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Abstract

Background and Objectives @ Editorial

Although the diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease ShO.uld We Tes_t for IgG
(MOGAD) is based on serum MOG antibodies (MOG-Abs) positivity, patients with coexisting .AntlbOdles Against MOG_
or restricted MOG-Abs in the CSF have been reported. The aim of this study is to characterize II? BOth i;m‘u}rln Sand CSI; n
the relevance of CSF MOG-Abs positivity in clinical practice. N;gegft:D? 1th Suspecte

Methods Page 497

Eleven medical centers retrospectively collected clinical and laboratory data of adult and

pediatric patients with suspected inflammatory CNS disease and MOG-Abs positivity in serum W
and/or CSF using live cell-based assays. Comparisons were performed using parametric or @ CME Course
nonparametric tests, as appropriate. Potential factors of unfavorable outcomes were explored by NPub.org/cmelist

Cox proportional hazard models and logistic regression.

Results

The cohort included 255 patients: 139 (55%) women and 132 (52%) children (i.e., <18-year-
old). Among them, 145 patients (56.8%) had MOG-Abs in both serum and CSF (MOG-Abs
seropositive and CSF positive), 79 (31%) only in serum (MOG-Abs seropositive and CSF
negative), and 31 (12%) only in CSF (MOG-Abs seronegative and CSF positive). MOG-Abs
seronegative and CSF positive predominated in adults (22% vs 3% of children), presented more
commonly with motor (n = 14, 45%) and sensory symptoms (n = 13, 42%), and all but 4
(2 multiple sclerosis, 1 polyradiculoneuritis, and 1 Susac syndrome) had a final diagnosis
compatible with MOGAD. When comparing seropositive patients according to MOG-Abs CSF
status, MOG-Abs seropositive and CSF positive patients had a higher Expanded Disability Status
Scale (EDSS) at nadir during the index event (median 4.5, interquartile range [IQR] 3.0-7.5 vs
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Glossary

Abs = antibodies; ADEM = acute disseminated encephalomyelitis; ARR = annualized relapse rate; CBA = cell-based assays;
CNS = central nervous system; CI = confidence interval; DMD = disease-modifying drug; EDSS = Expanded Disability Status
Scale; IF = immunofluorescence; IQR = interquartile range; MOG = myelin oligodendrocyte glycoprotein; MOG-Abs = MOG
antibodies; MOGAD = myelin oligodendrocyte glycoprotein antibody associated disease; MS = multiple sclerosis; NMOSD =
neuromyelitis optica spectrum disorder; OR = odds ratio.

3.0, IQR 2.0-6.8, p = 0.007) and presented more commonly with sensory (45.5% vs 24%, p = 0.002), motor (33.6% vs 19%,
p =0.021), and sphincter symptoms (26.9% vs 7.8%, p = 0.001) than MOG-Abs seropositive and CSF negative. At the last follow-
up, MOG-Abs seropositive and CSF positive cases had more often persistent sphincter dysfunction (17.3% vs 4.3%, p = 0.008).
Compared with seropositive patients, those MOG-Abs seronegative and CSF positive had higher disability at the last follow-up
(p < 0.001), and MOG-Abs seronegative and CSF positive status were independently associated with an EDSS >3.0.

Discussion

Paired serum and CSF MOG-Abs positivity are common in MOGAD and are associated with a more severe clinical pre-
sentation. CSF-only MOG-Abs positivity can occur in patients with a phenotype suggestive of MOGAD and is associated with a
worse outcome. Taken together, these data suggest a clinical interest in assessing CSF MOG-Abs in patients with a phenotype
suggestive of MOGAD, regardless of the MOG-Abs serostatus.

Myelin oligodendrocyte glycoprotein (MOG) has been identi-
fied as a target of circulating serum antibodies (Abs) in patients
with a distinctive demyelinating CNS condition named MOG
antibodies (MOG-Abs)-associated disease (MOGAD). The de-
velopment of highly sensitive live cell-based assays (CBAs), dis-
playing a very good interassay agreement,' has allowed the
clinical-MRI spectrum of this disorder to be defined and differ-
entiated from multiple sclerosis (MS) and aquaporin-4-antibody-
positive neuromyelitis optica spectrum disorder (NMOSD).?
MOGAD can have a monophasic or relapsing course, manifest-
ing most often with optic neuritis and/or myelitis in adults and
acute disseminated encephalomyelitis (ADEM) or optic neuritis
in children. Non-ADEM encephalitis, brainstem, or cerebellar
syndromes can also occur.>"® The prognosis is usually good, but
moderate-severe disability has been reported, emphasizing the
need to identify predictors of long-term outcome.'*"'®

Currently, a diagnosis of MOGAD requires the presence of
MOG-Abs in the serum of patients with a compatible clinical-
MRI phenotype.”>" Accordingly, MOG-Abs are thought to be
primarily produced in the periphery and may mediate their
pathogenic effect in the CNS after crossing the blood-brain
barrier in concomitance with T cell activation.’*** However,
recent studies reported paired serum and CSF positivity in
41%-61% of patients”>** and also some cases with isolated CSF
MOG-Abs positivity,7’25'28 suggesting intrathecal MOG-Abs
production. Isolated CSF MOG-Abs cases are rare and have
clinical and pathologic findings similar to seropositive patients.
However, there are some reports of CSF isolated positivity in
patients with MS in both adults and in children.”*’

The aim of our study was to evaluate the frequency and the
clinical utility of CSF MOG-Abs positivity in both adults and
children with suspected inflammatory CNS disorders.
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Methods

Study Subjects

This study includes patients with suspected inflammatory de-
myelinating diseases of the CNS and MOG-Abs positivity in
serum and/or CSF retrospectively enrolled from 11 centers
(Italy, Spain, France, Austria, Germany, Switzerland, Australia,
and the United States, eTable 1, links.Iww.com/WNL/C527).
Only patients with available paired serum and CSF obtained
within a month interval from each other were included.

