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Abstract
Background and Objectives
Uncontrolled evidence suggests that autologous hematopoietic stem cell transplantation
(AHSCT) can be effective in people with active secondary progressivemultiple sclerosis (SPMS).
In this study, we compared the effect of AHSCT with that of other anti-inflammatory disease-
modifying therapies (DMTs) on long-term disability worsening in active SPMS.

Methods
We collected data from the Italian Bone Marrow Transplantation Study Group and the Italian
Multiple Sclerosis Register. Patients were considered eligible if treatment had been started after
the diagnosis of SPMS. Disability worsening was assessed by the cumulative proportion of
patients with a 6-month confirmed disability progression (CDP) according to the Expanded
Disability Status Scale (EDSS) score. Key secondary endpoints were the EDSS time trend after
treatment start and the prevalence of disability improvement over time. Time to first CDP was
assessed by means of proportional hazard Cox regression models. A linear mixed model with a
time × treatment group interaction was used to assess the longitudinal EDSS time trends.
Prevalence of improvement was estimated using a modified Kaplan-Meier estimator and com-
pared between groups by bootstrapping the area under the curve.

Results
Seventy-nine AHSCT-treated patients and 1975 patients treated with other DMTs (beta inter-
ferons, azathioprine, glatiramer-acetate, mitoxantrone, fingolimod, natalizumab, methotrexate,
teriflunomide, cyclophosphamide, dimethyl fumarate, and alemtuzumab) were matched to re-
duce treatment selection bias using propensity score and overlap weighting approaches. Time to
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first CDP was significantly longer in transplanted patients (hazard ratio [HR] = 0.50; 95% CI = 0.31–0.81; p = 0.005), with 61.7%
of transplanted patients free from CPD at 5 years. Accordingly, EDSS time trend over 10 years was higher in patients treated with
other DMTs than in AHSCT-treated patients (+0.157 EDSS points per year compared with −0.013 EDSS points per year;
interaction p < 0.001). Patients who underwent AHSCTwere more likely to experience a sustained disability improvement: 34.7%
of patients maintained an improvement (a lower EDSS than baseline) 3 years after transplant vs 4.6% of patients treated by other
DMTs (p < 0.001).

Discussion
The use of AHSCT in people with active SPMS is associated with a slowing of disability progression and a higher likelihood of
disability improvement compared with standard immunotherapy.

Classification of Evidence
This study provides Class III evidence that autologous hematopoietic stem cell transplants prolonged the time to CDP
compared with other DMTs.

Secondary progressive multiple sclerosis (SPMS) is character-
ized by progressive accrual of neurologic disability independent
of clinical relapses.1 Although the exact mechanisms leading to
disability progression in SPMS are not completely understood,
recent evidence suggests a major role of compartmentalized in-
flammation within the CNS in driving neurodegeneration and
eventually clinical progression. Inflammatory processes behind
an intact blood-brain barrier involving adaptive and innate im-
munity have been indeed described in people with SPMS within
the brain parenchyma,2,3 the leptomeninges,4 and the CSF.5,6

Moreover, evidence for overt inflammatory disease activity may
still be found in people with SPMS, who can experience relapses
and the appearance of new active lesions on MRI,1 which have
been repeatedly associated with accelerated disability pro-
gression during SPMS.7

Although first randomized controlled clinical trials did not re-
veal the efficacy of disease-modifying therapies (DMTs) for
disability progression in SPMS,8,9 a recent randomized clinical
trial established some benefits of siponimod10 in reducing the
risk of disability worsening compared with placebo. In line with
this result, observational studies have suggested that the use of
available anti-inflammatory DMTs in SPMS may be thera-
peutically beneficial,11,12 especially in active SPMS.11,13 Despite
the lack of clear guidelines, anti-inflammatory DMTs are often
prescribed in patients with SPMS. However, the overall risk
reduction in disability worsening with available DMTs is only
modest, and it is still unclear whether the effect of treatment
persists over time.14 In the EXPAND trial,13 after 2 years of
treatment with siponimod, the average postponement of dis-
ability was only 19 days per year, indicating a small benefit.15

Ablation of the immune system followed by autologous he-
matopoietic stem cell transplantation (AHSCT) has gained
increasing evidence as a therapeutic strategy for refractory
MS.16,17 AHSCT eradicates autoreactive cell clones and in-
duces sustained self-tolerance by resetting the abnormal im-
mune system.18 Although the ideal candidate of AHSCT is a
young patient with aggressive relapsing-remitting MS, un-
controlled evidence suggests that AHSCT can slow down
neurologic deterioration in active progressive MS,19-21 but
controversies exist.22,23 The drugs used in AHSCT technol-
ogy cross the almost intact blood-brain barrier of patients with
SPMS and penetrate the CNS, with the potential to target
compartmentalized inflammation.24-26 Moreover, the mye-
loablative effects of AHSCT have the potential to target
imprinted, pathogenic memory cells within the bone marrow
niche, which are believed to drive chronic inflammation.27

Given the absence of satisfactory treatment options for active
SPMS, in the last 2 decades, AHSCTwas used off-label for the
treatment of 81 people with active SPMS in 14 Italian MS
centers. In this study, we wanted to assess whether autologous
hematopoietic stem cell transplants prolonged the time to
confirmed disability progression (CDP) compared with other
DMTs in SPMS.

