in xenobiotic metabolism, the liver generates several oxygen (ROS) and 

nitrogen (RNS)-based free radical species. However, their persistent production results in 

oxidative stress leading to the dysregulation of liver homeostasis (69, 256). The initiation 

of ROS in the liver takes place due to increased mitochondrial respiration. mROS generated 

in the hepatocytes is responsible for the oxidative damage of lipids, proteins, and DNA 

(265, 280). Recent studies have reported that endoplasmic reticulum and peroxisomes also 

contribute to hepatic ROS levels (38, 207). Besides mitochondrial respiration, hepatic 

xanthine oxidase, which converts hypoxanthine to xanthine and xanthine to uric acid, 

generates superoxide anion and hydrogen peroxide (26).

Hepatocytes

Hepatocytes, which occupy nearly 80% of the liver volume, are the first cells that respond to 

the dietary contents after absorption and are prone to injuries from ingested toxins, alcohol, 

and other drugs. Hepatocytes prevent liver damage by storing free fatty acids in the form of 

lipid droplets. (14). Lipotoxicity impairs mitochondrial function and changes the redox state. 

Over time, dysfunctional mitochondria reduce ATP production resulting in increased ROS 

production and hepatocyte death (246). Thus, ROS released from the injured hepatocytes 

acts as a major stimulus for the progression of various liver diseases via activation of 

immune and hepatic stellate cells.

ROS generated in the hepatocytes also influences the function of the neighboring cells 

through various mechanisms. For example, ROS activates TGF-β and fibromodulin in 

the hepatocytes, which induces the migration and proliferation of HSCs leading to liver 

fibrosis (37). Apoptosis or necrosis of the hepatocytes also increases mROS releases and 

contributes to fibrogenesis (48, 416). Furthermore, increased hepatocyte ROS destroys the 

critical function of cellular macromolecules such as DNA, proteins, and lipids. For example, 

ROS oxidizes the protein kinase and phosphatases that regulate major signaling pathways 

such as mitogen-activated protein kinases (MAPKs) (153, 370). Hepatocytes also promote 

inflammation and oxidative stress by releasing hepatokines such as fetuin A, fetuin B, and 
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IL-18. Further, hepatocytes store a large amount of iron and Fe-S containing mitochondria 

proteins, which are highly reactive toward O2
− (389, 414). Thus, the excessive production 

of ROS generated from the hepatocytes plays a significant role in the development and 

progression of liver diseases (Figure 1).

Kupffer cells

In the liver, Kupffer cells are the most abundant resident macrophages that eliminate 

invading microbes and their products. Kupffer cells reside in the hepatic sinusoidal cells, 

and their numbers are tightly regulated by various factors (91, 163). Although it seems 

that resident macrophages are essential to fight invading microbes, their activation plays 

a significant role in the initiation and progression of acute liver injuries and fatty liver 

disease (269). Recent evidence demonstrates that the recruitment and activation of Kupffer 

cells also occur in response to dietary and environmental factors (102, 391). The recruited 

macrophages initiate fatty liver and fibrosis in NAFLD (152, 406).

Under pathological conditions, Kupffer cells are activated by various inflammatory cells, 

chemokines, and other growth-modulating factors (93, 215). Also, the accumulation of 

ROS activates Kupffer cells (110). Further, activated Kupffer cells could also contribute to 

ROS generation under various acute and chronic liver injuries. In support of this notion, 

the treatment of rats and mice with carbon tetrachloride (CCl4) results in the activation 

of Kupffer cells, thereby increasing the reactive oxygen intermediates (9, 176, 327). In 

addition to resident macrophages, recruited macrophages also produce ROS through various 

mechanisms, including mitochondrial damage, ER stress, and increased NADPH oxidases 

(NOXs) (83, 115, 132). The iNOS expressed by the Kupffer cells generate RNS and its 

redox derivatives. NOX-derived ROS involves the production of proinflammatory cells and 

other chemokines in response to LPS and other fattyacids (Figure1) (142, 181, 228, 311). 

Recent studies show that the phenotypic switch in the resident macrophages from classically 

activated inflammatory macrophages (M1) to alternatively activated anti-inflammatory 

macrophages (M2) is strongly associated with increased generation of ROS in the liver 

(169, 290).

Hepatic stellate cells (HSCs)

HSCs located in the space of Disse occupy nearly 8% to 12% of the total liver cell 

population. HSCs play a significant role in maintaining hepatic architecture and blood 

flow by regulating the synthesis/degradation of the extracellular matrix. HSCs also exhibit 

immune function by secreting various cytokines, chemokines, and growth factors. HSCs 

store retinoids including vitamin A and its isoforms. Because of these characteristics, 

HSCs regulate the functions of hepatocytes and other liver cells through a paracrine and 

juxtracrine mechanism (Figure 1) (340, 353, 354). ROS generated by the Kupffer cells and 

leukocytes could activate HSCs. A positive correlation between ROS and HSCs activation 

was demonstrated using various models such Fas the CCl4-induced and diet-induced liver 

injury in rodent animals. Although CCL4 does not affect the HSCs directly, substances 

released from the injured hepatocytes, including ROS activates HSCs (27, 272). Activation 

of HSCs leads to excessive synthesis and deposition of extracellular matrix proteins 

resulting in liver fibrosis (457). Although the exact mechanisms of HSC activation are 

Mooli et al. Page 6

Compr Physiol. Author manuscript; available in PMC 2023 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unclear, several studies demonstrated that inflammatory cytokines and chemokines drive the 

activation and proliferation of HSCs (6, 216).

Endothelial cells

The liver sinusoidal endothelial cells (LSEC) are highly specialized and distinctive micro-

vascular cell types that play a key role in maintaining the liver microenvironment. 

LSECs are considered as the first defense barrier and contribute to metabolite transport, 

inflammation, and angiogenesis by interacting with various neighboring cell types in the 

liver (42). LSECs also govern the regenerative process in response to liver injury (84, 309, 

417). Thus, the dysfunction of LSECs leads to the initiation and progression of various 

liver-related diseases, including liver fibrosis and cirrhosis (137, 257). Free fatty acids, 

triglycerides, ethanol, and HCV core protein could trigger LSEC dysfunction (18, 140, 263). 

Inflammatory cells and activated HSCs also drive liver injury by altering LSEC response to 

injury (174, 360). It has been shown that ROS selectively targets LSEC during prolonged 

liver injury. Importantly, LSECs are highly sensitive to ROS compared to other liver cells 

due to higher expression of NADPH oxidase (NOX) 2 and 4, the major source of ROS 

via NADPH oxidases, and their reduced capacity to enzymatically detoxify H2O2 (259, 

267, 358). Moreover, impairment in autophagy in LSEC results in an improper response to 

oxidative damage and leading to increased ROS generation. This further helps LSEC recruit 

and activate macrophages and modulating the expression of proinflammatory cytokines and, 

thereby disease progression (136, 330).

Immune cells

The liver is considered as “the organ of the immune system.” The liver immune cells are 

distributed and localized strategically in various compartments and circulate in the sinusoids. 

The liver immune cells majorly include dendritic cells, neutrophils, lymphocytes (B & T), 

and natural killer cells (74, 284). The hepatic immune cell population is established as 

early as early embryonic life and creates a niche for blood surveillance. Although liver 

immune cells are prerequisites for proper host immune responses, excessive accumulation 

or recruitment of immune cells could lead to several liver-related diseases. For example, 

neutrophils infiltrated at the site of injury recruit blood monocytes and other immune cells, 

which further activates dendritic cells and macrophages (160, 431, 447).

One of the hallmarks of inflammation is the generation of large quantities of superoxide 

radicals via NADPH oxidase complex in the liver immune cells. In addition, most of 

the oxidants, except superoxide and hydrogen peroxide, are produced by the enzyme 

myeloperoxidase (MPO) in the immune cells, especially neutrophils (197). ROS generated 

in the immune cells induces tissue damage and disease progression. Indeed, studies have 

shown that neutrophils were the primary cell that displays NADPH oxidase activity and 

generates a whole spectrum of both radicals and nonradical relevant to ROS (382, 447). T 

cells also generate ROS via NADPH oxidase and act as the primary source for mROS (352). 

This concept is tested in several studies wherein pharmacologic treatment of primary T cells 

with antioxidants attenuated the proliferation of T cells (168, 277). Similarly, continuous 

generation of ROS in primary B cells in response to B cell antigen receptor stimulation 
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results in proliferation and activation of B cells (430). Likewise, oxidative stress in the liver 

also enhances the dendritic cell response leading to T cell activation (289, 296).