To determine the specificity of CSF-only MOG-Abs in relation
to MOGAD, a control group of patients with a final diagnosis of
MS according to the updated diagnostic criteria® and with
available paired serum and CSF samples was also included.

Standard Protocol Approvals, Registrations,
and Patient Consents

The study was part of the research protocol approved by the
Ethics Committees of the enrolling centers: prog. 1052CESC
Verona-Rovigo approved by the Ethics Committee of Verona
University Hospital (Italy), COOLIN-BRAIN CER-VD—
approval number: 2018-01622 for Lausanne University Hospital
(Switzerland), EK 1123/201S for the Medical University of
Vienna (Austria), AN4095 approved by the Ethics Committee of
the Medical University of Innsbruck (Austria), 12/CHW/295
approved by the human research ethics committee at the Sydney
Children’s Hospitals Network (Australia), protocol approved by
the institutional review board at Mayo Clinic College of Medicine,
Rochester (MN, USA), PR(AG)398/2020 for Cemcat, Barcelona
(Spain), and HCB/2014/0297 approved by the Ethic Committee
of the Hospital Clinic of Barcelona (Spain). Samples from the
Hospital Clinic of Barcelona are deposited in the registered bio-
bank of Institut d’Investigacié Biomeédica August Pi I Sunyer
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Table 1 Demographic and Clinical Data of CSF-Only
MOG-Abs Positive Patients

Table 1 Demographic and Clinical Data of CSF-Only
MOG-Abs Positive Patients (continued)

CSF-restricted MOG-Abs positive patients (n = 31)

CSF-restricted MOG-Abs positive patients (n = 31)

Demographic data Pediatric patients, n (%) 4(12.9)
M:F ratio 1:1.8
Age at onset (y), median [range] 32 (6-85)
Acute treatment before 12 (37.2)
MOG-Abs sampling, n (%)
Time from onset to sampling (d), 2.4 (0-406)
median (range)

Clinical data Time from onset to symptoms 7 (1-90)
nadir (d), median (range)
EDSS at nadir of attack, 3.5(2-10)
median (range)
Visual symptoms at 10 (32.5)
onset, n (%)
Visual acuity 0.2 (20/100), 1/8 (12.5)
n/tot (%)
Motor symptoms, n (%) 14 (45.2)
Sensory symptoms, n (%) 13(41.9)
Sphincter dysfunction, n (%) 7 (22.6)
Encephalopathy, n (%) 5(16.1)
Brainstem symptoms, n (%) 8 (25.8)

CSF data Pleocytosis, n (%) 19(61.3)
Protein concentration, median 0.6 (0.1-5.16)
(range)
Increased IgG index, n/tot (%) 6/20 (30)

Oligoclonal bands, n/tot (%)

14/27 (51.9)

Disease course and
outcome

Follow-up (mo), 9(0.3-416.4)
median (range)

Relapsing disease, n (%) 9(29.0)
Annualized relapse rate, 0.4 (0.9)
mean (SD)

EDSS at the last follow-up, 2.0 (0.0-10.0)
median (range)

EDSS =3, n (%) 13(41.9)

Visual acuity at the last
follow-up, median (range)

1(0.4-1) 20/20
(20/50-20/20)

Pyramidal FS = 3 at last 6/28 (21.4)
follow-up, n/tot (%)
Sphincter dysfunction at the 8/29 (27.6)
last follow-up, n/tot (%)
Patients under chronic 18 (58.1)
treatment at the last follow-up,
n (%)
Classic immunosuppressants 9 (29%)
MS disease-modifying drugs 1(3.2%)
Other immunosuppressants 8 (25.8%)

Neurology.org/N

Final diagnosis, Seronegative NMOSD 8(25.8)

n (%)
Encephalitis 6(13.3)
Encephalitis + myelitis 3(9.7)
Myelitis 4(12.9)
Optic neuritis 4(12.9)
Optic neuritis + myelitis 2 (6.5)
MS 2(6.5)
Susac syndrome 1(3.2)
Acute polyradiculoneuritis 1(3.2)

Abbreviations: % = percentage; CSF = cerebrospinal fluid; EDSS = Expanded Dis-
ability Status Scale; FS = Functional System; IQR = interquartile range; MS = multiple
sclerosis; N = number; NMOSD = neuromyelitis optica spectrum disorders.
Visual acuity was measured through the Snellen Chart and reported in deci-
mals; the 20/20 scale is also displayed. Acute treatment includes intravenous
corticosteroids, plasma exchange, and intravenous immunoglobulins.

(IDIBAPS). Informed consent for storage and use of these sam-
ples for research purposes was obtained from all patients.

MOG-Abs Testing

Serum and CSF samples were tested for MOG-Abs through
live CBA quantified by either flow cytometry (FACS) or
microscopic visual score evaluation in immunofluorescence in
the reference laboratory for each recruiting center. When a
live CBA was not available, a reference center (the Neuro-
pathology and Neuroimmunology Laboratory, University
of Verona, Italy) performed the analysis. MOG-Abs positivity
in serum and CSF was defined according to the cut-off pre-
viously established in each reference laboratory (eTable 1, links.
Iww.com/WNL/C527). Patients were classified according to
paired serum/CSF MOG-Abs results into (1) isolated CSF
positive (MOG-Abs seronegative and CSF positive), (2) iso-
lated serum positive (MOG-Abs seropositive and CSF nega-
tive), and (3) paired serum and CSF positive (MOG-Abs
seropositive and CSF positive). Al MOG-Abs seronegative and
CSF positive samples were independently retested in a blinded
manner in a second expert laboratory (Neurologic Research
Laboratory, Medical University of Innsbruck, Austria) for
confirmation.

