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Review

Introduction

Kidney disease (KD) is a global public health problem that 
affects more than 750 million of the global population and 
causes 5 to 10 million deaths each year1,2, with the main com-
mon diseases being acute kidney injury (AKI) and chronic 
kidney disease (CKD). Previous studies have shown that the 
development and progression of KD were associated with 
obesity3, diabetes4, hepatitis B virus infection5, and so on. 
Meanwhile, KD progression is a risk factor for cardiovascular 
diseases6. In addition, clinical studies have found that the high 
incidence and poor prognosis of KD were relevant to clinical 
care and huge economic costs7, with approximately $10 billion 
spent annually on treating AKI8 and more than $80 billion 
spent on caring for CKD without kidney replacement therapy9 
in the United States. Currently, the common therapeutic meth-
ods for KD include drugs, hemodialysis and peritoneal dialy-
sis, and renal transplantation10. However, the expected efficacy 
was still not achieved due to the irreversibility of kidney 
injury, the toxic effects of drug therapy, the inconvenience of 
dialysis, and the shortage and high cost of kidney transplant 
donors11. Therefore, there is an urgent need to explore new 
therapeutic strategies to slow down the progression of KD.
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Abstract
Kidney disease (KD) is a life-threatening disease characterized by high morbidity and mortality in clinical settings, which can 
be caused by many reasons, and the incidence increases with age. However, supportive therapy and kidney transplantation 
still have limitations in alleviating KD progression. Recently, mesenchymal stem cells (MSCs) have shown great potential 
in repairing injury through their multidirectional differentiation and self-renewal ability. Of note, MSCs serve as a safe and 
effective therapeutic strategy for treating KD in preclinical and clinical trials. Functionally, MSCs ameliorate KD progression 
by regulating the immune response, renal tubular cell apoptosis, tubular epithelial–mesenchymal transition, oxidative stress, 
angiogenesis, and so on. In addition, MSCs exhibit remarkable efficacy in both acute kidney injury (AKI) and chronic kidney 
disease (CKD) through paracrine mechanisms. In this review, we outline the biological characteristics of MSCs, discuss 
the efficacy and mechanisms of MSCs-based therapy for KD, summarize the completed and ongoing clinical trials, as well 
as analyze limitations and new strategies, aiming to provide new ideas and approaches for the preclinical experiments and 
clinical trials of MSCs transplantation for KD.
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In recent years, stem cells have been used as a new regen-
erative therapy for a variety of diseases, including KD12. 
Mesenchymal stem cells (MSCs), as one of the important 
members of the stem cell family, can be obtained from a vari-
ety of tissues such as bone marrow, adipose, umbilical cord, 
and peripheral blood and have powerful biological properties 
of immunomodulation, anti-inflammation, and tissue repair13. 
Preclinical and clinical trials have shown that MSCs possess 
reparative and protective effects on kidney injury14,15. 
Functionally, MSCs exert anti-apoptotic, antioxidant, anti-
inflammatory, anti-fibrotic, and immunomodulatory activities 
through secreting trophic factors and delivering extracellular 
vesicles (EVs)16,17. Overall, MSCs are considered to be the 
most promising stem cell population for the treatment of KD.

In this review, we will focus on the current research 
advances and challenges in the use of MSCs for the treat-
ment of KD. Preliminarily, this review provides an overview 
of the origin and biological properties of MSCs. Subsequently, 
we summarize the underlying mechanisms and clinical trans-
lational applications of MSCs in the treatment of KD. Finally, 
we analyzed the obstacles encountered in the use of MSCs 
for the treatment of KD and proposed corresponding strate-
gies to cope with the limitations of MSCs in KD. Of note, 
this review aims to provide new ideas and directions for the 
treatment of KD with MSCs in preclinical experiments and 
clinical trials.

Biological Characteristics of MSCs

Mesenchymal stem cells are a class of adult stem cells with 
self-renewal and differentiation potential18. They have 
become a new means of treating KD because of their multi-
directional differentiation potential, high proliferative 
capacity, immune regulation, and self-replication19. They 
can be obtained from a variety of tissues, including bone 
marrow, adipose tissue, umbilical cord, placenta, amniotic 
fluid, and dental pulp20 (Fig. 1). Although MSCs are derived 
from different sources [eg, bone marrow mesenchymal stem 
cells (BMMSCs), adipose-derived mesenchymal stem cells 
(ADMSCs), and umbilical cord mesenchymal stem cells 
(UCMSCs)], they have similar differentiation and biologi-
cal functions21. Numerous studies have confirmed that 
MSCs can differentiate a variety of cells (eg, osteoblasts, 
myoblasts, cardiomyocytes, and renal parenchymal cells) 
with different functional characteristics under different 
induction conditions22. Previous studies have shown that 
MSCs regulated immune activity and enhanced the expan-
sion and differentiation potential of host cells through direct 
cell–cell contact or paracrine mechanisms, thus promoting 
the recovery of injured tissues23. Importantly, preclinical 
experiments and clinical trials have confirmed that treat-
ment with MSCs significantly improved the progression of 
KD24,25. Functionally, the main regulatory roles of MSCs are 
as follows: (1) The recruited MSCs differentiate into 