We used the Italian Multiple Sclerosis Register28 to collect
data from patients with SPMS treated with standard im-
munotherapy and controlled for several clinical and de-
mographic variables to mitigate treatment selection bias.
We hypothesized that patients with active SPMS have better
disability outcomes when treated with AHSCT than with
other DMTs.

Glossary
AHSCT = autologous hematopoietic stem cell transplantation; ARR = annualized relapse rate; ATG = antithymocyte globulin;
AUC = area under the curve; CDP = confirmed disability progression; DMT = disease-modifying therapy; EDSS = Expanded
Disability Status Scale; HR = hazard ratio; IQR = interquartile range; MSMs = marginal structural models; OW = overlap
weighting; PS = propensity score; SMDs = standardized mean differences; SPMS = secondary progressive multiple sclerosis.
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Methods
Study Design
All patients who underwent AHSCT in Italy from 1997 to 2019
after the diagnosis of SPMS1 were considered eligible for this
study. Patients were treated according to the European Group
for Blood and Marrow Transplantation guidelines, following the
decision of the treating physician and approval of the local Ethics
Committee. Diagnosis of SPMS was made by the treating neu-
rologist and was based on the evidence of CDP independent of
clinical relapses lasting ≥6 months before AHSCT.

Control patients with SPMS never treated with AHSCT were
collected from the Italian Multiple Sclerosis Register.28 Patients
with SPMS were considered eligible based on the following
criteria: (1) if they had a baseline Expanded Disability Status
Scale (EDSS) recording, (2) if they had at least 1 follow-up visit,
and (3) if a DMT had been started after the diagnosis of SPMS.

Standard Protocol Approvals, Registrations,
and Patient Consents
The Italian Multiple Sclerosis Register was approved by the
Policlinico of Bari Ethics Committee (protocols 55587 and
0052885) and by the local ethics committees in all partici-
pating centers.

Transplant Technology
As detailed elsewhere,21 peripheral hematopoietic stem cells were
mobilized with cyclophosphamide plus filgrastim. Sixty-four pa-
tients were transplanted using the myeloablative conditioning
regimen BEAM (BCNU, cytosine-arabinoside, etoposide, and
melphalan) plus rabbit antithymocyte globulin (ATG). For 2
patients, fotemustine was used instead of BCNU. Eleven patients
were transplanted using cyclophosphamide alone followed by
ATG. Thiothepa + cyclophosphamide regimen was used in 3
patients. One patient was transplanted with a conditioning regi-
men made of bortezomib, cyclophosphamide, dexamethasone,
and melphalan.

Study Endpoints
The primary objective was to compare the cumulative pro-
portion of patients with a 6-month CDP in patients with
active SPMS treated with AHSCT with that in those treated
with other DMTs. CDP was defined as an increase of 1 point
in the EDSS score (0.5 points if the baseline EDSS score was
≥5.5). Secondary endpoints were as follows:

1. To evaluate the EDSS score time course after baseline in
the 2 treatment groups;

2. To compare the cumulative proportion of patients with a
6-month confirmed disability improvement (CDI), de-
fined as a decrease of 1 point in the EDSS score (0.5 points
if the baseline EDSS score was ≥5.5);

3. To compare the prevalence of disability improvement over
time, defined as the proportion of patients who are in an
improved status when compared with that at baseline
over time.

Statistical Methods
Outcomes were compared between patients treated with
AHSCT and patients treated with “other DMTs.” The other
DMT group comprises all patients satisfying the inclusion
criteria and starting any DMT during their follow-up. De-
scriptive results were reported as mean with SD ormedian with
interquartile range (IQR) or range. To mitigate treatment se-
lection bias, we applied 2 different propensity score (PS) ap-
proaches. First, we matched individual patients on their
propensity to receive AHSCT or one of the other DMTs.
Patients were matched without replacement with a variable
ratio up to 5:1 (other DMT:AHSCT) and using a nearest
neighbor matching within a caliper of 0.25 SDs of the PS.
Second, we applied an overlap weighting (OW) approach.29

This method has the advantage over the n:1 PS matching
method that no patients are excluded from the analysis, without
modifying the target population.29 The OWmethod assigns to
each patient a weight proportional to the probability of that
patient belonging to the opposite treatment group.29 In our
analysis, AHSCT-treated patients are therefore weighted by the
probability to receive one of the other DMTs (1 PS), and
patients treated with other DMTs are weighted by the proba-
bility of receiving AHSCT treatment (PS). OW leads to an
exact balance on the mean of each baseline covariate included
in the PS calculation. For both methods, individual PS were
calculated using a multivariable logistic regression model in-
cluding age at treatment start, sex, EDSS at treatment start,
number of previous DMTs, annualized relapse rate (ARR) in
the previous year, disease duration, and year of treatment start.
Only main effects, without interactions, were included in the
regression model. Because MRI data were missing for most of
the patients in the Italian MS Register, they were not included
in the primary PS calculation. Positivity assumption of PS was
checked after its calculation. To assess the degree of imbalance
of covariate distribution between the groups, Cohen stan-
dardized mean differences (SMDs) were calculated in the
original group and after matching or weighting. An SMD <0.10
was considered an acceptable balance.