Demographic and Clinical Information

Clinical and paraclinical data were retrospectively collected in
a dedicated database by different referring physicians from the
involved centers. Information comprised (1) demographic
data (sex and age at onset, defining 2 groups: adults >18-year-
old and children <18-year-old); (2) dates of different clinical
episodes; (3) visual acuity (collected through the Snellen
Chart, in case of bilateral visual loss the value of the worst eye
was considered) and disability at nadir of the clinical episode

Neurology | Volume 100, Number 11 | March 14, 2023

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

e1097


http://links.lww.com/WNL/C527
http://links.lww.com/WNL/C527
http://neurology.org/n

e1098

Figure 1 Radiologic Findings of MOG-Abs Seronegative and CSF Positive Patients

Spinal cord MRI displayed short T2-hy-
perintense lesions in the cervical and
thoracic spinal cord (C2-C3, C6, T8) and
a longitudinally extensive lesion (T11-
L1) involving conus medullaris (A) that
had patchy postcontrast enhancement
(B). Transversal section on the cervical
spinal cord showed T2-hyperintensity,
more evident on the left (C). The follow-
up MRI performed 7 months after the
clinical episode and intravenous ste-
roids treatment showed an almost
complete normalization (D). Afollow up
MRI of a MOG-Abs seronegative and
CSF positive patient who had a LETM
showing marked spinal cord atrophy of
the thoracic segment (E). Orbital MRI of
a patient with bilateral optic neuritis
showed bilateral anterior optic nerve
thickening (F) and postcontrast en-
hancement (bilateral, left optic nerve
enhancement not shown, G).

and at the last follow-up (Expanded Disability Status Scale
[EDSS], or Pyramidal Functional System Score); (4) CSF in-
formation (protein concentration, cell count, oligoclonal bands
presence, and IgG index); (S) acute treatment including in-
travenous corticosteroids, plasma exchange, and intravenous
immunoglobulins (IVIg); and (6) maintenance therapy in-
cluding azathioprine, mycophenolate mofetil, rituximab, other
MS-disease-modifying drugs, and other treatments (cyclophos-
phamide, methotrexate, mitoxantrone, IVIG, tocilizumab).

A clinical attack was defined as the occurrence of new
symptoms or exacerbation of existing symptoms persisting for
at least 24 hours in the absence of fever and infection.

Statistical Analysis

For descriptive statistics, quantitative variables are expressed
as median (interquartile ranges [IQRs]) or mean (SD) and
categorical variables as percentages. For group comparisons
(MOG-Abs seropositive and CSF positive/MOG-Abs sero-
positive and CSF negative/MOG-Abs seronegative and CSF
positive) , parametric (t-test or Xz) or nonparametric (Kruskal-
Wallis, Wilcoxon, or exact Fisher) tests were performed, as
appropriate.

To evaluate time to first relapse and the risk of disability
MOG-Abs seropositive and CSF positive or MOG-Abs se-
ropositive and CSF negative patients were both considered
seropositive and compared with MOG-Abs seronegative and
CSF positive cases. First, to evaluate time to first relapse, a
Kaplan-Meier curve was performed. Second, to assess dis-
ability (defined as reaching EDSS >3.0 at the last follow-up),

Neurology | Volume 100, Number 11 | March 14, 2023

univariate binary logistic regression models were performed
according to baseline covariates (age at onset, sex, disability at
onset measured by EDSS, oligoclonal bands, and CSF pleo-
cytosis), and treatment received over the follow-up. Variables
resulting from the univariate analysis with a p-value < 0.20
were included in a multivariate binary regression model. The
model was adjusted by time of follow-up. The results were
expressed as odds ratio (OR) with 95% of CL A p-value of
0.05 was considered statistically significant. All statistical
analyses were performed with STATA-12 software (64-bit,
StataCorpi, College Station, TX).

Data Availability
Anonymized data not published within this article will be
made available by request from any qualified investigator.

Results

Demographic Data and Cohort Subdivision

The study included 255 patients: 139 (54.5%) were women,
median age at onset was 16 years old [IQR 6-39], and 132
(51.8%) were pediatric patients. Most patients were tested
within 3 months from onset or relapse (69.6% and 11.3%,
respectively), and 59.6% received acute treatment before
sampling. Among them, 145 cases (56.8%) were MOG-Abs
seropositive and CSF positive, 79 (31%) MOG-Abs sero-
positive and CSF negative, and 31 (12.2%) MOG-Abs sero-
negative and CSF positive. MOG-Abs seronegative and CSF
positive status was more common in adults than in children
(27/123, 22% vs 4/132, 3.1%, p < 0.001), and MOG-Abs

Neurology.org/N
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Table 2 Comparison of Demographic and Clinical Data Between MOG-Abs Seropositive and CSF Negative, and MOG-Abs
Seropositive and CSF Positive Patients