functional cells to replace damaged cells, and (2) as a 
response to inflammatory cytokines, MSCs produce large 
amounts of cytokines, chemokines, growth factors, and exo-
somes, which stimulate angiogenesis, prevent cell apoptosis 
and epithelial–mesenchymal transformation (EMT) process, 
block oxidative stress, promote extracellular matrix (ECM) 
remodeling, and induce differentiation of tissue stem cells26. 
In recent years, several studies have proved that MSCs-
secreted exosomes (MSCs-Exo) via paracrine mechanisms 
not only have the same effects as MSCs but also have the 
advantages of low transplantation risk, easy storage man-
agement, high controllability, low immunogenicity, high 
safety, high repairability, and so on27. The above studies 
suggest that MSCs exhibit great therapeutic effects on injury 
repair and immune-characterized diseases, and serve as 
shining stars of stem cells in the field of cell therapy and 
regenerative medicine.

Efficacy and Mechanisms of MSCs 
Therapy in KD

Currently, MSCs are considered as new therapeutic tools for 
the treatment of KD because of their multidirectional differ-
entiation, migration and homing, and paracrine effects17,28. 
Previous studies have shown that MSCs are effective and 
safe when used to treat organ injury29,30. Importantly, MSCs 
therapy promoted the recovery of renal function after renal 
pathogenesis through various mechanisms31 (Fig. 2) such as 
anti-inflammation, anti-apoptosis, angiogenesis, anti-oxida-
tive stress, anti-fibrosis, regulating autophagy, and senes-
cence (Table 1).

Figure 1. Sources and application of MSCs. MSCs: mesenchymal 
stem cells.
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Anti-Inflammation

Previous studies have proved that activation of inflammation 
was an important part of the pathogenic process of KD, and 
macrophage infiltration and aggregation contribute to the 
acceleration of KD progression83. For example, a study by 
Heerspink et al.84 showed that high plasma levels of tumor 
necrosis factor (TNF) receptor 1 and IL-6 were associated 
with the progression of diabetic KD. Martos-Rus et al.85 
found that the serum levels of inflammatory cytokines/che-
mokines were upregulated in patients with end-stage KD and 
activated the nuclear factor–kappa B (NF-κB) pathway, as 
well as increased peripheral monocytes and inflammatory 
polarization of macrophages were detected in the kidney tis-
sue of mice with uremia model. In addition, macrophages 
play an important role in immune surveillance and maintain-
ing the stability of the renal internal environment86, and mac-
rophages derived from bone marrow can directly transform 

into myofibroblasts in the damaged kidney, accelerating the 
progression of pathogenic fibrosis87,88. Of note, MSCs can 
ameliorate kidney injury by inhibiting inflammation and pro-
moting kidney repair89. For instance, treatment with 
UCMSCs significantly prevented the progression of diabetic 
nephropathy (DN) by reducing pro-inflammatory cytokines 
and secreting abundant epidermal growth factor and vascular 
endothelial growth factor (VEGF)52.

Recently, several studies have confirmed that MSCs-
derived EVs play a major role in treating KD15. For example, 
MSCs-Exo treatment slowed the progression of ischemic–
reperfusion injury (IRI) by inhibiting expressions of inflam-
matory factors [eg, IL-6, TNF-α, NF-κB, and interferon 
(IFN)-γ]51. Gao et al.41 showed that ADMSCs-Exo inhibited 
inflammation of sepsis-related AKI by blocking the NF-κB 
pathway. Another study found that BMMSCs-Exo was a 
promising therapeutic approach for preserving CKD pro-
gression via reducing inflammation and degeneration69. 

Figure 2. Mechanisms of MSCs in the treatment of kidney diseases. ACN: aristolochic acid nephropathy; AKI: acute kidney injury; 
BTBRob/ob: Black and Tan Brachyury (BTBR) leptin deficiency; CKD: chronic kidney disease; CLP: cecal ligation and puncture; Col I: 
type I collagen; ECM: extracellular matrix; EMT: epithelial–mesenchymal transformation; FGF: fibroblast growth factor; FN: fibronectin; 
GLUT1: glucose transporter type 1; I/R: ischemia–reperfusion; HGF: hepatocyte growth factor; IL-1β: interleukin-1β; MAPK: mitogen-
activated protein kinase; MDA: malondialdehyde; MI: macrophage infiltration; mtDNA: mitochondrial DNA; NF-κB: nuclear factor–kappa B;  
Nrf2/ARE: nuclear factor erythronid 2-related factor 2/antioxidant response elements; OXPHOS: oxidative phosphorylation; SDT: 
Spontaneously Diabetic Torii; α-SMA: alpha-smooth muscle actin; SOD: superoxide dismutase; SOX9: sex-determining region Y-box 9; 
STZ: streptozotocin; TNF-α: tumor necrosis factor–alpha; UUO: unilateral ureteral obstruction; VEGF: vascular endothelial growth factor.
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Table 1. Mechanisms of MSCs and Extracellular Vesicles in the Treatment of KD According to Published Studies From 2017 to 2022. 