All regression models were run on the matched groups or
weighted according to PS. Differences between treatment
groups on time to CDP and CDI were assessed by the mean of
proportional hazard Cox regression models. Results were
reported as hazard ratio (HR)with the corresponding 95%CIs.
A linear mixed model with random intercept and random slope
was used to assess the longitudinal EDSS time trend after
baseline. A time × treatment group interaction term was in-
cluded into the model to test differences on EDSS time trend
between the 2 treatment groups. Results were reported as an-
nualized EDSS change with 95% CIs. Progression-free survival
and cumulative probability of improvement were estimated by
Kaplan-Meier approach and graphically displayed. The preva-
lence of CDI was estimated according to the recently reported
methodology30 and compared between groups by boot-
strapping the area under the curve (AUC) with 500 replicates.
The ratio between mean difference of AUCs on SD (z) was
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calculated, and the p value was obtained by the normal distri-
bution. Stata (v.16; StataCorp) was used for computation.

Sensitivity Analyses
The following sensitivity analyses were performed:

1. Unadjusted analysis (without PS) between patients
treated with AHSCT and the other DMT group.

2. Inclusion of untreated patients in the other DMT group.
3. Application of marginal structural models (MSMs) to

account for potential attrition bias derived by a different
duration of on-treatment follow-up in thematched groups.
MSMs are a method to control for the causal effect of a
time-dependent exposure. In this case,MSMswere used to
control for potential informative censoring during follow-
up. We estimated at each 1-year time point the stabilized
weights, from the inverse probability to be censored at
fixed time points conditional on baseline variables. Then,
we ran a weighted Cox regression analysis.

4. Inclusion of MRI activity in the PS calculation. Two analyses
were performed: onewithmissing data imputed before the PS
calculation using multiple imputation approach with a logistic
regression model and 10 imputations. The second analysis
used only the subset with complete MRI information.

5. Comparisons between (1) patients treated with AHSCT
vs patients treated with interferon beta 1-b and (2)

patients treated with AHSCT vs patients treated with
mitoxantrone using a matching without replacement with
a variable ratio up to 5:1 (DMT:AHSCT) with the same
rules previously described. These 2 treatments were the
only 2 DMTs approved in Italy for the treatment of SPMS
during data collection.

Data Availability
Anonymized data are available on reasonable request from a
qualified investigator.

Results
The SPMS group treated by AHSCT included 81 patients
from 14 centers. Two patients did not have follow-up in-
formation and were excluded from the analysis. Data on
3915 patients with SPMS were extracted from the MS Italian
Register. Of them, 851 were excluded because of missing
follow-up EDSS data and 703 because their DMT start date
was during relapsing-remitting MS. A total of 2,361 patients
were included in the analysis; of them 1975 (83.7%) started a
DMT, while 386 (16.3%) were never treated. DMT used by
patients with SPMS were beta interferons (24%), azathio-
prine (13%), glatiramer acetate (13%), mitoxantrone (11%),
fingolimod (9%), natalizumab (7%), methotrexate (6%),
teriflunomide (6%), cyclophosphamide (6%), dimethyl

Table 1 Clinical and Demographic Characteristics in the Matched (Left Side) and in the Overlap Weighted (Right Side)
Groups

Characteristic

Matched group Overlap weighted group

AHSCT (n = 69)
Other DMT
(n = 217)

SMD AHSCT
vs treated AHSCT (n = 79)

Other DMT
(n = 1975)

SMD AHSCT
vs treated

Age, mean (SD);
median (range)

38.1 (7.7); 37.1 (24–58) 37.8 (7.2); 37.2
(22–58)

0.037 39 (7.8); 37.5 (24–58) 39 (7.8); 38.4
(19–76)

0.001

Sex (M/F), n (%) 24/45 (34.8/65.2) 86/131 (39.9/60.1) 0.10 28/51 (35.5/64.5) 719/1256 (36.4/
63.6)

0.018

Baseline EDSS, mean (SD);
median (IQR)

6.2 (0.9); 6.5 (6–7) 6.3 (0.8); 6.5 (6–7) 0.076 6.2 (0.9); 6 (6–6.5) 6.2 (0.9); 6.5 (6–7) 0.001

ARR previous y 1.08 (1.12) 0.90 (1.02) 0.17 1.01 (1.07) 1.01 (1.66) 0.001

Disease duration, mean (SD);
median (IQR)

13.7 (6.5); 12.1
(10.1–16.5)

13.7 (6.1); 12.7
(9.3–17.8)

0.01 13.7 (6.8); 12.1
(10.1–17.3)

13.7 (6.6); 12.9
(9.3–18)

0.001

No. of previous treatments,
mean (SD); median (IQR)

2.4 (1.2); 2 (1–3) 2.3 (1.4); 2 (1–3) 0.024 2.2 (1.1); 2 (1–3) 2.2 (1.4); 2 (1–3) 0.001

Year of treatment start,
median (IQR)

2007 (2002–2014) 2007 (2004–2012) 0.019 2007 (2003–2014) 2008 (2004–2012) 0.001

Year of SP conversion,
median (IQR)

2004 (1999–2013);
[n = 53]

2004 (2001–2009) 0.011 2004 (1999–2013)
[n = 57]

2005 (2001–2010) 0.008

Years from SP conversion,
mean (SD); median (IQR)

3.53 (3.01); 2.53
(1.49–4.75) [n = 53]

2.72 (3.20); 1.76
(0.59–3.79)