Whole group MOG-Abs seropositive and MOG-Abs seropositive and
n =224 CSF negative n =79 CSF positive n = 145 p Value
Pediatric patients, n (%) 128 (57.1) 39 (49.4) 89 (61.4)
Acute treatment before sampling, n (%) 140 (63.4) 56 (70.9) 84 (59.1) 0.019
Time from onset to sampling (d), 0.5 (0.0-277.7) 0.4 (0.0-146.5) 0.5 (0.0-277.7) 0.521
median (range)
Age at onset (y), median (range)
Whole cohort 13 (0-74) 18 (1-67) 12 (0-74) 0.174
Adult patients 43 (18-74) 41 (18-67) 43.5(18-74) 0.741
Pediatric patients 6.1 (0-17.9) 6.7 (1.0-16) 6(0-17.9) 0.944
Male:Female ratio
Whole cohort 1:1.1 1:1.1 1:1.1 0.993
Adult patients 1:1.3 1:1 1:1.5 0.297
Pediatric patients 1:1 1:0.9 1:1.3 0.399
Time from onset to symptoms nadir (d),
median (range)
Whole cohort 7 (0-120) 5 (0-90) 7 (0-120) 0.061
Adult patients 7 (0-90) 7 (0-90) 7 (1-60) 0.257
Pediatric patients 5(0-120) 4 (1-15) 7 (0-120) 0.123
EDSS at attack nadir, median (range)
Whole cohort 4.0 (0.0-10.0) 3.0(0.0-10.0) 4.5(0.0-9.5) 0.007
(n=178) (n =64) (n=114)
Adult patients 3.5(0.0-10.0) 3.0 (0-10) 4.0 (0-9.5) 0.002
(n=79) (n=33) (n =46)
Pediatric patients 5.0 (0.0-9.5) 5.0 (0-9.5) 5.0 (1-9.5) 0.635
(n=99) (n=31) (n=68)
Visual symptoms at onset, n/tot (%)
Whole cohort 98/224 (43.7) 41/79 (51.9) 57/145 (39.3) 0.070
Adult patients 52/96 (54.2) 27/40 (67.5) 25/56 (44.6) 0.027
Pediatric patients 46/128 (35.9) 14/39 (35.9) 32/89 (36.0) 0.995
Visual acuity <0.2 (20/100) at attack nadir (in
patients with optic neuritis at onset), n/tot (%)
Whole cohort 39/72 (54.2) 16/31 (51.6) 23/41 (56.1) 0.705
Adult patients 21/45 (46.7) 10/23 (43.5) 11/22 (50.0) 0.661
Pediatric patients 18/27 (66.7) 6/8 (75.0) 12/19 (63.2) 0.551
Motor symptoms, n/tot (%)
Whole cohort 84/222 (37.8) 19/79 (24.1) 65/143 (45.5) 0.002
Adult patients 31/95 (32.6) 8/40 (20.0) 23/55 (41.8) 0.025
Pediatric patients 53/127 (41.7) 42/88 (47.7) 11/39 (28.2) 0.040
Sensory symptoms, n/tot (%)
Whole cohort 63/222 (28.4) 15/79 (19.0) 48/143 (33.6) 0.021
Adult patients 42/95 (44.2) 13/40 (32.5) 29/55 (52.7) 0.050
Continued
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Table 2 Comparison of Demographic and Clinical Data Between MOG-Abs Seropositive and CSF Negative, and MOG-Abs

Seropositive and CSF Positive Patients (continued)

Whole group MOG-Abs seropositive and MOG-Abs seropositive and
n =224 CSF negative n =79 CSF positive n = 145 p Value

Pediatric patients 21/127 (16.5) 2/39 (5.1) 19/88 (21.6) 0.021
Sphincter dysfunction, n/tot (%)

Whole cohort 45/224 (20.1) 6/79 (7.8) 39/145 (26.9) 0.001

Adult patients 34/96 (35.4) 5/40 (12.5) 29/56 (51.8) <0.001

Pediatric patients 11/128 (8.6) 1/39 (2.6) 10/89 (11.2) 0.107
Encephalopathy, n/tot (%)

Whole cohort 83/222 (37.4) 23/79 (29.1) 60/143 (42) 0.058

Adult patients 10/95 (10.5) 0/40 (0) 10/55 (18.2) 0.004

Pediatric patients 73/127 (57.5) 23/39 (59.0) 50/88 (56.8) 0.821
Brainstem dysfunction, n/tot (%)

Whole cohort 45/222 (20.3) 18/79 (22.8) 27/143 (18.9) 0.489

Adult patients 15/95 (15.8) 9/55 (16.4) 6/40 (15.0) 0.857

Pediatric patients 30/127 (23.6) 12/39 (30.8) 18/88 (20.5) 0.207
Pleocytosis n/tot (%)

Whole cohort 137/203 (67.5) 38/74 (51.4) 99/129 (76.7) <0.001

Adult patients 52/91 (57.1) 14/38 (36.8) 38/53(71.7) 0.001

Pediatric patients 85/112 (75.9) 24/36 (66.7) 61/76 (80.3) 0.116
Protein concentration, median (range)

Whole cohort 0.36 (0.1-2.8) 0.3(0.1-1.8) 0.4 (0.1-2.8) 0.001

Adult patients 0.4 (0.1-2.8) 0.4 (0.2-1.8) 0.5(0.1-2.8) 0.026

Pediatric patients 0.3(0.1-1.6) 0.3(0.1-1.0) 0.3(0.1-1.6) <0.001
Increased IgG index n/tot (%)

Whole cohort 16/100 (16.0) 8/38 (21.1) 8/62 (12.9) 0.281

Adult patients 9/65 (13.9) 5/28 (17.9) 4/37 (10.8) 0.415

Pediatric patients 7/35 (20.0) 3/10 (30.0) 4/21 (16.0) 0.350
Oligoclonal bands n/tot (%)