No. Type of source Model & doses Treatment effect Mechanism Ref.

AKI
1 BMMSCs  In vitro: NRK-52E cells 

subjected to H/R
 Dose: co-culture 

(BMMSCs:NRK-52E) 
ratio 1:1

 In vivo: I/R-induced AKI 
mice model

 Dose: 5 × 105 BMMSCs

 Renal macrophage infiltration 
and inflammation, and tubular 
apoptosis ↓;

 Tubular proliferation ↑;
 Superoxide formation, DNA 

damage, and lipid peroxidation ↓;
 Increased antioxidant expression 

↑;
 Expression of IL-1β, Bax, and 

caspase 3 ↓;
 Expression of autophagy-related 

LC3B, Atg5 and Beclin 1 ↑;

Anti-oxidative 
stress

Anti-apoptosis

Tseng 
et al.32

2 BMMSCs  In vitro: HK-2 cells 
treated with LPS

 Dose: 1 × 104 BMMSCs
 In vivo: sepsis-induced 

AKI rat model
 Dose: 1 × 106 BMMSC

 Tubular injury score ↓;
 Levels of serum creatinine and 

nitrogen ↓;
 Levels of TNF-α, IL-6, and IL-1β ↓;
 Mitophagy in RTECs of kidney 

tissues and HK-2 cells ↑;
 Cell apoptosis and pyroptosis ↓;
 Expression of NLRP3, ASC, 

Caspase-1 ↓;
 SITR1/Parkin pathway ↑;

Anti-apoptosis Guo et al.33

3 BMMSCs  In vivo: I/R-induced AKI 
rat model

 Dose: 5 × 105 BMMSCs

 Expression of α-SMA, collagen I/
III ↓;

 Interstitial fibrosis and infiltration 
of inflammatory cells ↓;

 Levels of VEGF, HGF, and PGE2 ↑;

Anti-fibrosis Ishiuchi 
et al.34

4 BMMSCs  In vivo: I/R-induced AKI
 Dose: 1 × 106 BMMSCs

 Levels of serum creatinine and 
nitrogen ↓;

 Levels of TNF-α, IL-1β, and IL-6 ↓;
 Cell apoptosis ↓;

Anti-inflammation
Anti-apoptosis

Wang 
et al.35

5 BMMSCs  In vivo: I/R-induced AKI
 Dose: 1 × 106 BMMSCs

 Macrophages infiltration and pro-
inflammatory cytokines (TNF-α 
and IL-1β) ↓;

 C5a and C5aR expression ↓;
 NF-κB pathway ↓;

Anti-inflammation Tang et al.36

6 BMMSCs  In vivo: adriamycin-
induced AKI

 Dose: 5 × 106 BMMSCs

 Tubular fibrosis, serum creatinine, 
and nitrogen ↓;

 Profibrotic PECs ↓;

Anti-fibrosis Aslam 
et al.37

7 ADMSCs  In vivo: gentamicin-
induced AKI

 Dose: 1 × 106 ADMSCs

 Levels of serum creatinine and 
nitrogen ↓;

 Expression of Grp78, Atf6, Ire1, 
Perk, Chop, Caspase12, and Xbp1 
↓;

 ER stress ↓;

Anti-ER stress He et al.38

8 ADMSCs  In vivo: I/R-induced AKI
 Dose: 2 × 106 ADMSCs

 Number of apoptotic cells ↓;
 Levels of total urinary protein and 

serum creatinine, pro-inflammatory 
cytokines (eg, IL-6, TNF-α, IL-1β, 
IFN-γ, IFN-γ, and TGF-β), and the 
inflammation-associated proteins 
(eg, HGF and SDF1) ↓;

 Expression of the anti-
inflammatory cytokine (IL-10) and 
Bcl-2 ↑;

Anti-inflammation
Anti-apoptosis

Zhang 
et al.39

 (continued)
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No. Type of source Model & doses Treatment effect Mechanism Ref.

9 ADMSCs  In vivo: cisplatin-induced 
AKI

 Dose: 2.5 × 107 
ADMSCs

 Necrosis or epithelial cells damage ↓;
 Levels of serum creatinine and 

nitrogen ↓;
 Expression of TNF-α and TGF-β1 ↓;

Anti-inflammation
Anti-apoptosis

Begum 
et al.40

10 ADMSCs-Exo  In vivo: sepsis-induced 
AKI

 Dose: 100 μg ADMSCs-
Exo

 Levels of BUN and Scr ↓;
 Levels of MCP-1, IL-6, TNF-α ↓;
 NF-κB pathway ↓;