Cellular Organelles and ROS

In the cells, ROS is generated in various cellular compartments, including the cytoplasm, 

mitochondria, ER, lysosomes, and peroxisomes.

Mitochondria

Mitochondria play an essential role in the generation of ATP through the oxidation of 

metabolic intermediates through the ETC. Mitochondria account for nearly 90% of oxygen 

consumption and therefore acts as the most redox-active compartment in the mammalian 

cells (46, 464). However, the accumulation of excess fatty acids creates an imbalance 

between the delivery and outflow of electrons to the respiratory chain in the mitochondria 

leading to the production of ROS (287, 377). In general, the mitochondrial ROS (mROS) 

in ETC occurs in the form of superoxide anion radical and its dismutation product H2O2 

(40, 210). Although mitochondria are occupied with several complexes in generating energy, 

complex I and III are the major sites of electron transfer to O2 to generate O2
•− (62, 

195). Studies have shown that ROS could also be generated from pyruvate dehydrogenase 

(44), α-ketoglutarate dehydrogenase (378), glycerol-3-phosphate dehydrogenase (293), and 

monoamine oxidase (375). Under pathological conditions, several molecular mechanisms 

drive the overproduction of mROS. For example, mitochondria in the apoptotic cells produce 

superoxide in response to the release of cytochrome c (130, 166). Thus, mitochondria are 

considered the main source of ROS.

Given its role in ROS production, mitochondria are well equipped with antioxidant and 

scavenging mechanisms such as manganese superoxide dismutase (Mn-SOD), copper 

zinc-superoxide dismutase (CuZn-SOD), mitochondrial glutathione (mGSH), glutathione 

peroxidase, and catalase. In addition, the mitochondrial matrix is equipped with two 

antioxidant enzymatic systems: GSH-dependent glutathione peroxidase and NADPH-

dependent thioredoxin-2 systems (338, 351). These enzymatic reactions help to maintain 

the balance between the pro and antioxidants. However, under pathological conditions, 

mitochondria generate huge amounts of ROS due to dysregulation in one or several of 

the aforementioned oxidant and antioxidant mechanisms. The well-studied liver pathologies 

that involve increased mitochondrial ROS include alcoholic-fatty liver disease (AFLD), 

nonalcoholic fatty liver disease (NAFLD), cirrhosis, viral hepatitis, and hepatocellular 

carcinoma (HCC). For example, chronic alcohol consumption leads to enhanced ROS 

production in the mitochondria partly due to the accumulation of cholesterol in the inner 

mitochondrial membrane and further disturbing the mGSH import from the cytosol. The 

significance of the mitochondrial import of GSH was demonstrated by restoring the 

membrane fluidity by administering the antioxidant N-acetylcysteine. Moreover, alcohol-

induced ROS causes oxidative damage to the mitochondrial DNA, thereby increasing the 

risk of double-strand breaks and somatic mutations (32, 53, 118, 138). Thus, several 

studies have demonstrated targeting oxidative stress as a potential therapeutic avenue for 

liver-related diseases such as AFLD and NAFLD.
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Endoplasmic reticulum

The endoplasmic reticulum (ER) is the major site for protein synthesis, folding, 

modification, and trafficking (41). ER is also involved in the biosynthesis of steroids, lipids, 

and carbohydrates (154). Oxidative protein folding in the ER generates ROS, and in fact, the 

overall estimate is that nearly 25% of ROS generated in the cell is contributed by the ER. 

An oxidizing environment needs to be maintained in the ER lumen to introduce the disulfide 

bonds during protein folding and trafficking (346). Interestingly, ER is impermeable to 

GSSH; therefore, it relies on its capacity to generate GSSH. The electron transport required 

to generate GSSH in the ER membrane is regulated by the protein disulfide isomerase (PDI) 

and ER oxidoreductin 1(ERO1) (36, 312). Under pathological conditions, overactivation of 

unfolded protein response results in the generation of ROS and is strongly associated with 

the progression of NASH and cirrhosis (207, 374). Furthermore, ER stress results in the 

accumulation of calcium in the mitochondria, which promotes exacerbated mitochondrial 

ROS production leading to disease progression (126, 134). ER is also the home for 

the enzyme cytochrome 2E1 (CYP2E1), the enzyme responsible for ethanol catabolism. 

Thus, the ER plays a central role in ethanol-induced ROS production in the hepatocytes 

(265). Moreover, in HCV infections, viral replication and their gene products induce ROS 

production from ER (133, 307).

Peroxisomes

Peroxisomes are the oxidation sites of very long-chain and branched-chain fatty acids 

that cannot directly enter into the mitochondria. The dynamic nature of peroxisomes to 

enlarge, elongate, and proliferate confers its ability to involve in oxidative and detoxification 

reactions (205). In other words, peroxisomes majorly serve two functions to protect against 

liver diseases: (i) by the degradation of very long-chain fatty acids and (ii) disposing of 

excess ROS. Peroxisomes produce large amounts of H2O2 from the continuous oxidation of 

fatty acids (107, 165, 288). As a protective mechanism, peroxisomes are equipped with high 

detoxifying enzymes such as catalase, GPx, Mn-SOD, and CuZn-SOD (288, 398). Thus, 

structural and functional disturbances in peroxisomes of hepatocytes are sufficient to induce 

spontaneous hepatic steatosis through excessive generation and release of ROS (158).

Lysosomes

Lysosomes are the major nutrient-sensitive organelle involved in autophagy, including 

the removal of damaged mitochondria through a process called mitophagy (204). Recent 

studies have demonstrated a reciprocal relationship between ROS and autophagy (219). For 

example, Atg4, a cysteine protease, was identified as a direct target of ROS (342). Further, 

starvation concomitantly increases autophagy and mitochondrial ROS production through 

the inhibition of mTOR pathway (359). This concept was supported by a study wherein 

nutrient deprivation in hepatocytes results in the accumulation of defective mitochondria 

and increased oxidative stress (180). Moreover, ROS-mediated mitophagy is known to 

play a critical role in the first hit (lipid accumulation) and second hit (oxidative stress 

and inflammation) of NASH pathogenesis (212). The other fascinating role of lysosomes 

in oxidative stress arises from their ability to accumulate iron, wherein it catalyzes the 

Fenton reaction with H2O2 in various liver disease models (227, 399). Thus, lysosomal 
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disorders associated with several chronic diseases are mainly related to increased generation 

of mitochondrial ROS.

External Mediators of Oxidative Stress

In addition to intracellular sources, several external factors trigger ROS generation. They 

include alcohol, drugs, nutrients, toxicants, pollutants, and physical stressors (UV, X-ray, 

and ionizing radiation). All these factors promote the initiation and progression of various 

liver-related diseases by altering the redox signaling.

Alcohol

Alcohol metabolism occurs in the liver with the help of enzymes alcohol dehydrogenase 

and aldehyde dehydrogenase resulting in the generation of one molecule of NADH. During 

this process, the respiratory activity is increased, resulting in increased oxygen consumption 

and the generation of greater amounts of ROS. When alcohol consumption is excessive, 

other enzymes such as NADH-dependent cytochrome C reductase, aldehyde oxidase, and 

xanthine oxidase drive ROS generation (52, 455). Alcohol also increases ROS generation 

by noncanonical mechanisms. For example, alcohol induces oxidative stress by increasing 

intestinal iron absorption leading to iron overload in the liver (157). Several studies have 

shown that the accumulation of iron in the liver is strongly associated with oxidative stress 

and the development of several liver-associated disorders (58, 99, 405, 411). Further, alcohol 

increases cytochrome P2E1 (CYP2E1) activity, an important player in the metabolism of 

alcohol. The induction of CYP2E1 strongly correlates with the generation of hydroxyethyl 

radicals and other lipid radicals (109, 276). For example, the exposure of HepG2 cells 

expressing human CYP2E1 to alcohol results in ROS generation, mitochondrial damage, and 

cell toxicity (435). Studies have also established that oxidative stress is the primary cause 

of alcohol-induced hepatocyte toxicity (54, 202). In support of this notion, alcohol-induced 

hepatocyte injury and cell death are mitigated by the administration of antioxidants (60, 231, 

424).