0.26 3.61 (2.99); 2.56
(1.69–4.81) [n = 57]

2.91 (3.22); 1.95
(0.58–4.09)

0.22

Follow-up (y); median
(IQR); range

6.8 (3.2–11.8); 0.1–20.1 3.1 (1.7–6.4);
0.1–18.4

— 5.6 (2.2–11.1); 0.1–20.1 3.9 (1.7–6.4);
0.1–30.9

—

Abbreviations: AHSCT = autologous hematopoietic stem cell transplantation; ARR = annualized relapse rate; EDSS = Expanded Disability Status Scale; IQR =
interquartile range; Other DMTs = beta interferons, azathioprine, glatiramer acetate, mitoxantrone, fingolimod, natalizumab, methotrexate, teriflunomide,
cyclophosphamide, dimethyl fumarate, and alemtuzumab; SMD = standardized mean difference; SP = secondary progressive.
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fumarate (4%), and alemtuzumab (1%). A slightly higher
frequency of EDSS visits for year was observed in the Italian
MS Register (mean 2.76 [SD 1.98]) compared with the
AHSCT group (mean 1.95 [SD: 2.30]). Table 1 reports the
clinical and demographic characteristics of the 2 treatment
groups after PS matching and OW approach, with SMD be-
tween the 2 groups. The mean follow-up of the matched group
was 5.2 years, with a median of 3.6 years (IQR:1.8–7.6 years).
Seven (8.9%) transplanted patients started a DMT after a
median of 2.2 years (range 1–17; mean = 6 years, SD = 6 years)
from AHSCT.

AHSCT-Treated vs Other DMT-Treated Patients

Time to CDP
The time to CDP was significantly longer in AHSCT-treated
patients when compared with the matched other DMT group
(HR = 0.50; 95%CI: 0.31–0.81; p = 0.005, Figure 1A). After 3
years, the proportion of patients free from CDP was 58.1%
(95% CI: 50.3–64.9) in the other DMT group and 71.9%
(95% CI: 58.5–81.5) in the AHSCT group; after 5 years it
was, 46.3% (95% CI: 37.4–54.5) in the other DMT group and
61.7% (95% CI: 47.5–73.1) in the AHSCT group. Similar
results were observed when the OW procedure was applied to
the whole group (Figure 1B).

Yearly EDSS Change
Figure 2A reports the estimated slopes of the EDSS change in
the 2 treatment groups: the mean EDSS change over 10 years
in the AHSCT group was estimated as −0.013 EDSS points per
year (95% CI: −0.087 to 0.061 EDSS points per year), while in
the other DMT group, the mean EDSS change was +0.157
EDSS points per year (95% CI: 0.117–0.196 EDSS points per
year, p for time by treatment group interaction <0.001). Similar

results were observed by the OW analysis, and the esti-
mated slopes of EDSS change are shown in Figure 2B. The
estimated yearly EDSS change was −0.017 (95% CI: −0.099
to 0.065) in the AHSCT group and +0.18 (95% CI:
0.15–0.21) in the other DMT group (p for time × treatment
group interaction <0.001).

ARR
After matching, the ARR in the first 2 years of follow-up
was 0.024 (95% CI: 0–0.051) in the AHSCT group and
0.32 (95% CI: 0.24–0.39) in the other DMT group (RR =
0.075; 95% CI: 0.023–0.24; p < 0.001). Over the entire
follow-up, the ARR was 0.020 (95% CI: 0.006–0.034) and
0.45 (95% CI: 0.36–0.55), respectively (RR = 0.044; 95%
CI: 0.021–0.091; p <0.001).

Similar results were observed in theOWanalysis, with an ARR in
the first 2 years of follow-up of 0.025 (95%CI: 0.0002–0.050) in
AHSCT-treated patients and of 0.38 (95% CI: 0.30–0.46)
among patients in the other DMT group (RR = 0.067; 95% CI:
0.024–0.184; p <0.001). The ARR over the entire follow-up was
0.020 (95% CI: 0.003–0.037) and 0.43 (95% CI: 0.35–0.51),
respectively, with a significant difference between the 2 groups
(RR = 0.046; 95% CI: 0.019–0.110; p <0.001).

EDSS Improvement
Figure 3A shows the Kaplan-Meier curves for time to CDI. In
the matched groups, the improvement rate was significantly
higher in AHSCT-treated patients when compared with the
other DMT group (HR = 4.21; 95% CI: 2.42–7.33; p <
0.001). After 1 year, the cumulative proportion of patients
who had at least an improvement event was 30.2% (95% CI:
20.6–42.8) in the AHSCT group and 3.4% (95% CI: 1.6–7.0)

Figure 1 Time to Confirmed Disability Progression in Patients With SPMS Treated With AHSCT and Matched Patients
Treated With Other Anti-inflammatory DMTs