Anti-inflammation Gao et al.41

11 ADMSCs-Exo  In vivo: sepsis-induced 
AKI

 Dose: 2 mg/kg body 
weight ADMSCs-Exo

 Levels of AST, ALT, BUN ↓;
 Levels of IL-6, IL-1β, TNF-α, MCP-

1 ↓;
 circ_0001295 expression ↑;

Anti-inflammation Cao et al.42

12 ADMSCs-Exo
BMMSCs-Exo

 In vivo: LPS-induced AKI
 Dose: 1 × 105 and 5 × 

105 BMMSCs-Exo

 Renal function ↑;
 Oxidative stress and inflammation 

↓;

Anti-oxidative 
stress

Anti-inflammation

Zhang 
et al.43

13 BMMSCs-Exo  In vitro: H/R-induced 
HK-2 cells

 Dose: unknown
 In vivo: IRI mice model
 Dose: 5 × 1010 

BMMSCs-Exo

 Cell apoptosis ↓;
 Expression of cleaved caspase-3 

and Bax ↓;
 miR-199a-3p expression ↑;
 AKT and ERK pathway ↑;

Anti-apoptosis Zhu et al.44

14 BMMSCs-Exo  In vivo: IRI mice model
 Dose: 100 μg/mouse 

BMMSCs-Exo

 Levels of BUN and Scr ↓;
 Renal tubular cell apoptosis ↓;
 Renal fibrosis ↓;
 M1 macrophages infiltration and 

levels of IL-1β, IL-6 and TNF-α ↓;
 M1 macrophage to M2 

macrophage ↑;

Anti-inflammation Xie et al.45

15 UCMSCs-Exo  In vivo: I/R-induced AKI
 Dose: 50 and 100 μg 

UCMSCs-Exo

 Renal tubules injury ↓;
 Cell cycle arrest and apoptosis of 

TECs ↓;
 miR-125b-5p expression ↑;

Anti-apoptosis Cao et al.46

16 UCMSCs-Exo  In vivo: I/R-induced AKI
 Dose: 4 × 108 UCMSCs-

Exo

 Apoptosis and necroptosis ↓;
 Pro-inflammatory cytokines/

chemokines and infiltration of 
macrophages ↓;

 NF-κB pathway ↓;

Anti-apoptosis
Anti-inflammation

Huang 
et al.47

17 UCMSCs-Exo  In vivo: I/R-induced AKI
 Dose: unknown

 Pro-inflammatory cytokines (IL-1β, 
IL-6, and TNF-α) and oxidative 
stress (malondialdehyde) ↓;

 Levels of BUN, Scr, urinary 
albumin and CR, 8-isoprostane ↓;

 IL-10 level ↑;

Anti-inflammation Zhang 
et al.48

18 UCMSCs-Exo  In vivo: sepsis-induced 
AKI

 Dose: 120 μg UCMSCs-
Exo

 Levels of BUN and Scr ↓;
 Level of cleaved caspase-3 protein ↓;
 Levels of IL-1β and TNF-α ↓;
 NF-κB pathway ↓;
MiR-146b ↑;

Anti-inflammation Zhang 
et al.49

19 UCMSCs-Exo  In vitro: cisplatin-induced 
NRK-52E cells

 Dose: 200 μg/mL 
UCMSCs-Exo

 In vivo: cisplatin-induced 
AKI

 Dose: 200 μg UCMSCs-
Exo

 Cell proliferation ↑;
 Levels of Scr and BUN ↓;
 The protein levels of caspase-3 and 

Bax ↓;
 Expression of LC3B, ATG5 and 

ATG7 ↑;
 Levels of TNF-α, IL1-β, and IL6 ↓;

Autophagy
Anti-apoptosis

Wang 
et al.50

 (continued)

Table 1. (continued)
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No. Type of source Model & doses Treatment effect Mechanism Ref.

20 MSCs-Exo  In vivo: I/R-induced AKI
 Dose: 1.5 × 105 MSCs-

Exo

 Levels of IL-6, TNF-α, IFN-γ ↓;
 Levels of caspase-9, cleaved 

caspase-3, and Bax ↓;

Anti-inflammation
Anti-apoptosis

Li et al.51

CKD
1 UCMSCs  In vitro: HK2 and NRK-

52E cells treated with 
high glucose

 Dose: 25, 50, and 100 μg/
mL UCMSCs

 In vivo: STZ-induced DN
 Dose: 2 × 106/500 μL 

UCMSCs

 Serum urea nitrogen and CR ↓;
 The 24-hour urinary protein and 

urinary albumin/CR ratio ↓;
 Kidney weight/kidney weight index 

↓;
 Levels of IL-6, IL-1β, TNF-α, and 

TGF-β ↓;
 Expression of EGF, FGF, HGF, and 

VEGF ↑;

Anti-inflammation
Anti-fibrosis

Xiang et al.52

2 UCMSCs  In vitro: HK2 cells treated 
with high glucose and 
rhTNF-α

 Dose: co-culture at a 5:1 
ratio (HK2: UCMSCs)