Whole cohort 25/161 (15.5) 6/58 (10.3) 19/103 (18.5) 0.173

Adult patients 17/85 (20.0) 6/37 (16.2) 11/48 (22.9) 0.444

Pediatric patients 8/76 (10.5) 0/21 (0.0) 8/55 (14.6) 0.065

Abbreviations: % = percentage; EDSS = Expanded Disability Status Scale; MOG-Abs = MOG antibodies; N = number.
Results with statistically significant difference are marked in bold. Visual acuity was measured through the Snellen Chart and reported in decimals; the 20/20
scale is also displayed. Acute treatment includes intravenous corticosteroids, plasma exchange, and intravenous immunoglobulins.

seronegative and CSF positive cases were older at onset
(median age 32, IQR [19.0-50.0 vs 13 [IQR 5.3-36]) in
comparison to seropositive patients (p < 0.001). None in
the consecutive control cohort of 90 adult patients with MS
referred to the Verona Neurology Unit tested positive for
MOG-Abs in serum or CSF.

Neurology | Volume 100, Number 11 | March 14, 2023

Description of MOG-Abs Seronegative and CSF
Positive Cases

MOG-Abs were detected in CSF only in 31 patients, with no
discordant results on confirmatory analysis. Of these, 20

(64.5%) were women, median age at onset was 32 years old
[IQR 19-47], and 4 (12.9%) were children. Detailed clinical
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Table 3 Outcome Comparison Between MOG-Abs Seropositive and CSF Negative, and MOG-Abs Seropositive and CSF

Positive Patients

Whole group MOG-abs seropositive and MOG-abs seropositive and
n =224 CSF negative n =79 CSF positive n = 145 p Value
Follow-up (mo) median, (range)
Whole cohort 25.3(0.4-395.4) 20.8 (0.4-155.2) 27.4(1.2-395.4) 0.056
Adult patients 20.9(1.2-348.1) 14 (1.6-142.0) 27.9(1.2-348.1) 0.015
Pediatric patients 29.1(0.4-395.4) 31.9(0.4-155.2) 27.0(2.0-395.4) 0.862
Annualized relapse rate, mean, SD
Whole cohort 0.3(1.1) 0.4 (1.6) 0.3(0.6) 0.665
Adult patients 0.3(0.6) 0.3(0.6) 0.3(0.6) 0.488
Pediatric patients 0.4 (1.3) 0.5(2.2) 0.3(0.6) 0.981
EDSS at the last follow-up, median, (range)
Whole cohort 0(0-10) 1.0 (0-10) 0(0-9.5) 0.562
(n=220) (n=75) (n = 145)
Adult patients 1.5(0-10) 1.0(0-10) 2.0 (0-9.5) 0.378
(n =96) (n = 40) (n = 56)
Pediatric patients 0(0-9) 0(0-9) 0(0-7) 0.744
(n=124) (n =35) (n=89)
EDSS >3.0 at the last follow up, n/tot (%)
Whole cohort 39/220 (17.7) 14/75 (18.7) 25/145 (17.2) 0.793
Adult patients 26/96 (27.1) 10/40 (25.0) 16/56 (28.6) 0.698
Pediatric patients 13/124 (10.5) 4/35(11.4) 9/89 (10.1) 0.829
Visual acuity at the last follow-up (in patients
with visual loss at onset), median, range
Whole cohort 1.0(0.0-1.0) 0.8 (0.0-1.0) 1.0(0.0-1.0) 0.049
20/20 (0-20/20) 20/25 (0-20/20) 20/20 (0-20/20)
(n=72) (n=30) (n=42)
Adult patients 0.8 (0.0-1.0) 0.8 (0.0-1.0) 1(0.0-1.0) 0.500
20/25 (0-20/20) 20/25 (0-20/20) 20/20 (0-20/20)
(n =40) (n=21) (n=19)
Pediatric patients 1.0 (0.1-1) 1.0 (0.1-1) 1.0 (0.3-1) 0.267
20/20 (20/200-20/20) 20/20 (20/200-20/20) 20/20 (20/63-20/20)
(n=32) (n=9) (n=23)
Pyramidal FS > 3 at the last follow-up,
n/tot (%)
Whole cohort 17/207 (8.2) 5/69 (7.3) 12/138 (8.7) 0.720
Adult patients 13/88 (14.8) 4/36 (11.1) 9/52 (17.3) 0.421
Pediatric patients 4/119 (3.4) 1/33(3.0) 3/86 (3.5) 0.901
Sphincter dysfunction at the last follow-up,
n/tot (%)
Whole cohort 27/209 (12.9) 3/70 (4.3) 24/139 (17.3) 0.008
Adult patients 22/88 (25.0) 3/36(8.3) 19/52 (35.5) 0.003
Pediatric patients 5/121 (4.1) 0/34 (0) 5/87 (5.8) 0.153
Maintenance therapy at the last follow up,
n/tot (%)
Not treated 143/222 (64.4) 93/145 (64.1) 50/77 (64.9) 0.969
Continued
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Table 3 Outcome Comparison Between MOG-Abs Seropositive and CSF Negative, and MOG-Abs Seropositive and CSF

Positive Patients (continued)

Whole group MOG-abs seropositive and MOG-abs seropositive and

n =224 CSF negative n =79 CSF positive n = 145 p Value
Classic immunosuppressants 45/222 (20.3) 30/145 (20.7) 15/77 (19.5)
MS disease-modifying therapy 2/222 (0.9) 1/145(0.7) 1/77 (1.3)
Other immunosuppressants 32/222 (14.5) 21/145 (14.5) 11/77 (14.3)

Abbreviations: % = percentage; EDSS = Expanded Disability Status Scale; FS = Functional system; MOG-Abs = MOG antibodies; MS: multiple sclerosis; N =

number.