Kaplan-Meier Curve for Time to First Confirmed Progression for (A) Propensity Score–Matched Treatment Groups and (B) the Overlap Weighting–Matched
Groups. Abbreviations: AHSCT = autologous hematopoietic stem cell transplantation; DMTs = disease-modifying therapies (Beta interferons, azathioprine,
Glatiramer Acetate, Mitoxantrone, Fingolimod, Natalizumab, Methotrexate, Teriflunomide, Cyclophosphamide, Dimethyl Fumarate, and Alemtuzumab);
EDSS = Expanded Disability Status Scale; HR = hazard ratio; SPMS = secondary progressive multiple sclerosis.
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in the other DMT group; after 3 years, it was 38.8% (95% CI:
28.0–51.9) in the AHSCT group and 7.8% (95% CI:
4.2–13.3) in the other DMT group. AHSCT-treated patients
also showed a higher prevalence of improvement (Figure 3B)
over time (p < 0.001) when compared with the matched
control group. The proportion of patients who reached and
maintained an improvement status after 3 years was 34.7%
(95% CI: 23.2–46.3) in the AHSCT group, while it was 4.6%
(95% CI: 1.7–8.6) in the other DMT group; after 5 years,
18.7% (95% CI: 7.9–29.8) of AHSCT-treated patients
maintained the improvement when compared with that at

baseline vs 4.1% (95% CI: 1.3–8.3) of patients treated with
other DMTs.

Sensitivity Analyses

Unadjusted Comparison of the AHSCT and Other
DMT Groups
In unadjusted analyses without PS matching, the time to CDP
was significantly longer in AHSCT-treated patients when
compared with the “other DMT” group (HR = 0.49 [95% CI:
0.33–0.72], p < 0.001), while time to CDI was significantly
lower (HR = 6.35 [95% CI: 4.37–9.22], p < 0.001). The mean

Figure 3 Time to Confirmed Disability Improvement and Prevalence of Disability Improvement in Patients With SPMS
Treated With AHSCT and Propensity Score–Matched Patients Treated With Other Anti-inflammatory DMTs

(A) Kaplan-Meier Curve for Time to First Confirmed Disability Improvement. (B) Prevalence of Confirmed Disability Improvement 1–10 years after Treatment
Start.Abbreviations: AHSCT = autologous hematopoietic stem cell transplantation; DMT = disease-modifying therapies (beta interferons, azathioprine, glatiramer
acetate, mitoxantrone, fingolimod, natalizumab, methotrexate, teriflunomide, cyclophosphamide, dimethyl fumarate, and alemtuzumab); EDSS = Expanded
Disability Status Scale; SPMS = secondary progressive multiple sclerosis.

Figure 2 Evolution of Neurologic Disability in Patients With SPMS Treated With AHSCT and Matched Patients Treated With
Other Anti-inflammatory DMTs

Annualized EDSS Change Together With 95% CIs 1–10 years after Treatment Start for (A) Propensity Score–Matched Treatment Groups and (B) the Overlap
Weighting–Matched Groups. Abbreviations: AHSCT = autologous hematopoietic stem cell transplantation; DMTs = disease-modifying therapies (Beta In-
terferons, azathioprine, Glatiramer Acetate, Mitoxantrone, Fingolimod, Natalizumab, Methotrexate, Teriflunomide, Cyclophosphamide, Dimethyl Fumarate,
and Alemtuzumab); EDSS = Expanded Disability Status Scale; SPMS = secondary progressive multiple sclerosis.
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EDSS change over 10 years in the AHSCT group (n = 79) was
estimated as +0.021 EDSS points per year (95% CI: −0.027,
0.068) vs +0.15 (95% CI: 0.14–0.16) in the other DMT group
(n = 1975) (p for time by treatment group interaction < 0.001).

Inclusion of Untreated Patients
Untreated patients were added to the group of patients treated
with other DMTs. The untreated group was made up of older
patients with similar disease duration and EDSS and lower ARR
in the previous year when compared with other DMT–treated
patients. A total of 72 AHSCT-treated patients were matched to
228 patients in the control group (26 untreated [11.4%] and
202 treated [88.6%]). Characteristics of matched patients are
reported in Table 2. Results were similar to those reported in the

main analysis (eFigure 1, links.lww.com/WNL/C535): time to
CDP was significantly longer in AHSCT-treated patients (HR =
0.48; 95% CI: 0.30–0.78; p = 0.003). Accordingly, the EDSS
increased in the control group (yearly change +0.125; 95% CI:
0.099–0.151 EDSS points) while it was substantially stable in the
AHSCT group (yearly change +0.017 EDSS points; 95% CI:
−0.032 to 0.066) with a significant difference between the 2
groups (p < 0.001).

Marginal Structural Model
Results of the analysis run by applying MSM to the matched
group (69 AHSCT vs 217 other DMT) confirmed those
reported in the main analysis. The time to CPD was signif-
icantly longer in AHSCT-treated patients when compared

Table 2 Demographic and Clinical Characteristics of Propensity Score–Matched AHSCT and Control Group After the
Inclusion of Untreated Patients

Characteristics AHSCT (n = 72) Control (n = 228) SMD

Age, mean (SD) 38.5 (7.7) 39.5 (7.6) 0.12

Sex (M/F), n(%) 26/46 (35.6/64.4) 83/145 (36.4/63.6) 0.016

Baseline EDSS, mean (SD); median (IQR) 6.2 (0.9); 6.5 (6–6.5) 6.2 (0.9); 6 (6–6.5) 0.08

ARR previous y 1.05 (1.04) 0.76 (0.93) 0.29

Disease duration, mean (SD); median (IQR) 13.5 (6.7); 11.8 (10.1–16.5) 13.4 (6.2); 12.9 (8.9–17.1) 0.022