 In vivo: STZ-induced 
rhesus macaque model 
of DN

 Dose: 2 × 106 UCMSCs

 Blood glucose level and daily 
insulin requirement ↓;

 Expression of FN, SGLT2, IL-1β, 
TNF-α ↓;

 Interstitial fibrosis ↓;
 NF-κB pathway ↓;

Anti-inflammation
Anti-fibrosis

An et al.53

3 UCMSCs  In vitro: HK2 cells treated 
with LPS

 Dose: RAW264.7 plus 
MSCs at a ratio of 2:1 
(MSCs: RAW264.7 cells)

 In vivo: STZ-induced mice 
model of DN

 Dose: 5 × 105 UCMSCs

 Plasma CR and BUN ↓;
 Levels of desmin, α-SMA, FN1, 

Kim-1, and Lcn2 ↓;
 Expression of arginase-1 ↑;
 Expression of IL-1β, TNF-α, IL-6 

↓;

Anti-inflammation Lee et al.54

4 UCMSCs  In vivo: STZ-induced DN 
rat model

 Dose: 2 × 106 UCMSCs

 24-hour urinary total protein, 
urinary albumin to CR ratio, Scr, 
and blood urea nitrogen ↓;

 Renal cell apoptosis ↓;
 Apoptosis signal-regulating kinase 

1 and P38 MAPK ↑;

Anti-apoptosis Chen et al.55

5 ADMSCs  In vivo: SDT fatty rat
 Dose: 6.0 × 106 cells/mL 

ADMSCs

 Kidney engraftment ↑;
 Glomerular injury ↓;
 Urinary levels of TNF-α and IL-6 

↓;

Anti-inflammation
31622047

Takemura 
et al.56

6 BMMSCs  In vitro: LPS-induced 
peritoneal macrophages

 Dose: 3 × 104 BMMSCs
 In vivo: STZ-induced rat 

model of DN
 Dose: 5 × 106 BMMSCs

 Renal macrophage infiltration and 
inflammatory cytokine secretion ↓;

 Serum anti-inflammatory cytokines 
IL-10 and EGF ↑;

 Levels of IL-6, MCP-1, TNF-α, and 
IL-1β ↓;

Anti-inflammation Li et al.57

7 BMMSCS  In vitro: HG-induced 
glomerular mesangial 
cells

 Dose: co-culture at a 
1:5 ratio (BMMSCs: 
glomerular mesangial 
cells)

 In vivo: BTBRob/ob mice
 Dose: 1 × 106 BMMSCs

 Mitochondrial ROS accumulation 
↓;

 Cell apoptosis ↓;
 Mesangial expansion ↓;
 Renal cleaved caspase-3 ↓;

Anti-oxidative
Anti-apoptosis
33557007

Sávio-Silva 
et al.58

 (continued)

Table 1. (continued)
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No. Type of source Model & doses Treatment effect Mechanism Ref.

8 BMMSCs  In vitro: LPS-induced 
peritoneal macrophages

 Dose: 3 × 104 BMMSCs
 In vivo: STZ-induced rat 

model of DN
 Dose: 5 × 105 BMMSCs

 Expression of FN, α-SMA, Bax ↓;
 Lysosome-autophagy, M2 

polarization, IL-10 and TFEB 
expression ↑;

 Levels of MCP-1, IL-1β, and TNF-α 
↓;

 AMPK pathway ↑;

Anti-inflammation Yuan et al.59

9 BMMSCs  In vitro: rat glomerular 
mesangial cells treated 
with high glucose

 Dose: 400,000 cells/well 
BMMSCs

 In vivo: STZ-induced rat 
model of DN

 Dose: 5 × 106 BMMSCs

 Lipoxin A4 expression ↑;
 Renal fibrosis ↓;
 Levels of TNF-α, IL-6, IL-8, and 

IFN-γ ↓;
 TGF-β/Smad pathway ↓;

Anti-inflammation Bai et al.60

10 BMMSCs  In vivo: STZ-induced DN 
rat model

 Dose: 100 μg BMMSCs

 BUN and Scr, blood lipid–related 
indicators of total cholesterol and 
triglyceride ↓;

 Cell apoptosis ↓;
 Expression of USP22, caspase-3, 

and Bax ↓;
 miR-let-7a ↑;

Anti-apoptosis Mao et al.61

11 BMMSCs  In vivo: UUO mice model
 Dose: 2 × 106 BMMSCs

 CD68-positive macrophage, renal 
tubulointerstitial injury and fibrosis 
↓;

 Proliferation of myofibroblasts ↓;

Anti-inflammation
Anti-fibrosis

Xing et al.62

12 BMMSCs  In vivo: UUO mice model
 Dose: 1 × 106 BMMSCs

 Expression of E-cadherin ↑;
 Expression of TGF-β1, α-SMA and 

TNF-α ↓;

Anti-fibrosis Saberi 
et al.63

13 UCMSCs  In vivo: STZ-induced DN 
mice model

 Dose: 1.0 × 104 
MuMSCs

 Levels of glomerular volume ↓;
 Expression of FN, α-SMA, vimentin 

↓;
 TGF-β1/Smad2/3 pathway ↓;