Lipids

In the mammalian system, lipids act not only as the source of energy but also provide the 

structural components of the cell membranes. Lipids can also act as signaling molecules 

by forming a permeability barrier of cells and lipid bilayer in subcellular organelles. The 

fluidity of the membrane is highly dependent on the composition of fatty acids (i.e., degree 

of saturation: unsaturation fatty acids) in the lipid bilayer (384, 438). Thus, it becomes 

essential to maintain not only the lipid content but also the ratio of saturated to unsaturated 

fatty acids. Lipids are more prone to damage from several exogenous stimuli. Most 

importantly, excessive accumulation of ROS in subcellular organelle could directly damage 

the lipids (449). The most common forms of the ROS that affect the lipids are hydroxyl 

radical and hydroperoxyl. ROS damages the lipids through the process of lipid peroxidation, 

wherein they attack the lipids containing carbon-carbon double bond(s), especially the 

polyunsaturated fatty acids (PUFAs), which consists of two or more double bonds belonging 

to omega-3 (n−3) and omega-6 (n−6) fatty acids (315, 448). In addition, a wealth of 

literature has shown that cholesterol, membrane phospholipids, and glycolipids also target 

Mooli et al. Page 10

Compr Physiol. Author manuscript; available in PMC 2023 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lipid peroxidation (51, 310). Lipid peroxidation generates a variety of lipid hydroperoxides 

such as MDA, 4-HNE, propanal, and hexanal. Among them, MDA is considered as the most 

mutagenic product of lipid peroxidation, whereas 4-HNE is the most toxic form. Further, 

MDA and 4-HNE are used as bioactive markers of lipid peroxidation, which could signal 

and regulate various transcriptional factors (16, 23).

Diet/Nutrition

The diet has a profound effect on redox biology by regulating the balance between 

the pro- and antioxidant mechanisms. The major dietary micro- and macronutrients that 

play a critical role in the production of ROS include proteins, lipids, carbohydrates, 

vitamins, and minerals (127, 390). For example, excessive consumption of carbohydrates 

or high-fat diet increases mitochondrial respiration, subsequently producing high levels of 

superoxides and free radicals. In particular, the consumption of high fructose diet results 

in lipid peroxidation, cytokine secretion, and ROS production. These diets induce hepatic 

mitochondrial dysfunction by supplying electrons continuously to the ETC by upregulating 

the TCA cycle and thereby impair mitochondrial complex IV activity. Thus, a higher release 

of ROS favors the development and progression of fructose-induced NAFLD (50, 397). 

Further, Mohanty et al. have shown that increased lipid and protein intake is strongly 

associated with the ROS generation in polymorphonuclear leukocytes and mononuclear cells 

(270).

Vitamins and minerals essentially prevent the generation of excess ROS by upregulating 

the antioxidant enzyme activities. Among them, vitamins E (α-tocopherol), C, and B12 are 

widely studied for their antioxidant properties (49, 334). For example, vitamin E deficiency 

reduces antioxidant enzymes such as liver GSH peroxidase, glutathione reductase, and 

catalase resulting in increased lipid peroxidation (403). Further, vitamin E and C have been 

shown to improve the clinical symptoms of NAFLD, enhance glucose metabolism, and 

lower liver injury (94, 291). Similarly, minerals such as selenium, magnesium, manganese, 

and copper prevent mitochondrial dysfunction and free radical-induced liver damage (429). 

For example, selenium acts as a cofactor for several enzymes, including glutathione 

peroxidase and selenoprotein P (402). Several studies have linked mineral deficiency to 

oxidative stress and increased susceptibility to lipid peroxidation (220, 441, 465).

Aging

Aging is a natural process that involves the loss of tissue and organ function over time. 

During aging, macromolecules (lipids, DNA, and proteins) undergo various structural 

and functional changes due to the accumulation of ROS and RNS from endogenous and 

exogenous sources (229). Although the exact mechanism(s) of ROS-induced aging is 

unclear, several lines of studies have elucidated a role for ROS in cellular senescence. 

Oxidative stress induces cellular senescence through multiple mechanisms. For example, 

the accumulation of ROS and RNS increases the proinflammatory cytokines, chemokines, 

and other growth factors that are central to the progression of liver diseases (20, 103). 

ROS also increases the expression of several MMPs such as MMP-1, 2, 7, and 9, which 

affects the mechanical properties of the extracellular matrix leading to the development of 

senescence (80, 108, 387). Further, ROS and RNS decrease the expression of forehead box 
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protein (FOXO), sirtuins, and sarco-endoplasmic reticulum Ca2+-ATPase activities, which 

are involved in various pathways associated with age-related diseases (100, 186, 279, 368).

It is also well-established that mitochondrial integrity and function decline with age 

due to mitochondrial DNA damage. The increased sensitivity of mitochondrial DNA to 

oxidative stress led to the concept of a “vicious cycle” wherein ROS-induced impairment 

of mitochondrial function leads to a further increase in oxidant production (308, 362). 

It is also accepted that old mitochondria show impaired mitochondrial morphology and 

function due to significant impairment in electron transport( 260). Furthermore, studies 

with genetically modified animals such as SOD1, SOD2, and p66shc-deficient animals 

show that mitochondrial dysfunction could trigger premature aging (294, 413, 426). The 

epigenetic and DNA methylation modifications induced by ROS also play a role in the aging 

mechanisms (117, 131, 322).

Pathophysiological Sources of ROS

Inflammation

Oxidative stress and inflammation are tightly interrelated and often present simultaneously, 

making it difficult to discern the causal role of oxidative stress in inflammatory diseases 

such as NASH. Oxidative stress plays a dual role in tissue damage by triggering 

innate immune response and infiltration of inflammatory cells (neutrophils, monocytes, 

and lymphocytes). For example, oxidative stress due to impaired mitophagy triggers 

an innate immune response by activating the NOD-like receptor protein 3 (NLRP3), a 

pattern recognition receptor (461). NLRP3 regulates genes involved in cytoprotective and 

antioxidant protection. A recent study found that the NLRP3 inflammasome accentuated 

oxidative stress by suppressing the nuclear factor (erythroid-derived 2; Nrf2), a basic leucine 

zipper (bZIP) transcription factor (149). On the other hand, sustained NRF2 activation 

protects mice from NASH progression by inhibiting oxidative stress and inflammation (440).

Further, cytokines, chemokines, and nitric oxide released by the activated inflammatory 

cells induce tissue damage, thereby augment oxidative stress. Thus, a vicious feed-forward 

regulation of inflammation by oxidative stress and vice versa plays a critical role in the 

initiation and progression of liver diseases. Therefore, antioxidant and anti-inflammatory 

therapy is beneficial in the management of liver diseases. Consistently, enhancing the 

scavenging of ROS by SIRT1 deacetylases (stem cell therapy) decreases oxidative stress 

and inflammation in NASH (221).

In NASH patients, ROS induces necroptosis of hepatocytes by upregulating IL-1β, IL-8, 

and TNF-α. It is also possible that the hypomethylated CpG islands and formyl peptides 

released from the damaged mitochondria stimulate innate immune response (281). For 

example, glutathionylated peroxiredoxin 2 and thioredoxin released from the activated 

macrophages induce oxidative stress in a TNFα-dependent manner (335). Sometimes, the 

release of mitochondrial DNA into the cytosol induces cGAS-Stimulator of Interferon 

(STING) pathway, further aggravating liver injury (61, 415). In a mouse model of NAFLD, 

activation of STING in macrophages aggravates hepatic inflammation and fibrosis (420). 
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Exposure of formyl peptides also stimulates the innate immune system in a CXC chemokine 

receptor 2 (CXCR2)-dependent recruitment of neutrophils in acute liver injury models (218).

Insulin resistance

Insulin regulates glucose homeostasis by promoting peripheral glucose uptake and 

utilization in various tissues. When insulin fails to promote glucose metabolism, a 

condition known as insulin resistance (IR), blood glucose is chronically elevated. Insulin 

secretion from pancreatic islets is increased as compensation to IR (173). Thus, chronic 

hyperinsulinemia is the hallmark of IR. However, sustained hyperglycemia eventually leads 

to failure of the pancreatic islets leading to type 2 diabetes. The polygenic nature of IR 

makes it challenging to elucidate its origin.

Nonetheless, over three decades of research indicate ROS as an integral part of insulin 

signaling. High levels of ROS are associated with IR. For example, the thiol-dependent 

enzymes, namely protein tyrosine phosphatase (PTP) regulated by the cellular redox state, 

play a crucial role in inhibiting insulin signaling (409). Moreover, insulin increases H2O2 

generation by inducing NOX4, and low levels of H2O2 are essential for insulin-mediated 

translocation of glucose transporter 4 (Glut4) via PI3K/PLC (72). While physiological 

levels of ROS promote insulin sensitivity by promoting Glut4 translocation, an overload 

of ROS suppresses Glut1 translocation to the plasma membrane by downregulating AKT 

phosphorylation (101).