Results with statistically significant difference are marked in bold. Visual acuity was measured through the Snellen Chart and reported in decimals; the 20/20

scale is also displayed.

and paraclinical data are reported in Table 1, whereas repre-
sentative radiologic findings are described in Figure 1. At the
index event, patients presented more commonly with motor
(n = 14, 452%) and sensory symptoms (n = 13, 41.9%), sug-
gestive for myelitis or visual symptoms (n = 10, 32.5%), with a
median EDSS at nadir of 3.5 [IQR 3.0-5.0]. None of adult
patients displayed MRI findings suggestive of MS. On CSF
analysis, 19 (61.3%) patients displayed pleocytosis (>S5 white
blood cells) and 14 (51.9%) had CSF restricted oligoclonal
bands. After a median follow-up of 9 months [IQR 2-18], 10
(32.3%) patients experienced relapses. Median EDSS at the last
evaluation was 2.0 [IQR 1.0-4.0], but 13 (41.9%) patients had
an EDSS >3.0, and 8/29 (27.6%) patients had residual bladder/
bowel dysfunction.

The final diagnoses were compatible with MOGAD in 27/31
cases (87.1%). Phenotypes at the last follow-up were sero-
negative NMOSD (n = 8, 25.8%), encephalitis (n = 9, 23.0%,
in 3 cases in association with myelitis), isolated optic neuritis
(n=4,12.9%), isolated myelitis (n = 4, 12.9%), and combined
optic neuritis and myelitis (n = 2, 6.5%). %). In addition, 1
adult had Susac syndrome (3.2%), 1 pediatric patient acute
polyradiculoneuritis (n = 1, 3.2%), and 2 pediatric patients
with MS (n = 2, 6.5%).

Comparison of Seropositive Patients According
to MOG-Abs CSF Status (MOG-Abs Seropositive
and CSF Negative/MOG-Abs Seropositive and
CSF Positive)

Among 224 MOG-Abs seropositive patients, 119 (53.1%)
were women, median age at onset was 13 years old [IQR
5.3-36], and 128 cases (57.1%) were children. Of these, 145
(64.7%) patients were MOG-Abs seropositive and CSF pos-
itive and 79 (35.3%) MOG-Abs seropositive and CSF nega-
tive, being MOG-Abs seropositive and CSF positive the most
common profile in both adults and children. Acute treatment
before sampling was more frequently administered in MOG-
Abs seropositive and CSF negative (70.9% vs 59.1%). When
comparing demographic data between MOG-Abs seroposi-
tive and CSF negative and MOG-Abs seropositive and CSF
positive patients, no significant differences emerged (for more
details see Table 2).
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Compared with MOG-Abs seropositive and CSF negative
cases, MOG-Abs seropositive and CSF positive patients had
a more severe disability at nadir during their index event
(p = 0.007) and more commonly motor and sensory symp-
toms (p = 0.002 and 0.021, respectively) consistent with
myelitis. The whole MOG-Abs seropositive and CSF positive
group, and in particular adults, presented more commonly
with sphincter dysfunction (p = 0.001 and p < 0.001, re-
spectively). MOG-Abs seropositive and CSF positive adults
also had less commonly visual symptoms (p = 0.027) and
more commonly encephalopathy (p = 0.004). On CSF anal-
ysis, MOG-Abs seropositive and CSF positive subjects
showed an increased protein concentration (p = 0.001) and
CSF cell count (p < 0.001), whereas no difference emerged
for IgG index and oligoclonal bands (Table 2).

At the last follow-up (median 25.3 months [IQR 9.9-59.3]),
MOG-Abs seropositive and CSF negative cases showed worse
visual acuity (p = 0.049), and MOG-Abs seropositive and CSF
positive patients had more commonly persistent sphincter
dysfunction (p = 0.008). However, no difference emerged in
annualized relapse rate (ARR) and final EDSS >3.0, Table 3.
On univariate and multivariate analyses, the presence of CSF
MOG-Abs was not related with increased relapse risk or
EDSS>3.0 at the last follow-up (eTable 2, links.Iww.com/
WNL/C527).

Disease Course Comparison Between
Seropositive (MOG-Abs Seropositive and CSF
Negative, and MOG-Abs Seropositive and CSF
Positive) and Seronegative (MOG-Abs
Seronegative and CSF Positive) Patients

Mean (SD) ARR was 0.3 (1.2), with no differences between
the 2 groups. Median EDSS at the last follow-up was higher in
MOG-Abs seronegative and CSF positive patients (2.0, [IQR
1.0-4.0]) compared with seropositive patients (0, [IQR
0-2.0], p < 0.001). EDSS >3.0 and sphincter dysfunction were
more frequently observed in MOG-Abs seronegative and CSF
positive patients than in seropositive patients (21.4% vs 8.2%,
p =0.027 and 27.6% vs 12.9%, p = 0.037, respectively). Visual
acuity at the last follow-up did not differ between the 2 groups
(for more details see eTable 3, links.lww.com/WNL/C527).
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Figure 2 Kaplan-Meier Analysis Estimation of Time to Reach a First Relapse Between MOG Abs Seropositive (MOG-Abs
Seropositive and CSF Negative, and MOG-Abs Seropositive and CSF Positive) and CSF MOGAbs Restricted (MOG-

Abs Seronegative and CSF Positive) Patients

Kaplan-Meier survival estimates

1.00 MOG seropositive
——— CSF-MOG restricted (seronegative)
]
3
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) Analysis time (months) Median Time to Reach the First Relapse was 6.6
Number at risk: months (Range 1.0-177.0) for seropositive patients
224 125 90 64 47 39 and 7.3 months (Range 2.0-34.1) for seronegative
patients (p = 0.970). Abbreviation: MOG-Abs = my-
31 9 4 4 2 1 elin oligodendrocyte glycoprotein antibodies.