Anti-fibrosis Li et al.64

14 ADMSCs-Exo  In vitro: hypoxia/serum 
deprivation injury models

 Dose: 100 μg/mL 
ADMSCs-Exo

 In vivo: UUO mice model
 Dose: 1 × 103 ADMSCs-

Exo

 Peritubular capillary rarefaction 
and renal fibrosis ↓;

 Cell migration and angiogenesis ↑;
 SIRT1/eNOS signaling pathway ↑;

Angiogenesis Chen et al.65

15 ADMSCs-Exo  In vitro: high glucose–
induced MPC5 cells

 Dose: 25 μg/mL of 
ADMSCs-Exo

 In vivo: C57BL/KsJ db/db
 Dose: unknown

 Levels of Scr, BUN, and podocyte 
apoptosis ↓;

 Cell viability and autophagy flux ↑;
 Cell apoptosis and podocyte injury 

↓;
 miR-486 and mTOR pathway ↑;

Autophagy
Anti-apoptosis

Jin et al.66

16 ADMSCs-Exo  In vivo: adenine-containing 
diet to induce CKD

 Dose: 50 and 100 μg 
ADMSCs-Exo

 Pro-inflammatory cytokines, BUN, 
and Scr ↓;

 Aquaporin 2 and 5 levels ↑;
 Renal fibrosis ↓;

Anti-fibrosis
Anti-inflammation

Yea et al.67

17 BMMSCs-Exo  In vitro: TGF-β1-induced 
HK-2 cells

 Dose: 100 μg/mL 
BMMSCs-Exo

 EMT process ↓;
 Cell autophagy ↑;

Anti-fibrosis Yin et al.68

 (continued)

Table 1. (continued)
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No. Type of source Model & doses Treatment effect Mechanism Ref.

18 BMMSCs-Exo  In vivo: postmenopausal 
CKD

 Dose: 100 μg/mL 
BMMSCs-Exo

 Body weight, drastic reduction of 
estrogen and progesterone levels 
↓;

 MDA levels and pro-inflammatory 
cytokines ↓;

 GPx SOD, and CAT in kidney 
tissue ↑;

Anti-inflammation Alasmari 
et al.69

19 BMMSCs-Exo  In vivo: isogenic/allograft 
kidney transplantation 
mouse model

 Dose: 100 μg/mL 
BMMSCs-Exo

 Treg cell differentiation in kidney 
transplantation mice ↑;

 Inflammatory response, CD4+ 
T-cell infiltration, SCr, and 
plasma rejection–related factors’ 
expression ↓;

 lncRNA DANCR expression ↑;

Anti-inflammation Wu et al.70

20 BMMSCs-Exo  In vivo: STZ-induced DN 
mice model

 Dose: 100 μg BMMSCs-
Exo

 Levels of LC3 and Beclin-1 ↑;
 Fibrotic marker expression ↓;

Autophagy Ebrahim 
et al.71

21 BMMSCs-Exo  In vivo: UUO mice model
 Dose: 1 mg/kg BMMSCs-

Exo
 In vitro: TGF-β1-induced 

NRK-52E cells
 Dose: 20 μM BMMSCs-

Exo

 ECM deposition and renal fibrosis 
↓;

 EMT process ↓;
 let-7i-5p ↓;
 TSC1/mTOR pathway ↑;

Anti-fibrosis Jin et al.72

22 BMMSCs-Exo  In vitro: TGF-β1-induced 
HK-2 cells

 Dose: 1 × 105 BMMSCs-
Exo

 In vivo: UUO mice model
 Dose: 1 × 106 BMMSCs-

Exo

 Expression of α-SMA, collagen 
1α1, and fibronectin ↓;

 mTOR signaling and autophagy ↓;
 Renal fibrosis ↓;
 miR-122a ↑;

Anti-fibrosis
Autophagy

Li et al.73

23 BMMSCs-Exo  In vivo: 5/6 
nephrectomy + high 
phosphate diet-induced 
CKD mice model

 Dose: 75 μg BMMSCs-
Exo

 Cellular apoptosis ↓;
 Levels of Bax and caspase-3 ↓;
 Levels of Scr and BUN ↓;
 miR-381-3p expression ↑;

Anti-apoptosis Liu et al.74

24 BMMSCs-Exo  In vivo: 5/6 subtotal 
nephrotomy rat model

 Dose: 150 μg/week 
BMMSCs-Exo

 In vitro: TGF-β1-induced 
human renal proximal 
tubular epithelial cells

 Dose: 100 μg/mL 
BMMSCs-Exo

 Renal fibrosis ↓;
 Expression of fibronectin, collagen 

I, α-SMA ↓;

Anti-fibrosis Liu et al.75

25 BMMSCs-Exo  In vivo: UUO mice model
 Dose: 30 μg BMMSCs-

Exo

 Levels of α-SMA and fibronectin ↓;
 Levels of BUN and Scr ↓;
 Number of F4/80+CD86+ and 

F480+/CD206+ macrophages ↓;

Anti-inflammation Lu et al.76

26 BMMSCs-Exo  In vivo: postmenopausal 
chronic kidney damage

 Dose: 100 µg BMMSCs-
Exo

 Levels of CR and BUN ↓;
 Levels of GPx, CAT, SOD ↑;
 Renal fibrosis, levels of α-SMA, 

caspase-3, and TGF-β1 ↓;
 Cell apoptosis ↓;

Anti-fibrosis
Anti-apoptosis

Alasmari 
et al.77

 (continued)

Table 1. (continued)
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No. Type of source Model & doses Treatment effect Mechanism Ref.