Oxidative stress also reduces insulin packaging and impairs glucose-stimulated insulin 

secretion (101, 113). Furthermore, oxidative stress inhibits β-cell differentiation via its effect 

on transcription factors such as pancreatic and duodenal homeobox 1 (Pdx-1), homeobox 

protein Nkx6.1, neurogenin-3 (Ngn.3), FOXO, and MafA (121). Higher concentrations of 

free radicals inhibit insulin gene expression at the transcriptional level by repressing Pdx-1 

(insulin promoter factor 1) and MafA (a transcription factor) (143). However, a recent study 

in adipocytes demonstrated that ROS-mediated transcriptional response is insufficient to 

cause IR. Nonetheless, overexpression of PRDX3 and MnSOD decreased blood glucose 

levels and improved insulin sensitivity in HFD-induced obesity (59). The contribution of 

mitochondrial ROS to IR is further evidenced by a rapid reversal of IR by inhibitors 

of mitochondrial respiratory complexes and uncouplers of oxidative phosphorylation (7). 

Patients with NASH present with high levels of nonesterified fatty acids sufficient to induce 

oxidative stress and IR through activation of JNK/p38MAPK pathway (116). These results 

suggest that approaches that prevent ROS generation provide excellent protection against IR.

Oxidative Stress and Cellular Dysfunction

Mitochondrial dysfunction

Mitochondrial dysfunction could arise from impaired mitochondrial biogenesis and 

clearance of damaged mitochondria (273, 274). Several transcription factors are essential 

for mitochondrial biogenesis and function, including PGC-1α and TFAM that are decreased 

in fatty liver disease (3, 283). Moreover, the mitochondria appear swollen with disrupted 

architecture in NASH patients (337). In addition to aberrant mitochondrial structures, 
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the expression and activity of mitochondrial respiration enzymes are decreased in both 

alcoholic and nonalcoholic patients. In rat models, alcohol-containing diets severely impair 

the expression and activity of mitochondrial respiratory complexes (almost all I, III, IV, and 

V) (71, 118). Although the efficacy is affected by the route of administration (intragastric 

ingestion vs. oral feeding), the ultimate effect of alcohol on mitochondrial dysfunction does 

not vary significantly (138). Similarly, high-fat diet-fed mice display reduced cytochrome b-

complex, ATP complex subunits, and citrate synthase enzyme expression and activity (119). 

Moreover, the mitochondrial defects attribute to the decreased half-life of mitochondrial 

respiratory proteins. Due to reduced mitochondrial ATP production, these animals exhibit 

impaired mitophagy, enhancing ROS generation.

The mitochondrial respiratory chain produces a substantial amount of ROS as it consumes 

molecular oxygen during oxidative phosphorylation. Efficient scavenging of ROS in 

the NASH models improves mitochondrial integrity and ameliorates NASH. A recent 

study demonstrated that sirtuin (SIRT) 3 improves mitochondrial integrity and protects 

hepatocytes from oxidative injury by enhancing ROS scavenging (232). Moreover, 

overexpression of SIRT1 or SIRT3 increased antioxidants in chronic hepatocyte injury 

models (Figure 2) (232).

Endoplasmic reticulum (ER) stress

ER is the site of protein synthesis, folding, and maturation. Misfolded or unfolded proteins 

undergo either refolding or degradation. Aberrations in protein folding or clearance of 

misfolded proteins induce an unfolded protein response (UPR) mediated by protein kinase 

RNA-like ER kinase (PERK), activating transcription factors (ATFs), and inositol-requiring 

signaling protein 1 (IRE1). PERK temporarily halts the global protein translation by 

phosphorylating the eukaryotic translation initiation factor 2a (eIF2a). Activated eIF2a 

phosphorylates nuclear factor erythroid 2-related factor 2 (Nrf2), leading to the dissociation 

of the Nrf2 from Kelch-like ECH-associated protein 1 (Keap1) complex, which eventually 

induces the expression of antioxidant enzymes, including heme oxygenase-1 (HO-1) 

(41, 209). ATF4 induces CCAAT/enhancer-binding protein homologous protein (CHOP) 

to activate an antioxidant response. IRE1 and ATF6 co-operate to upregulate several 

UPR target genes, heat-shock protein 70 (Hsp70), and other chaperones to restore the 

ER redox state. ATF6 also induces X-box binding protein-1 (XBP1), which stimulates 

an inflammatory response through NFκB and C-Jun N-terminal kinase (JNK) signaling 

pathways. Thus, UPR helps the cells to recover from ER stress and restore ER equilibrium. 

If UPR persists, IRE1 increases tumor necrosis factor (TNF) receptor-associated factor 2 

(TRAF2)-induced JNK activation, which then triggers cell death by inducing the expression 

of proapoptotic BH3-only proteins including p53 upregulated modulator of apoptosis 

(PUMA), Bcl-2 like protein (BIM), and BH3-interacting-domain death agonist (BID).

Similar to mitochondria, the redox state is critical for the metabolic homeostasis of ER. 

In NASH patients and model organisms, ER stress occurs due to oxidative damage (445). 

Chronic ER stress increases ROS production by upregulating CHOP. HO-1 induced by Nrf2 

helps to mitigate oxidative stress. Figure 2 with genetic deletion of Nrf2 mice are highly 

susceptible to oxidative stress and show aggravated NASH phenotype (264).
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Overexpression of HO-1 protects against oxidative stress due to increased expression of 

antioxidant chaperones, enzymes, and anti-inflammatory cytokines such as IL-22 (57). 

Paradoxically, PERK inactivates Nrf2 signaling during ER stress; however, its physiological 

significance is unclear (373). In alcohol-induced liver injury, ER stress is strongly associated 

with oxidative stress. Alcohol feeding increases the expression of ER stress-associated 

proteins such as Hsp70, binding immunoglobulin protein (BiP), and Grp 94, CHOP as 

well as caspase 12 as early as 2-weeks (139). Exaggerated hepatocyte apoptosis with no 

difference in hepatic steatosis in alcohol-fed CHOP null mice suggests that ER stress plays 

a significant role in injury-mediated apoptosis (162). Further, hepatic overexpression of 

the ER chaperones, such as ORP150/HYOU1 and GRP78/BiP improved insulin sensitivity 

and hepatic steatosis (451). This suggests that ER stress response plays a vital role in 

maintaining hepatic homeostasis during metabolic insults. Interestingly, hepatocyte-specific 

IRE1 knockout mice exhibit steatosis when exposed to tunicamycin, while deletion of IRE1 

in the hepatic stellate cells attenuates HCC progression (70, 460). Thus, a considerable 

difference in the effect of ER stress and UPR response between various cell types in the 

liver poses a severe limitation in therapeutic targeting ER stress and UPR pathways for the 

treatment of NASH.

DNA damage

Several endogenous and exogenous genotoxic insults induce spontaneous mutations in 

the DNA. Therefore, precise DNA repair mechanisms are critical in maintaining genome 

integrity. Genomic instabilities are the characteristic feature of HCC due to erroneous 

DNA repair mechanisms. ROS, UV light, radiation, and environmental mutagen are the 

major DNA damage inducers. Oxidative stress and ROS co-operate with the mutagens 

to drive the progression of NASH to HCC. DNA damage activates p53-mediated cell 

apoptosis (81, 376). A recent review has elaborated on how dysregulation of p53 function 

leads to metabolic disorders, including NASH and HCC (196). However, the mechanisms 

involved in p53-mediated metabolic dysregulation are not fully understood. Studies show 

that p53-binding protein 1 (p53BP1), a DNA damage response protein, forms nuclear foci 

in response to double-strand DNA breaks. The number of p53BP1 foci increases in NASH 

patients implying significant DNA double-strand breaks (4). ROS and p53 have a versatile 

partnership. ROS can act upstream and downstream to p53 to regulate cellular processes. 

ROS modifies DNA by forming stable covalent bonds leading to base modifications, 

including thymidine glycol, 5-hydroxylmethyluracil, and 8-OHdG. Thus, hepatitis viral 

infections that generate 8-OHdG often lead to liver cancer. An elevated level of 8-OHdG 

is used as a novel prognostic marker in HCC and is often associated with poor patient 

survival (225). 8-OHdG also serves as a marker in hemochromatosis, Wilson’s disease, 

chronic hepatitis, hepatoblastoma, and primary biliary cirrhosis (73). ROS also induces 

double-stranded DNA breaks, thereby increasing mutations or chromosomal aberrations 

resulting in tumorigenesis (Figure 2) (22).