When assessing time to relapse with the Kaplan-Meier anal-
ysis, no difference was observed (Figure 2). The univariate
analysis showed that MOG-Abs seronegative and CSF posi-
tive status (OR 3.35; 95% CI 1.52-7.41), older age at disease
onset (OR 1.03; 95% CI 1.02-1.05), higher EDSS at nadir
(OR 1.31; 95% CI 1.14-1.49), longer follow-up (OR 1.01;
95% CI 1.00-1.01), administration of classical immunosup-
pressants (OR 10.06; 95% CI 4.53-22.29), and other im-
munosuppressants (OR 6.28; 95% CI 2.61-15.10) were
related to a higher risk of reaching an EDSS >3.0 at the last
follow-up. The multivariate analysis showed that being MOG-
Abs seronegative and CSF positive was an independent risk
factor for reaching an EDSS >3.0 (OR 4.80; 95% CI
1.26-18.26). Age at onset (OR 1.03; 95% CI 1.00-1.06),
EDSS at nadir (OR 1.66; 95% CI 1.30-2.11), and therapy
with classical immunosuppressants (OR 6.23; 95%CI
1.87-20.79) were also independent risk factors for reaching
an EDSS >3.0 (Table 4).

Discussion

In this retrospective, multicenter study analyzing paired
serum and CSF MOG-Abs in a large cohort of adult and
pediatric patients, we observed that (1) CSF-restricted MOG-
Abs can be found (12.2% in our cohort), particularly in adults
with a phenotype suggestive of MOGAD; (2) paired serum
and CSF MOG-Abs positivity occurs in more than half
(56.8%) of MOGAD patients; (3) among MOG-Abs sero-
positive cases, patients with a paired CSF positivity have a

Neurology.org/N

more severe clinical presentation, more frequently symptoms
compatible with myelitis, and displayed more commonly CSF
pleocytosis and increased protein content; (4) compared with
seropositive patients, MOG-Abs seronegative and CSF posi-
tive cases have higher risk of reaching EDSS 3.0, in particular
in relation to symptoms compatible with myelitis, but display
the same relapse rate.

The pathophysiology of MOGAD is not fully elucidated. The
hypothesis is that an unknown trigger might elicit an immune
response in the periphery with the subsequent production of
MOG-Abs. The presence of intrathecal CSF MOG-Abs is
thought to derive from the passive transfer of antibodies through
a damaged blood-brain barrier.”>** However, the description of
cases with CSF-restricted MOG-Abs,***”*® which is herein
confirmed, questions this model.

A possible explanation could be that activated peripheral B
and T cells cross the blood-brain barrier early in the disease in
a subgroup of patients, thus generating an immune response
and antibody production within the CNS compartment. The
pathogenic role of intrathecal plasma cells is well established
in other CNS inflammatory diseases, such as MS*' or AQP4-
Abs-seropositive NMOSD, where a fraction of CSF anti-
bodies is produced by intrathecal B cells.*>** Similarly, in
other antibody-mediated CNS disorders such as anti-
NMDAR encephalitis, intrathecal antibody production has a
relevant pathogenic role and is associated with disease
activity.>**® In addition, MOG-Abs intrathecal synthesis has
recently been reported in different groups of MOG-Abs
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Table 4 Univariate and Multivariate Logistic Regression Analysis for Reaching EDSS>3 at the Last Follow-up in MOG-Abs

Seropositive (MOG-Abs Seropositive and CSF Negative, and MOG-Abs Seropositive and CSF Positive) vs

Seronegative (MOG-Abs Seronegative and CSF Positive) Cases

Univariate analysis

Multivariate analysis

OR 95% ClI p Value OR 95% ClI p Value

Age at onset 1.03 1.02to 1.05 <0.001 1.03 1.00-1.06 0.021
Female sex 0.71 0.39t0 1.33 0.291

EDSS at nadir 1.31 1.141.49 <0.001 1.66 1.30-2.11 <0.001
Pleocytosis 0.39 -0.31-1.10 0.176

Oligoclonal bands 2.00 0.92 to 4.36 0.082 1.05 0.27-3.98 0.948
Maintenance treatment, classic immunosuppressant 10.06 4.54 to 22.29 <0.001 6.23 1.87-20.79 0.003
Maintenance therapy, MS DM 5.83 0.49 to 69.09 0.162 14.33 0.73-282.79 0.080
Maintenance therapy, other® 6.28 2.61t0 15.10 <0.001 3.00 0.79-11.52 0.108
MOG-Abs seronegative and CSF positive® 3.35 1.52t0 7.41 0.003 4.80 1.26-18.26 0.022
Follow-up, mo 1.01 1.00 to 1.01 0.003 1.01 1.00-1.01 0.194

Abbreviations: EDSS = Expanded Disability Status Scale; MS DMD = Multiple sclerosis-modifying drugs; MOG-Abs = MOG antibodies; OR = odds ratio.
2 Other immunosuppressants: cyclophosphamide, methotrexate, mitoxantrone, IVIG, tocilizumab.
b Seropositive cases (MOG-Abs seropositive and CSF negative, and MOG-Abs seropositive and CSF positive) as reference.