27 BMMSCs-Exo  In vivo: UUO mice model
 Dose: 50 µg and 100 µg 

BMMSCs-Exo

 Expression of fibronectin and 
collagen I ↓;

 miR-21a-5p expression ↑;

Anti-fibrosis Xu et al.78

28 UCMSCs-Exo  In vitro: TGF-β1-induced 
NRK-52E cells

 Dose: 100 μg UCMSCs-
Exo

 In vivo: UUO mice model
 Dose: 200 μg UCMSCs-

Exo

 Levels of BUN and Scr ↓;
 Cell apoptosis and oxidative stress 

↓;
 ROS level ↓;
 Renal fibrosis ↓;
 p38MAPK/ERK1/2 pathway ↑;

Anti-apoptosis
Anti-oxidative 

stress

Liu et al.79

29 UCMSCs-Exo  In vitro: γ-irradiation-
induced renal tubular 
epithelial cell senescence

 Dose: 2.6 × 105 
UCMSCs-Exo

 Senescence markers (CDKN2D, 
p16INK4a) and senescence-
associated secretory phenotype 
factors ↓;

 Expression of IL-6 and CCL7 ↓;
 SA-β-gal activity ↓;

Senescence Liao et al.80

30 UCMSCs-Exo  In vitro: high glucose–
induced HK-2 cells

 Dose: 50 μg UCMSCs-
Exo

 In vivo: C57BL/KsJ-db/db 
DN mice

 Dose: 10 mg/kg body 
weight UCMSCs-Exo

 Levels of ALB, BUN, Scr ↓;
 Protein levels of Bax and cleaved 

caspase-3 ↓;
 Cell apoptosis ↓;
 Levels of N-cadherin, Snail, α-SMA 

↓;
 Levels of E-cadherin ↑;
 miR-424-5p expression ↑;

Anti-apoptosis
Anti-fibrosis

Cui et al.81

31 MSCs-Exo  In vitro: TGF-β1-induced 
NRK-52E cells

 Dose: 4 × 104 MSCs-Exo
 In vivo: UUO mice model
 Dose: unknown

 Level of ECM and EMT process ↓;
 Renal injury and fibrosis ↓;
 miR-186-5p expression ↑;

Anti-fibrosis Yang et al.82

ADMSCs: adipose-derived mesenchymal stem cells; AKI: acute kidney injury; ALT: alanine aminotransferase; AST: aspartate aminotransferase; BMMSCs: 
bone marrow mesenchymal stem cells; BUN: blood urea nitrogen; CR: creatinine; DN: diabetic nephropathy; ECM: extracellular matrix; EGF: epidermal 
growth factor; EMT: epithelial–mesenchymal transformation; ER: endoplasmic reticulum; FGF: fibroblast growth factor; FN: fibronectin; HGF: hepatocyte 
growth factor; H/R: hypoxia/reoxygenation; I/R: ischemia–reperfusion; IFN: interferon; IL: interleukin; KD: kidney disease; LPS: lipopolysaccharide; MAPK: 
mitogen-activated protein kinase; MCP-1: monocyte chemoattractant protein-1; MDA: malondialdehyde; MSCs: mesenchymal stem cells; NF-κB: nuclear 
factor–kappa B; PGE2: prostaglandin E2; ROS: reactive oxygen species; Scr: serum creatinine; SDT: Spontaneously Diabetic Torii; α-SMA: alpha-smooth 
muscle actin; SOD: superoxide dismutase; STZ: streptozotocin; TGF: transforming growth factor; TNF-α: tumor necrosis factor–alpha; UCMSCs: 
umbilical cord mesenchymal stem cells; UUO: unilateral ureteral obstruction; VEGF: vascular endothelial growth factor.

Table 1. (continued)

Similarly, Song et al.90 stated that MSCs-derived EVs serve 
as effective therapeutic strategies for CKD via upregulating 
anti-inflammatory M2 macrophages and regulatory T-cell 
numbers. In addition, it is well recognized that EV activity 
mainly involves the horizontal transfer of genetic materi-
als91,92. For example, MSCs-EVs secrete insulin-like growth 
factor (IGF-1) receptor mRNA directly to renal tubular epi-
thelial cells, as well as directly secreting IGF-1 and carrying 
IGF-1 receptors to promote kidney repair in AKI93. Several 
studies have confirmed that MSCs-derived exosomes 
enriched with miRNAs (eg, miR-15a, miR-15b, and miR-
1690) and/or chemokine receptors (eg, CCR294 and CXCR495) 
could ameliorate inflammation and kidney injury by reduc-
ing chemokines (eg, CX3CL196 and CCL297).