Advanced glycation end products (AGEs)

In obesity and NASH, AGEs levels are significantly elevated (63). AGEs that include 

methylglyoxal, glyoxal, and HNE, reduce sarcoplasmic (ER) reticulum Ca2+ ATPase 

(SERCA) activity (428). AGE products also possess highly reactive moieties and interact 
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with a wide range of biomolecules, including proteins. AGE could also signal through 

several receptors called receptors for AGE (RAGE), whose identity is revealed in recent 

investigations. For example, galectin 3a and Oligosaccharyltransferase-48 (OST48) are 

characterized as AGE binding proteins. OST48 is an integral part of the ER membrane 

that acts as a clearance receptor for AGE. Overexpression of OST48 is associated with 

a high risk of liver fibrosis and liver failure (468). RAGE/TLR4 signaling also induces 

ER stress-mediated liver fibrosis. For example, a recent study shows that high mobility 

group protein (HMGB1) released from the injured hepatocyte induces ER stress in hepatic 

stellate cells via RAGE/TLR4 signaling leading to liver fibrosis (146). The significance of 

these mechanisms in NASH or ASH patient needs further investigation. Uncoupling protein 

(UCP) 2, an important regulator of ER stress in a wide range of tissues, intersect with AGE/

RAGE signaling. For instance, UCP2 deficiency decreases hepatic glyoxalase-1 resulting in 

a reciprocal increase in methylglyoxal associated with high mortality in young mice (194).

Molecular Master Regulators of Oxidative Stress

The oxidative stress is regulated by numerous transcription factors, which helps to minimize 

tissue damage. These transcription factors either promote or suppress oxidative stress 

depending on their expression levels.

Nuclear factor erythroid 2-related factor 2 (Nrf2)

The transcription factor, Nrf2 regulates numerous antioxidant genes by binding to the 

antioxidant response elements (ARE) on the target gene promoters. The transcriptional 

activity of Nrf2 is regulated by p62 and Keap1. Oxidative stress increases the binding 

of NRF2 to p62, thereby limiting the interaction with Keap1, a cullin-3-type ubiquitin 

ligase that degrades Nrf2 (190). Tank binding kinase 1 (TBK1) further acts as an upstream 

regulator of Nrf2 by stabilizing p62(67). Recent studies demonstrate that noncoding RNAs 

and micro-RNAs are also involved in stabilizing Nrf2 during oxidative stress (425).

Nrf2 expression is a cardinal feature of acute or chronic oxidative stress. Targets of 

Nrf2 include HO-1, SOD1, catalase, and glutathione S-transferase (GST). Therefore, Nrf2 

could potentially control the oxidative stress response as it targets an array of genes 

that possess stress-responsive elements similar to GST. Mice with hepatocyte-specific 

Keap1 deletion, display enhanced Nrf2 levels leading to elevated expression of enzymes 

involved in glutathione synthesis, including GST-peroxidase and glutamate-cysteine ligase 

(233). Initially, Nrf2 expression is thought to be protective against almost all liver injury 

models ranging from acute hepatitis to cholangitis and NASH to liver cancer. However, a 

growing body of evidence suggests that its expression is vital in the progression of liver 

diseases (183, 392). Although the hepatocyte-specific Keap1 knockout mice enhanced Nrf2 

expression and showed a protective phenotype from cadmium-induced acute liver injury 

(233), Nrf2 knockout mice are highly susceptible to ethanol-induced liver fibrosis and 

steatosis (199). Wang et al. found that genetic deletion of Nrf2 improved liver phenotype 

by suppressing the expression of very-low-density lipoprotein receptors in alcohol-fed 

mice(422). The latter observation was further supported by clinical studies showing that 

Nrf2 activation increases with the incidence of HCC (156). Moreover, Nrf2 knockout mice 
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display severe NASH symptoms when fed on a methionine choline-deficient diet (199). 

Nevertheless, these observations indicate that NRF2 could be a sensitive player to define the 

state of the liver phenotype in various experimental settings of liver diseases (Figure 3).

Nuclear factor-kappa B (NF-κB)

Canonical and noncanonical pathways regulate the activation of NF-κB. In the canonical 

mechanism, phosphorylation of inhibitory kappa Bα (IκBα) by IκB kinase (IKK) induces 

degradation of the IκBα from NF-κB:IκBα complex, resulting in the nuclear translocation 

of NF-κB. In contrast, the noncanonical mechanism involves NF-κB-inducing kinase (NIK)-

mediated processing of NF-κB2 p100 into NF-κB2 p52, which complex with RelB to induce 

the expression of NF-κB target genes (177, 363).

NF-κB plays a dual role in liver injury, where its deletion in hepatocytes is deleterious but 

protective against liver injury in other cell types. A moderate activation of NF-κB signaling 

in hepatocytes is protective in states of low-grade lipogenesis in the absence of inflammation 

(240, 380). Therefore, it appears that NF-κB-induced by oxidative stress helps to prevent 

hepatocyte death and promote a compensatory proliferation of hepatocytes. In contrast, 

the deletion of IKK2α in unstressed hepatocytes does not affect oxidative stress markers 

(237). Thus, NF-κB serves as the master regulator of inflammation and cell death. The 

role of NF-κB in inducing cell death appears to be dependent on its ability to activate its 

downstream target JNK/p38 MAPK (discussed below).

NF-κB activation in acute or chronic liver disease is partly mediated by the inflammatory 

response (442). NF-κB transcriptionally regulates several antioxidants, and pro-oxidant gene 

expression in a spatial-temporal manner, and their details are reviewed elsewhere (275). 

ROS stimulates NF-κB activation in the cytoplasm but inhibits NF-κB DNA binding activity 

in the nucleus (164). ROS could also regulate DNA binding activity modifying specific 

residues in NF-κB (184).

Forkhead box protein O (FOXO)

Forkhead box protein O (FOXO) transcription factors are highly conserved in higher 

organisms with an essential role in hepatic glucose and lipid metabolism. There are 

four FOXO proteins expressed in mammals, among which FOXO1, 3, and 4 express 

ubiquitously, while FOXO6 expression is specific to neuronal cells. In mouse models, the 

deletion of FOXO1 and 3 induced spontaneous hepatic steatosis and decreased glucose 

metabolism (459). Mouse with triple knockouts for FOXO1, 3, and 4 also show similar 

phenotypes in hepatic glucose and lipid metabolism (393). FOXO-dependent suppression 

of fatty acid synthase and nicotinamide phosphoribosyl transferase (NMPT) regulates 

hepatic steatosis. Emerging evidence shows a crucial role for FOXO transcription factors 

in oxidative stress. For example, FOXO can control oxidative stress via NAD-dependent 

deacetylase SIRT1, as NMPT is essential for the synthesis of NAD (393). A recent study 

showed that FOXO1 expression is associated with fatty liver, whereas pharmacological 

inhibition of FOXO1 improved hepatic steatosis (89). This contradicting data is due to high 

levels of ER stress and hepatocyte necroptosis in these models (89). An independent study 

using triple knockout mice (FOXO1, 3, and 4) further established the significance of FOXO 
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signaling in suppressing oxidative stress (10). Thus, the controversial data suggest a complex 

yet significant role of FOXOs in regulating redox biology in the liver.

JNK

c-JUN N-terminal kinases (JNK) and p38 are the principal members of MAPK family, 

which phosphorylate and activate several transcription factors, including c-Jun, ATF-2, 

and TCF/Elk-1 (87). Vertebrates express three isoforms of JNKs, where JNK1 and 2 

are ubiquitously expressed, and JNK3 is expressed only in the heart, brain, and testicles. 

Although JNK1/2 are important mediators of liver injury, there appears to be a specific role 

for each JNK isoform in liver disease depending on their binding partners and downstream 

signaling mediators (167, 187, 371). For example, JNK promotes TNF-α-induced cell death 

when NF-κB is not active in hepatocytes (333). JNK then phosphorylates and activates its 

downstream targets such as c-JUN, JUN-B, and JUN-D. The targets of JNK pathway involve 

apoptosis-related genes such as BCL-2 and Bax (433). A recent study shows that JNK 

activation induces Bim in hepatocytes, enhancing oxidative stress leading to IR and steatosis 

(230). Thus, Bim knockout mice exhibit improved mitochondrial function, reduced oxidative 

stress, and are protected against diet-induced obesity and IR (230).

MAP3K, MLK3, and ASK1 are implicated in the regulation of hepatic JNK signaling in 

NASH models. Mice with the knockout of MLK3 alone or double knockout for MLK3 

and MLK2 are protected from diet-induced obesity due to attenuated JNK activation (112, 

170). ASK1 inhibitors (GS-4997, GS-444217) are currently on phase 2 clinical trials for 

liver fibrosis in humans (235). Whether ASK1 inhibitors ameliorate hepatic fibrosis through 

inhibition of JNK-oxidant signaling needs further investigation (235).