No. of previous treatments, median (IQR); range 2 (1–3); 0-5 2 (1–3); 0-6 0.19

Year of treatment start, median (IQR) 2007 (2003–2014) 2008 (2004–2013) 0.027

Year of SP conversion, mean; median (IQR) 2004 (1999–2013) [n = 54] 2006 (2001–2011) 0.061

Years from SP conversion, mean (SD); median (IQR) 3.40 (3.01); 2.45 (1.35–4.50) [n = 54] 2.60 (3.00); 1.60 (0.50–3.60) 0.26

Abbreviations: AHSCT = autologous hematopoietic stem cell transplantation; ARR = annualized relapse rate; EDSS = Expanded Disability Status Scale; IQR =
interquartile range; Other DMTs = beta interferons, azathioprine, glatiramer acetate, mitoxantrone, fingolimod, natalizumab, methotrexate, teriflunomide,
cyclophosphamide, dimethyl fumarate, and alemtuzumab; SMD = standardized mean differences; SP = Secondary Progressive.

Table 3 Demographic and Clinical Characteristics of Matched AHSCT-Treated and Other DMT–Treated Patients
Accounting for Baseline MRI Activity

Characteristics AHSCT (n = 79) Treated With Other DMTs (n = 135) SMD

Age, mean (SD) 38.1 (7.7) 38.3 (7.5) 0.032

Sex (M/F), n(%) 27/52 (33.8/66.2) 50/85 (36.9/63.1) 0.066

Baseline EDSS, mean (SD); median (IQR) 6.3 (0.9); 6.5 (6–7) 6.4 (0.9); 6.5 (6–7) 0.18

ARR previous y 1.13 (1.21) 1.06 (1.06) 0.066

Disease duration, mean (SD); median (IQR) 13.4 (6.6); 11.8 (8.5–16.5) 13.6 (5.1); 12.9 (8.9–17.1) 0.032

No. of previous treatments, median (IQR); range 2 (1–3); 0-5 2 (1–3); 0-6 0.011

Year of treatment start, median (IQR) 2006 (2003–2014) 2008 (2004–2013) 0.15

Year of SP conversion, median (IQR) 2004 (2000–2013) [n = 57] 2005 (2001–2011) 0.12

Years from SP conversion, mean (SD); median (IQR) 3.50 (2.94); 2.53 (1.49–4.75) [n = 57] 2.65 (2.84); 1.57 (0.59–4.05) 0.30

Abbreviations: AHSCT = autologous hematopoietic stem cell transplantation; ARR = annualized relapse rate; DMTs = disease-modifying therapies; EDSS =
Expanded Disability Status Scale; IQR = interquartile range; Other DMTs = beta interferons, azathioprine, glatiramer acetate, mitoxantrone, fingolimod,
natalizumab, methotrexate, teriflunomide, cyclophosphamide, dimethyl fumarate, and alemtuzumab; SMD = standardizedmean difference; SP = secondary
progressive.
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with that in the other DMT group (HR = 0.58; 95% CI: 0.35,
0.96; p = 0.032).

Inclusion of MRI Activity in the PS Model
Data on MRI activity were available for 73/79 (92.4%) patients
in the AHSCT group and for 812/1975 (41.1%) patients in the
other DMT group. The AHSCT group had a higher frequency
(51/73; 70%) of MRI active scans (defined as scans with at least
1 gadolinium-enhancing lesion) than the other DMT group
(156/812; 19.2%). After multiple imputation of missing values,
79 AHSCT-treated patients were matched to 135 patients in the
other DMT group. The 2 groups were well balanced (Table 3).
Results on the primary outcome were similar to those reported
in the main analysis: time to CDP was significantly delayed in
AHSCT-treated patients compared with that in patients in the
other DMT group (HR = 0.58; 95% CI: 0.35–0.96; p = 0.033).
The EDSS increased in the control group (yearly change +0.145;
95% CI: 0.115–0.175 EDSS points) while it was substantially
stable in the AHSCT group (yearly change +0.015 EDSS points;
95% CI: −0.034 to 0.064), with a significant difference between
the 2 groups (p < 0.001). In the complete case analysis, 71
patients in the AHSCT group were matched to 100 patients in
the other DMT group, and similar results were observed (EDSS
points yearly change +0.127; 95% CI: 0.091–0.164 in the other
DMT group vs 0.015; 95% CI: −0.038 to 0.068 in the AHSCT
group; p = 0.001).

AHSCT vs Interferon Beta-1b andMitoxantrone
A total of 56 AHSCT-treated patients were matched with 63
interferon beta-1b–treated patients (eTable 1, links.lww.com/
WNL/C536). Results were similar to those reported for the

analysis on other DMTs. In fact, we observed an EDSS point
yearly change of +0.126 (95% CI: 0.078–0.174) in the in-
terferon beta group and of 0.047 (95%CI: −0.011 to 0.106) in
the AHSCT group, with a significant difference between the 2
groups (p = 0.040).

A total of 74 AHSCT-treated patients were matched with 138
mitoxantrone-treated patients (eTable 1, links.lww.com/WNL/
C536). An EDSS point yearly change of +0.129 (95% CI:
0.103–0.155) was found in the mitoxantrone group vs 0.023
(95% CI: −0.025 to 0.072) in the AHSCT group (p < 0.001). A
summary of the most relevant study outcomes of the principal
analysis and the main sensitivity analyses is reported in Table 4.