Results with statistically significant difference are marked in bold.

seropositive and seronegative patients, supported by an in-
creased CSF/serum MOG-IgG index in the former group and
by the absence of serum MOG-Abs in the latter.***” A
cordingly, CSF oligoclonal bands were detected in more than
half of patients with CSF-restricted MOG-Abs, in agreement
with previously data.”” Although oligoclonal bands generally
support MS diagnosis, several studies have shown that they
can be detected in a broad spectrum of neurologic diseases,
including autoimmune encephalitis and other inflammatory
diseases.” Further studies are needed to assess the signifi-
cance and possible persistence over time of oligoclonal bands
in patients with CSF-restricted MOG-Abs. Finally, the few
available pathologic studies of patients with CSF isolated
MOG-Abs showed a neuropathologic phenotype compatible
with MOGAD, with a minority of B cells and plasma-cells
detected in the perivascular space.””® Taken together, these
findings favor the occurrence of MOG-Abs intrathecal syn-
thesis in a subgroup of patients.

C-

Among patients with CSF-restricted MOG-Abs, the most
common manifestations in our cohort were encephalopathy
and myelitis, in accordance with a recent study.”” Of note, the
clinical phenotype of MOG-Abs seronegative and CSF positive
adults was compatible with MOGAD, but 2 pediatric patients
had a diagnosis of MS. This finding was not unexpected be-
cause low titer MOG-Abs have already been reported in both
serum and CSF of patients with MS, particularly in children,”
and serum MOG-Abs have been observed in 1% of patients
with other neurologic diseases.*>*" In a recent study analyzing
CSF and serum MOG-Abs in 105 patients with MS, 2 were
positive in the CSF.** Consequently, MOG-Abs CSF positivity
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has to be interpreted according to the clinical context and only
cases with a compatible phenotype should be analyzed, as al-
ready recommended for serum MOG-Abs testing.2

Our results also confirm that CSF MOG-Abs are common in
MOG-ADs seropositive patients, in agreement with previous data
showing paired serum and CSF MOG-Abs positivity in
50%-70% of MOGAD.”*****” These findings are consistent
with previous observations on AQP4-Abs-seropositive NMOSD,
where CSF AQP4-Abs can be detected in 57%-68% of cases.”>*°

According to our data, testing MOG-Abs in CSF might be of
relevance also in seropositive patients and could help to
identify severe cases presenting with myelitis or encephalitis.
The relationship between the certain clinical phenotypes and
the presence of MOG-Abs within the CSF observed in this
study reinforces previous data.”’” In other antibody-mediated
disorders, as those associated with CASPR2-Abs, a similar
phenomenon has been described, with the presence of CSF-
Abs associated with limbic encephalitis and the presence of
serum-Abs with neuromyotonia or Morvan syndrome.** This
observation might be explained by the susceptibility of the
optic nerve to serum MOG-Abs because of the presence of a
leakage in the blood-brain barrier at the level of the optic
disc.** Another proposed explanation is linked to the one-way
flow from the intracranial subarachnoid space to the orbital
subarachnoid space, which makes the identification of CSF
antibodies in patients with isolated optic neuritis difficult.*’

Of note, CSF-restricted MOG-Abs positive patients present
an increased risk of reaching an EDSS 3.0 at the follow-up
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when compared with seropositive patients. This could reflect
the association between CSF only MOG-Abs and the pres-
ence of transverse myelitis with the related tissue damage
mediated by intrathecal antibody synthesis. Our results did
not display any difference in relapse risk between MOG-Abs
seronegative and CSF positive and seropositive patients, in-
dicating that CSF MOG-Abs positivity does not predict a
relapsing disease course.

Our study has limitations, particularly related to the retro-
spective design. This study included tertiary centers with a
potential referral bias. Although live CBA methodology is
optimal for MOG-Abs detection, this is often only available at
reference centers.”*® This could explain the higher frequency
of MOG-Abs seronegative and CSF positive patients ob-
served in our study in comparison with previous reports.24’27
Considering the wider availability of fixed CBAs, future
studies comparing live and fixed assays should be performed
to apply our results on a larger scale.

Moreover, because the referring laboratories used different
techniques to quantify MOG-Abs (e.g., live cell-based flow
cytometry assay vs live cell-based immunofluorescence as-
say), we were not able to perform a proper comparison
between MOG-Abs titers. Of note, the inclusion of patients
with paired CSF sample available potentially selected cases
with a more severe phenotype, which might influence the
generalization of our results. In addition, the recent in-
troduction of MOG-Abs CSF testing might have affected the
characteristics of this cohort and, in particular, the short
follow-up, which might have influenced our results. In ad-
dition, data regarding MOG-Abs CSF presence in patients
with other immunologic and noninflammatory disorders are
scarce with few available data related to their presence and
titers and should be expanded in future larger cohorts.”’
Another limitation is that we did not include all consecutive
patients with demyelinating diseases referred to the par-
ticipating centers. For this reason, this study could not
evaluate the sensitivity and specificity of MOG-Abs CSF
testing.

Finally, this study was not designed to evaluate treatment
efficacy and treatment was included in the analysis to mitigate
bias. Even if in our analysis reaching an EDSS of 3 was as-
sociated with the administration of any/some treatments, this
result should be interpreted cautiously because more disabled
patients probably received more frequently immunosup-
pressive treatments.

In conclusion, despite the fact that few MOG-Abs seronega-
tive and CSF positive cases did not display a clear MOGAD
phenotype, our results support the relevance of MOG-Abs
CSF analysis in the clinical practice, which can support, in
addition to clinical and radiologic findings, the identification
of patients with a more severe clinical phenotype. Future
prospective multicenter studies will help to further clarify and
expand our findings.
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