Sirtuins

Sirtuins are a class of NAD+-dependent deacetylases, which confers protection against 

a wide range of metabolic disorders, including obesity and age-associated diseases. 

Accumulating evidence suggests that sirtuins regulate autophagy in response to 

physiological and environmental stresses (8, 90). Humans express seven sirtuins that include 

SIRT1 to SIRT7. Spatiotemporal expression of sirtuins mediates their specific role from 

gene expression to cell cycle regulation. Among the sirtuins, SIRT3, SIRT4, and SIRT5 are 

exclusively localized to the mitochondria and involve in posttranslational modifications of 

mitochondrial proteins. In response to oxidative stress, mitochondrial sirtuins deacetylate a 

network of proteins involved in the TCA cycle and oxidative phosphorylation complexes 

(56).

SIRT1 expression protects against liver injury by maintaining mitochondria health. Insults 

such as hypoxia, ischemia, and pro-oxidants that are highly prevalent in fatty liver deplete 

SIRT1 levels and impair autophagy (407). Thus, the ectopic expression of SIRT1 restores 

autophagy dramatically. Surprisingly, SIRT1 interacts with mitofusin-2, a mitochondrial 

fusion protein, suggesting that SIRT1 is a linker between the nucleus and mitochondria 

under stress conditions (34). Moreover, SIRT1 overexpression restores autophagy in MFN2 

deficient cells indicating that SIRT1 plays a role in alleviating mitochondrial dysfunction, 

thereby decreasing oxidative stress. Small molecules for SIRT1 such as SRT2104 and 
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SRT1720 show a profound effect on lipid peroxidation and carbonylation of proteins 

in the liver (43). SIRT1 also regulates p53 activity by acetylation and stabilization of 

p53 in damaged or stress-induced cells (155). SIRT1 is also an essential regulator of 

insulin signaling and is downregulated in conditions such as obesity and T2DM. Inhibition 

of SIRT1 recapitulates IR phenotype, while overexpression of SIRT1 improved insulin 

sensitivity, mainly via repressing PTP1B (381). These studies indicate that SIRT1 has an 

essential role in depleting oxidative stress developed during disease progression. However, 

studies with liver and hepatocyte-specific knockdown of SIRT3 show a negative role for 

SIRT3 on the regulation of autophagy, lipotoxicity, and susceptibility to chronic alcohol 

consumption (223, 244).

NOD-like receptor protein 3 (NLRP3)

The inflammasome nucleotide-binding oligomerization domain-like receptor family pyrin 

domain containing 3 (NLRP3) is often investigated in liver diseases. NLRP3 belongs to 

the innate immune response complex consisting of NLRP3, pathogen/danger associated 

recognition receptors, apoptosis-associated speck-like protein (ASC), and pro-caspase-1. 

NLRP3 activation converts pro-caspase-1 into active caspase-1 leading to the induction 

of mediators of local inflammation and pyroptosis such as IL-1β, IL-17, and IL-18 

(198, 238). Studies with NLRP-3 knockout mice show that alcohol-induced liver 

inflammation and fibrosis were attenuated in the absence of NLRP3 (86, 278). Global 

and myeloid cell-specific Nlrp3 overexpression mice display hyperactive NLRP3, which 

induces inflammation, hepatocyte pyroptosis, and fibrosis in the liver (434). It has been 

demonstrated that mROS is required for the activation of NLRP3 and TRPM2, a calcium 

channel required for this pathway (466). However, it warrants future studies to investigate 

the role of mROS in NLRP3 signaling and its implications in NASH. Hepatitis-B virus 

toxin induces NLPR3-mediated inflammation and hepatocyte pyroptosis in ROS (H2O2)-

dependent manner (439). In diabetic conditions, increased NLRP3 activation from elevated 

oxidative stress induces hepatocyte pyroptosis during ischemic reperfusion injury (361). 

Studies using NLRP3, ASC, and caspase 1 deletions also suggest the role of NLRP3 

inflammasome in the pathogenesis of NAFLD in obesity (148).

Oxidative Stress and Pathophysiology of Liver Disease

Oxidative stress and NAFLD/NASH

The presence of cytoplasmic triglyceride lipid droplets in more than 5% of hepatocytes or 

triglyceride content accounting for more than 5% of the liver weight is defined as hepatic 

steatosis/fatty liver. Hepatic steatosis is classified as microvesicular (smaller lipid droplets) 

and macrovesicular (large lipid droplets). Macrovesicular steatosis results from an imbalance 

in triglyceride synthesis, whereas microvesicular steatosis develops due to mitochondrial 

dysfunction (defective fatty acid oxidation) (206, 372). Simple hepatic steatosis is often 

self-limiting; however, it can progress to nonalcoholic steatohepatitis (NASH) characterized 

by hepatocyte injury (hepatocyte ballooning and cell death) and infiltration of immune 

cells. NASH is followed by induction of liver fibrosis leading to cirrhosis culminating in 

hepatocellular carcinoma (HCC) (11, 258). The prevalence of NAFLD is estimated to be 

around 20% to 30% in Western countries and 5% to 18% in Asia (31, 341).
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The pathogenesis of NAFLD is explained by “multiple parallel-hit hypothesis” wherein 

the “first hit” involves the accumulation of free fatty acids (FFAs) leading to lipotoxicity 

and oxidative stress denoted as “second hit.” The accumulation of FFAs in the liver alters 

mitochondrial function and increases ROS generation (28, 47). Therefore, the development 

and progression of NAFLD are strongly associated with the continuous generation 

of ROS/RNS and oxidative damage to the organelles. This is further accentuated by 

dysfunction in the counteractive antioxidant mechanisms. The mitochondrial abnormalities 

range from lipid-related changes to mitochondrial DNA damage to sirtuin imbalance (214, 

301, 383). For example, mitochondrial DNA damage and alterations in genes encoding 

mitochondrial proteins result in a rapid increase in oxidative stress and, thereby, trigger 

the progression of simple steatosis to fibrosis (251). The mitochondrial dysfunction mostly 

alters fatty acid oxidation leading to the accumulation of fat in the hepatocytes, exacerbating 

steatosis (88). Oxidative stress also affects lipid metabolism in hepatocytes. For example, 

Seo et al. demonstrated that treatment of Huh7 and AML12 cell with H2O2 increased 

mRNA expression levels of genes involved in lipid (lipin) and cholesterol metabolism 

(SREBP-2) and further, the lipid overload in the hepatocytes increases inner mitochondrial 

membrane permeability, loss of membrane potential, and ATP synthesis capacity (355). 

Further, hepatocyte-derived ROS releases highly unstable reactive aldehydic derivatives that 

impair mitochondrial respiration and drive disease progression (78).

NAFLD is strongly associated with an increase in nonesterified fatty acids (NEFA) and 

free cholesterol (FC). Further, the NEFA and FC undergo oxidation with the help of 

lipoxygenases, cyclogeneses and cytochromes P450 family and, thereby, produce lipid 

peroxides such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE) (30). Several 

studies have a positive correlation between lipid peroxidation and NAFLD. For example, 

plasma levels 8-isoprostane, a product of lipid peroxidation was significantly increased 

in patients of NAFLD (191). Recent studies show that lipid peroxidation is increased in 

pediatric NAFLD; however, no change with liver CYP 2E1 expression was observed (29). In 

addition, lipid peroxides such as MDA and 4-HNE generated in NAFLD act as biomarkers 

of NAFLD and NASH (450). Further, 4-HNE activates and increases ROS production in 

HSCs (456). Thus, alteration of lipid metabolism during NAFLD leads to accumulation of 

toxic lipids and oxidative stress and helps to the progression to NASH (Figure 4).