This study provides Class III evidence that autologous he-
matopoietic stem cell transplants prolonged the time to CDP
compared with other DMTs.

Discussion
Todate, noprospective clinical trial has beenperformed to evaluate
the efficacy of AHSCT in active SPMS. In this study, we showed
that the use of AHSCT for the treatment of active SPMS is as-
sociatedwith better disability outcomes than otherDMTs.Despite
treatment with most of the available anti-inflammatory DMTs
(i.e., beta interferons, azathioprine, glatiramer acetate, mitoxan-
trone, fingolimod, natalizumab, methotrexate, teriflunomide, cy-
clophosphamide, dimethyl fumarate, and alemtuzumab), our
SPMS control group exhibited a mean disability accumulation of
0.16 EDSS points per year, with rates of CDP in line with those

Table 4 Summary of the Most Relevant Study Outcomes in Primary and Main Sensitivity Analyses

Outcome Matching Overlap weighting

AHSCT vs other DMT

Time to CDP HR = 0.50; 95% CI: 0.31–0.81; p = 0.005 HR = 0.63; 95% CI: 0.40–0.99; p = 0.05

Yearly EDSS change p Value time × group <0.001 p Value time × group <0.001

ARR RR = 0.044; 95% CI: 0.021–0.091; p < 0.001 RR = 0.046; 95% CI: 0.019–0.110; p < 0.001

Cumulative incidence of EDSS improvement HR = 4.21; 95% CI: 2.42–7.33; p < 0.001 HR = 3.95; 95% CI: 1.81–8.65; p = 0.001

Prevalence of EDSS improvement p Value <0.001 —

AHSCT vs other DMT (baseline MRI activity in
the propensity calculation)

Time to CDP HR = 0.58; 95% CI: 0.35–0.96; p = 0.033 —

Yearly EDSS change p Value time × group <0.001 —

AHSCT vs untreated/patients treated with other DMTs

Time to CDP HR = 0.48; 95% CI: 0.30–0.78; p = 0.003 —

Yearly EDSS change p Value time × group <0.001 —

Abbreviations: AHSCT = autologous hematopoietic stem cell transplantation; ARR = annualized relapse rate; CDP = confirmed disability progression; DMT =
disease-modifying therapy; EDSS = Expanded Disability Status Scale; HR = hazard ratio; Other DMTs = beta interferons, azathioprine, glatiramer acetate,
mitoxantrone, fingolimod, natalizumab, methotrexate, teriflunomide, cyclophosphamide, dimethyl fumarate, and alemtuzumab.
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reported by other independent groups of patients with SPMS.12,31

Conversely, AHSCT-treated individuals showed a stable EDSS
time course over time (−0.013 EDSS points per year). This result
translates into a significantly delayed time to first CDP in AHSCT-
treated patients compared with matched controls, with a per-
centage of patients without CPD at 5 years of 61.7%.

Taken together, our findings confirm and extend the results of
previous uncontrolled studies, which suggested that AHSCT
has the potential to slow down neurologic progression in
patients with active SPMS.19-21,32 AHSCT has demonstrated
a striking effect in abolishing clinical relapses andMRI signs of
inflammatory activity,21,33-35 which have been repeatedly as-
sociated with worse outcomes during the course of SPMS.7,11

Accordingly, it has been demonstrated that AHSCT is able to
reduce long-termCSFmarkers of ongoing CNS inflammation
and axonal damage.36 The profound anti-inflammatory effect
of AHSCT has been confirmed by pathologic studies of MS
lesions of patients with SPMS, in which a dramatic reduction
of T-cell and B-cell infiltrates has been described.24,37 Al-
though residual demyelination and neurodegeneration have
been reported after AHSCT,24,37 it seems that AHSCT is able
to reduce the compartmentalized inflammation behind the
blood-brain barrier, slowing down disability worsening in
patients with SPMS. In line with this hypothesis, several in-
dependent studies have demonstrated that AHSCT is able to
reduce neurofilament light chain levels,38 slow down cognitive
decline,39 and normalize long-term rates of cerebral gray
matter and white matter atrophies,40 core pathologic features
of disability progression during SPMS.

We have previously reported that superimposed relapses21 and
inflammatory activity at baseline MRI19 are favorable predictors
of a better outcome after AHSCT treatment in patients with
SPMS. Similar results have been reported in other groups of
patients with SPMS11 and primary progressive MS,41,42 in which
the effect of immunotherapy in reducing disability worseningwas
more pronounced in patients with active progressive MS.

Relapsing-remitting MS and SPMS form a continuum, with
the boundary between them being somewhat indistinct.43

Progression independent from relapsing activity may indeed
accumulate over time in relapsing-remitting MS44 and evi-
dence for overt inflammatory disease activity may still be
found in people with SPMS, underscoring the challenge in
distinguishing the 2 disease phenotypes. This is particularly
true for people affected by aggressive MS, who experience
frequent and severe relapses and high radiologic disease ac-
tivity,45 which are strong risk factors for accelerated conver-
sion to SPMS. Although in our study, transplanted patients
were relatively young and their disease course was charac-
terized by the presence of inflammatory disease activity, they
all had experienced continuous disability progression for ≥6
months during AHSCT and had a baseline EDSS score ≥4,
which has been proposed as the minimum level of disability
for a diagnosis of SPMS to be made according to the Lor-
scheider criteria.46 Accordingly, the mean disease duration of

our AHSCT group was almost 14 years, which is consistent
with time to SPMS conversion in the MS population.47,48

Therefore, although our results could not be applicable to
people with late SPMS without signs of inflammatory activity,
they indicate that AHSCT is effective in reducing disability
worsening in patients with active SPMS. These results, alto-
gether with previous studies,11,13 reinforce the notion that
ongoing inflammation during progressive MS represents a
treatable target and requires adequate immunotherapy. Finally,
whether AHSCT could be of some benefit in patients with
relapsing-remitting MS experiencing progression independent
of relapse activity during treatment with high-efficacy therapies,
which is an increasingly encountered clinical scenario, needs to
be explored in future studies.

Because disability improvement in a progressive disease can
be a transient condition with little clinical impact, analyzing
the incidence of CDI has limited value in assessing the effect
of a treatment in restoring neurologic functions. The preva-
lence of improvement, indicating the proportion of patients
with improvement at each time point, is more informative in
this context because it reflects more meaningful changes in
neurologic disability. In this study, we showed that patients
who underwent AHSCT were more likely to experience a
sustained disability improvement. Our data indicate that
18.7% of patients with SPMS treated with AHSCT main-
tained an improvement (a lower EDSS than baseline) 5 years
after transplant, compared with 4.1% of patients treated by
other DMTs. Although the mechanisms underlying CNS re-
pair are not completely understood, one of the biggest chal-
lenges for recovery seems to be the presence of a chronic
inflamed microenvironment impairing remyelination and
neuronal plasticity,49 which could be potentially targeted by
the CNS-penetrant chemotherapy used during AHSCT.

Safety is a major concern when considering AHSCT as a
treatment strategy for patients with MS and represents the
major limit to its widespread use. A meta-analysis50 and a
multicenter international cohort study20 found that patients
with SPMS have an increased transplant mortality rate com-
pared with younger patients affected by relapsing-remitting
MS. Safety results of our group of AHSCT-treated patients has
already been detailed elsewhere21: one patient with SPMS died
after intracranial hemorrhage 56 days after AHSCT, resulting in
a transplant mortality rate of 1.3%.

To overcome the intrinsic limitations of observational studies,
in this study, we controlled for multiple demographic and
clinical variables to mitigate treatment selection bias. The
superiority of AHSCT on disability outcomes was confirmed
using the PS matching and the OW approach. As sensitivity
analysis, we also included untreated patients with SPMS and
confirmed the protective effect of AHSCT on disability
worsening and time to CDP. Similar results were found after
the application of MSMs to account for potential attrition bias
derived by a different duration of on-treatment follow-up in the
matched groups. A sensitivity analysis after the inclusion of

Neurology.org/N Neurology | Volume 100, Number 11 | March 14, 2023 e1117

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://neurology.org/n


measures of MRI activity in the PS calculation confirmed the
results of themain analysis. The superiority of AHSCTwas also
confirmed when considering separately as a control group,
patients treated with interferon beta-1b and mitoxantrone,
which were the only 2 DMTs approved for the treatment of
SPMS in Italy during data collection of this study. However, it
should be noted that the 2 groups of patients were recruited
separately and thus likely have inherent biases, which can be
only partially corrected during propensity weighting.

Notably, our SPMS control group did not include patients
treated with siponimod, cladribine, ocrelizumab, or rituximab.
In the EXPAND study,10 siponimod treatment was associated
with a delayed time to CDP than placebo, with CDP rate of
23% over 3 years. Similar results have been published after
treatment with rituximab in SPMS,12 with CDP rates of 25%
and 50% over 3 and 10 years, respectively. A recent MSBase
study13 did not find any difference in disability outcome in
patients with SPMS treated with available high-efficacy (nata-
lizumab, alemtuzumab, mitoxantrone, ocrelizumab, rituximab,
cladribine, and fingolimod) and low-efficacy (interferon beta,
glatiramer acetate, and teriflunomide) DMT, suggesting that
the expected effect of B-cell depleting agents on disability
worsening should be in line from that we observed in our
control other DMT group. It should be noted, however, that in
the MSBase study,13 only a minority of patients were treated
with B-cell depleting agents, and definite conclusions on the
relative efficacy of AHSCT vs highly active therapies in SPMS
cannot be drawn. Ongoing prospective randomized clinical
trials comparing AHSCT and the best available therapy in
relapsing-remitting MS and active SPMS (as the BEAT-MS
study) will provide important evidence in this setting.

Our data indicate that AHSCT is superior to a subset of low-
efficacy and high-efficacy DMTs in slowing down disability
worsening in patients with active SPMS. The intense CNS-
penetrant chemotherapy of AHSCT could have the advantage
to target the compartmentalized inflammation behind the al-
most intact blood-brain barrier in patients with SPMS, reducing
disability progression. It is important to note that because our
study population was composed of relatively young patients
with clinical activity during SPMS, the results of this study
could not be applicable to patients with SPMS without signs of
inflammatory disease activity. On the other hand, our results
reinforce the notion that ongoing inflammation during pro-
gressive MS requires adequate immunotherapy.

In this study, we showed that some transplanted patients
experienced sustained disability improvement. The possibility
to improve disability and maintain improvement is a crucial
need for patients with a progressive disease, and it is hardly
obtained with standard anti-inflammatory drugs.
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