Oxidative stress and liver inflammation

The accumulation of toxic lipids and lipid peroxides in the liver is one of the common 

manifestations of inflammation in both ALD and NAFLD/NASH. Inflammation is the 

physiological responses to tissue injury and infection represented by various inflammatory 

cells, including cytokines and other lipid mediators such as eicosanoids. Numerous studies 

have shown that the persistence of inflammatory cells and inflammatory mediators in the 

liver cells play a significant role in the pathogenies of ALD and NAFLD (345, 394). It 

is believed that liver inflammatory cells rapidly recruit and activate liver macrophages, 

neutrophils, and other immune cells that promote hepatic injury and thereby NASH 

progression (114). Further, liver inflammation is triggered by extrahepatic tissues such as the 

adipose tissue and the gut by releasing various lipid mediators and innate immune response 

mediators (68).
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Most importantly, the common causative factor for the sustained activation of inflammatory 

cells during the NAFLD/NASH is oxidative stress. The lipid peroxide-induced oxidative 

stress plays a critical role in the NASH progression through inflammatory signaling. For 

instance, inflammation and oxidative stress are inter-linked with several liver diseases 

(69, 323). Under physiological levels, ROS helps to kill the pathogens and modulate 

signaling events through redox regulation (298). However, during hepatocyte injury, ROS 

from leukocytes triggers the release of damage-associated molecular patterns (DAMPs), 

including heat shock proteins, DNA, and RNA (19, 193). Studies have shown that DAMPs 

and their associated complexes activate the liver resident Kupffer cells and neutrophils 

via toll-like receptors (TLRs) (Figure 4) (261, 306). For example, TLR4 activates the 

superoxide-producing enzymes such as NADPH oxidase and MPO in the neutrophils and 

thereby promotes inflammation (300). Further, MPO is also shown to be involved in 

the production of hypochlorous acid and contributes to the formation of chlorotyrosine 

protein and oxidative stress protein adducts (35). Thus, all these changes result in increased 

production of ROS in various liver cells and help in the NASH progression.

The oxidative stress or reactive species in NAFLD/NASH also involves in the activation of 

various inflammatory mediators such as TNF-α, IL-1, IL-6, IL-18, and MCP-1 and some 

of the inflammatory pathways and among them, the most common is NF-κB activation. 

The ROS is known to activate the NF-κB through several inflammatory cytokines and 

oxidized lipids and also LPS (124). For example, H2O2 is shown to activate the NF-κB 

even at micromolar concentrations in human neutrophils and is further rescued by treatment 

with antioxidant N-acetylcysteine (344). The ROS-induced NF-κB activation takes place 

in various liver cells in NASH or injury models influencing the survival of hepatocytes, 

Kupffer cells, and HSCs (171). Thus, given its broad roles, NF-κB acts as the central player 

in various chronic liver diseases.

Oxidative stress and liver fibrosis/cirrhosis

Liver fibrosis is a complex phenomenon wherein continuous production and accumulation 

of extracellular matrix (ECM) in the liver occurs due to repeated injury and inflammation. 

Hepatic steatosis, inflammation, alcohol consumption, viral hepatitis, cholestasis, and iron 

overload are some of the major causative factors of liver fibrosis (25, 192, 396). The 

generation of ROS in the liver plays a critical role in the initiation and progression of 

fibrogenesis through its effect on hepatocytes, Kupffer cells, and HSCs (179, 239). The 

oxidative products and lipid peroxidation augment the production and release of other pro-

fibrogenic factors such as inflammatory cytokines (17, 245). Mechanistically, ROS-driven 

hepatocyte injury increases the secretion of several pro-fibrotic mediators such as TNF-α 
and transforming growth factor (TGF-β), which further aggravate the inflammatory and 

fibrotic responses (Figure 4) (234). Oxidative stress in hepatocytes could also increase 

fibrogenesis through indirect mechanisms via suppression of antioxidant enzymes (GSH) in 

a NF-κB-dependent manner (236). In addition to the hepatocytes, Kupffer cells and resident 

macrophages produce a significant amount of ROS upon activation by TGF-β (150, 151). A 

study has shown that the treatment of macrophages with 4-HNE results in TGF-β-mediated 

myofibroblast activation and, thereby, fibrosis (213). Further, activation of Kupffer cells with 

profibrogenic toxins such as iron, copper, and dichlorobenzene generates abundant oxidative 
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stress in the liver (213, 336). Hydrogen peroxide produced by the Kupffer cells increases 

collagen type 1 from HSCs (120). Similarly, HSCs co-cultured with stimulated neutrophils 

show a significant increase in the procollagen α1 expression due to the activation of HSCs 

from ROS released from the neutrophils (467). HSCs themselves express Nox1 and 2 

involved in liver fibrosis in association with TLRs (200, 228). Thus, oxidative stress drives 

liver fibrosis through a complex mechanism that involves the activation of HSCs in the liver.

Oxidative stress and liver cancer

Cirrhosis often progresses to hepatocellular carcinoma (HCC), the leading cause of cancer-

related deaths worldwide. Hepatitis B virus, hepatitis C virus, and metabolic diseases are 

some of the risk factors associated with the development of HCC (21, 395, 452). Oxidative 

stress plays a pivotal role in every stage of HCC (302, 357, 423). For example, in NASH, 

inflammation induced-ROS and RNS cause DNA damage and significantly impair the DNA 

repair mechanisms resulting in mutations leading to HCC (Figure 4) (81, 446). Recent 

studies have shown that oxidative stress directly regulates cancer cell proliferation, survival, 

invasion, and/or metastasis of HCC (2, 145, 427).

The role of oxidative stress in HCC was demonstrated with the decreased levels of 

antioxidant enzymes, including the SODs, glutathione reductase, and glutathione peroxidase. 

For example, under chronic HCV-induced oxidative stress, the glutathione levels were 

significantly reduced, and the ratio between the oxidized and reduced forms of glutathione 

was increased (64, 385). A recent study has shown that thioredoxin reductase and 

glutathione reductase-null mice are more susceptible to chemical-induced liver cancer 

through elevated DNA damage (262). Oxidative stress also represses the Nrf2-Keap1 

complex and increases the expression of thioredoxin reductase and glutathione reductase 

above basal levels (386). Further, oxidative stress also enhances Nrf2 and 8-OHdG levels 

in HCC cell lines, and these effects could be rescued through antioxidant mechanisms 

(255). Oxidative stress also dysregulates autophagy mechanisms and thereby, activates Nrf2 

leading to the proliferation and survival of HCC (24, 190). Although the Nrf2 is considered 

as an antioxidant, persistent activation of oxidative stress-induced Nrf2 is one of the critical 

mechanisms that control the development of HCC.

HCV infections also increase the expression of the NADPH oxidase family, thereby causing 

DNA damage and tissue remodeling (75, 96, 436). The interaction of core proteins of HCV 

with the inner mitochondrial enzymes results in ROS generation through the oxidation of 

glutathione and reduction of NADPH content in the liver (226, 419). The HBV-mediated 

ROS also alters DNA methylation and suppresses SOCS3 expression, which results in the 

proliferation of the cancer cells (454). The other important environmental factor associated 

with increased ROS production in the HCC patients is iron-related Fenton reactions. Several 

studies have demonstrated a strong link between iron toxicity and HCC via ROS generation 

(15, 125, 252).

Oxidative Stress-biomarkers

Estimation of serum alanine transaminase (ALT) and aspartate transaminase (AST) levels is 

the gold standard to evaluate liver injury. However, AST levels increase in conditions such as 
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muscle injury, celiac disease, and even pregnancy. Moreover, 20% of patients with cirrhosis 

may have normal ALT levels. Therefore, several studies aimed at identifying a reliable 

biomarker for liver diseases. The estimation of oxidative stress and antioxidants have a 

significant impact on the clinical management of liver injuries. Direct measurement of ROS 

is highly variable depending on their species, origin, and hyperreactivity. Therefore, instead 

of considering actual free radical species, considering their reactive products such as lipids, 

DNA, amino acids, and glycated proteins could yield a better and reliable estimation of ROS 

in redox state (286). The by-products of ROS reaction with lipids are MDA, 4-HNE, and 

8-isoprostane. Nucleic acid-derived oxidative products are 8-hydroxy-2′-deoxyguanosine 

(8-OH-2dG) and 8-hydroxyguanine (8-OH-G). Proteins or amino acid-derived oxidative 

products are hydroxyproline, 3-nitrotyrosine, and 2-oxohistidine. AGE products also serve 

as a valuable biomarker of oxidative stress. Different methodologies estimate these markers 

depending on the disease context. For example, thiobarbituric acid reactive substances 

(TBARS), MDA, and 4-HNE are commonly used to assess lipid peroxidation in the 

serum of NASH patients. Among these, MDA is the most indicative of oxidative stress 

(111). Oxidative stress markers can also be identified in the liver or serum by simple 

ELISA and fluorescence-based detection methods. Mass spectrometry could be the most 

powerful methodology to identify the species of ROS (45). The determination of ROS levels 

combined with the standard liver function tests will be highly beneficial in predicting the 

clinical outcome of liver diseases (13).

Oxidative Stress as a Therapeutic Approach

The generation or maintenance of a minimal amount of ROS is essential for proper liver 

function. It is clear from the literature that antioxidants play a significant role in balancing 

ROS levels. Antioxidants have a high affinity for reducing the reactivity of ROS-generated 

free radicals. The most commonly used antioxidants include curcumin, resveratrol, coffee, 

flavonoids, and silymarin. These antioxidants reduce the risk of liver injury by activating 

various signaling cascades (49, 247, 248, 334). For example, plant-derived flavonoids 

protect the liver from ROS-mediated damages such as inflammation, liver fibrosis, and 

cancer (224, 463). One of the most studied flavonoids as hepatoprotectant is silymarin, a 

complex of seven flavonolignans present in the milk of thistle extracts (98, 123). Similarly, 

the antioxidant potential of flavonolignans silybin is tested in a spectrum of NAFLD, 

including liver inflammation, fibrosis, and cirrhosis (97). Besides, silybin also improves 

mitochondrial function and thereby attenuates the progression of NAFLD to end-stage liver 

disease (356). In addition, the polyphenolic compound curcumin ameliorates oxidative stress 

in the liver by increasing the expression of Nrf2 and HO-1 and also various antioxidants 

such as glutamate-cysteine ligase, activating transcription factor (ATF), peroxiredoxin 3, 

SOD, and catalase. (77, 331, 443). Resveratrol, also a polyphenolic compound that has been 

shown to improve mitochondrial function by increasing AMPK and SIRT1 activity in the 

liver (147, 401). In comparison, quercetin reduces the risk of progression of liver fibrosis by 

attenuating the expression of TGF-β, CTGF, and collagen-1α (321, 444). Most importantly, 

vitamins, including vitamin E and C and superoxide scavengers such as N-acetylcysteine 

(NAC) and tempol are well known for their antioxidant properties. For example, vitamin E 

reduces the incidence of NAFLD and its progressive forms by limiting lipid peroxidation, 
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inflammation, and hepatic fibrosis (159, 305, 316, 339). Recently, a study has shown that 

superoxide dismutase mimetics, NAC, and tempol attenuated the development of liver 

pathologies such as cell necrosis, fibrosis, and ER stress through suppressing mTORC1 

signaling (66). Currently, vitamin E, D, C, and NAC are very effective in treating chronic 

liver cancer patients who do not respond well with interferon and chemotherapy-based 

treatments (85, 178, 242, 318). Thus, targeting oxidative stress in NAFLD patients provides 

immediate and effective therapy.

Conclusion

In modern redox biology and medicine, ROS signaling is one of the comprehensive and 

unified central homeostatic mechanisms at molecular, organellar, cellular, and tissue level. 

Several studies have emphasized its significance in health and diseases. Since the liver 

acts as the hub of various metabolic and detoxification processes, all most all the liver 

cells are involved in redox homeostasis. Any perturbation in hepatic redox homeostasis 

dysregulates the fundamental cellular processes such as insulin signaling, mitophagy, cell 

proliferation, and hypoxic signaling leading to the initiation and progression of liver 

diseases. Especially in NASH, oxidative stress plays a critical role in the pathogenesis, 

independent of heterogeneous cellular damage. Furthermore, oxidative stress is the hallmark 

of liver cirrhosis/cancer. However, targeting oxidative stress in liver-related diseases is 

partially successful because of its diverse role in regulating physiological processes such 

as mitophagy and hypoxic signaling. Thus, by considering all these traits, there has been 

continued interest in the therapeutic targeting of redox medicine/biology to treat liver-related 

diseases.
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Didactic Synopsis

Major teaching points

• In biology and medicine, oxidative stress is defined as a “state of condition 

wherein the cellular pro-oxidant and antioxidant balance is altered in favor of 

a pro-oxidant state.”

• The most common free radicals are (a) reactive oxygen species (ROS), such 

as superoxide anions (O2
•−), hydroxyl radicals (HO•), and hydrogen peroxide 

(H2O2); and (b) reactive nitrogen species (RNS), such as nitric oxide (NO•) 

and peroxynitrite (ONOO−). In addition, several other reactive species, such 

as reactive sulfur species (RSS) and reactive carbonyl species (RCS), have 

been characterized.

• ROS generation is driven by endogenous (mitochondrial electron transport 

chain and transmembrane NADPH oxidases) and exogenous mechanisms 

(nutrients, drugs, toxicants, and physical stressors).

• The liver acts as the metabolic hub and the detoxication center in our body 

and, therefore, generates a significant amount of ROS.

• All the cell types in the liver are equipped with a battery of 

enzymatic (superoxide anion dismutase, catalase, glutathione peroxidases) 

and nonenzymatic antioxidants (vitamins A, C, GSH) to defend against 

oxidative stress.

• At physiological levels, ROS plays a significant role in diverse cellular 

mechanisms, including signal transduction, gene expression, mitophagy, cell 

proliferation, and immune regulation.

• The key molecular mediators/regulators of Redox signaling are nuclear factor 

erythroid 2-related factor 2 (Nrf2), NF-κB, sirtuins, and forkhead box protein 

O (FOXO).

• Imbalance in the liver Redox biology is one of the critical components 

of “multiple parallel-hit hypotheses” responsible for the initiation and 

progression of liver diseases, including nonacholic fatty liver diseases 

(NAFLD), liver cirrhosis, and HCC.

• Studies have identified several biomarkers of oxidative stress such as 

protein carbonyls, AGEs, 4-hydroxynonenal, and malondialdehyde (MDA), 

which could be detected by ELISA, fluorescence-based methods, and mass 

spectrophotometry.

• Redox-modulation by natural or pharmacological antioxidants appears to be 

an attractive and viable therapeutic option in several liver-related diseases.
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Figure 1. 
Mechanisms of generation of ROS-mediated oxidative stress in the liver. Increased lipid 

accumulation in hepatocytes via fatty acid uptake and de novo lipogenesis using several 

lipogenic enzymes augments mitochondrial β-oxidation leading to incessant generation of 

ROS. Hepatic nonparenchymal cells are also involved in ROS generation by activating the 

toll-like receptors (TLRs) on the Kupffer cells and HSCs. In Kupffer cells, TLR4 in response 

to SFA and TLR1/2/6 for FFA activation triggers NOX-2-mediated ROS generation, 

resulting in oxidative stress. In HSCs, accumulation of cholesterol and acetyl-CoA generates 

huge amount of ROS through glucose metabolism.
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Figure 2. 
Putative sources of ROS and their contribution to pathologies of liver diseases. Under 

physiological conditions, organelle systems generate steady-state ROS levels that promote 

redox signaling. On the other hand, under pathological conditions, excess ROS produced 

various danger signals such as DAMPS and ATP from the mitochondria and unfolded/

misfolded proteins from the ER and oncogenes that promote mitochondrial dysfunction, ER 

stress, and DNA damage. All these factors lead to the development of liver pathologies such 

as inflammation, fibrosis, and even cancer.
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Figure 3. 
Master regulators of oxidative stress response leading to inflammation and insulin 

resistance: Oxidative stress causes severe DNA damage sensed by p53 accumulation. 

Oxidative stress exerts its effects through the ER and mitochondrial stress (complete 

events mentioned in the review). NRF2 is the cumulative stress response marker induced 

by the ER and mitochondrial stress. ER stress-induced inflammation is mediated by the 

recently discovered HMGB1 transcription factor, which further intersects with RAGE 

signaling. C-GAS/STING pathway is the intracellular DNA-sensing pathway activated by 

the mitochondrial DNA leaked into the cytosol. NLRP3 is either directly activated by 

TRPM2 or could be upstream of C-GAS/STING pathway. Thus, NLRP3 co-operates with 

C-GAS/STING pathway to promote inflammation and insulin resistance.
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Figure 4. 
The mechanisms of ROS-induced oxidative stress in the pathogenesis of NAFLD. ROS can 

oxidize stored lipids through the process of lipid peroxidation, releasing lipid peroxidation 

reactive aldehydes, which result in lipotoxicity. Lipotoxicity involves in the production 

of several hepatic inflammatory mediators. ROS also increases the production of danger 

signals and mtDNA stimulating the innate immune system and inflammatory cytokines to 

promote liver inflammation. ROS-associated lipid peroxidation and cytokines contribute 

to the inflammatory cell infiltrate. On the other hand, ROS-mediated oxidative stress is 

a feature of liver fibrosis that activates HSCs by releasing several profibrotic stimuli and 

growth factors such as TGF-β, leptin, AGEs, and PDGF. Further, ROS induces DNA 

damage, resulting in cancer cell transformation.
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