Anti-Apoptosis

Cell apoptosis is closely related to kidney injury and KD pro-
gression. Previous studies have shown that renal tubular epi-
thelial cell apoptosis was detected in both animal AKI models 
and human kidney tissues of AKI98, and the expression of 
pro-apoptotic genes (Bax and caspase-3) was increased, 
while the expression of anti-apoptotic gene Bcl-2 was 
reduced. Of note, numerous studies have confirmed that 
MSCs implantation can inhibit apoptosis of renal tubular 
epithelial cells and thus restore renal function99,100. Guo 
et al.33 confirmed that BMMSCs alleviated sepsis-induced 
AKI by inhibiting apoptosis and promoting mitophagy of 
renal tubular epithelial cells. Another study by Tseng et al.101 
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found that hypoxic MSCs significantly reduced cell apopto-
sis in renal tubular NRK-52E cells exposed to hypoxia-reox-
ygenation as well as promoted renal tubular autophagy in 
acute renal IRI rats.

Of note, MSCs play a therapeutic role in KD through 
paracrine mechanisms. For example, HuMSC-Exo inhibited 
apoptosis of NRK-52E cells induced by cisplatin via activa-
tion of the ERK1/2 pathway102. Alasmari et al.77 illustrated 
that exosomes derived from BMMSCs impeded the progres-
sion of CKD by interfering with fibrosis and apoptosis. 
Moreover, MSCs-Exo exhibited anti-apoptotic effect on KD 
progression by transferring miRNAs (eg, miR-199a-3p44 and 
miR-424-5p81). What’s more, exosomes released from MSCs 
preconditioned with melatonin blocked apoptosis by decreas-
ing the levels of caspase-367, which had a protective effect 
against CKD.

Pro-Angiogenesis

It has been reported that sparse peritubular capillaries, 
accompanied by reduced blood perfusion, limit the supply of 
interstitial oxygen to the kidney, ultimately leading to adverse 
consequences such as renal fibrosis and tubular atrophy, 
which accelerate KD progression103. Previous studies have 
shown that MSCs can survive for a long time after implanta-
tion into the injured kidney, promote renal interstitial capil-
lary neovascularization, improve renal microcirculation, and 
inhibit renal fibrosis progression104. Meanwhile, MSCs 
derived from the kidney facilitated angiogenesis, vasculo-
genesis, and endothelial repair105. Numerous studies have 
demonstrated that MSCs transplantation increased the 
expression of VEGF mRNA in kidney tissues along with 
endothelial cell proliferation, reduced the loss of peritubular 
capillaries, and improved kidney function106.

In addition, MSCs-derived EVs ameliorated AKI progres-
sion by promoting angiogenesis (enhancing renal VEGF lev-
els) in vivo and in vitro107. Eirin et al.108 proved that the 
autologous ADMSCs-EVs improve the renal microvascular 
system in pigs with metabolic renal vascular diseases. 
Another study found that melatonin-stimulated MSCs-Exo 
isolated from patients with CKD promoted angiogenesis in 
ischemic diseases through the upregulation of miR-4516109. 
Mechanistically, MSCs promote angiogenesis through para-
crine secretion of some bioactive substances related to angio-
genesis [such as VEGF, hypoxia-inducible factor 1-alpha 
(HIF-1α), platelet-derived growth factor-BB (PDGF-BB), 
stromal cell-derived factor 1 (SDF-1), and angiogenin]34,52,110, 
as well as differentiation to vascular endothelial cells111 and 
smooth muscle cells112. For example, ADMSCs transplanta-
tion significantly increased peritubular vascular density and 
the number of CD31- and vWF (von Willebrand factor)-pos-
itive cells in renal interstitium and peritubular area of mice 
with IRI injury, as well as improved blood perfusion in the 
kidney of mice113. The above studies suggest that MSCs have 
beneficial effects against KD progression by promoting renal 
angiogenesis and preventing peritubular capillary loss.

Anti-Fibrosis

Renal interstitial fibrosis is the common pathological hall-
mark of CKD progression, and eventually inevitably devel-
ops into end-stage KD114, causing a huge socioeconomic 
burden. Increasing evidence has confirmed that EMT of 
renal tubular cells is a key event in renal interstitial fibrosis, 
characterized by fibroblast proliferation and an imbalance 
between ECM production and degradation115,116, and inhibi-
tion of renal tubular EMT may be a potential therapeutic 
strategy for the treatment of CKD117. Numerous studies 
have shown that MSCs, as a protective mediator of renal 
interstitial fibrosis, can play an important regulatory role in 
the process of EMT through their anti-fibrotic activity and 
paracrine mechanisms, delaying tubular EMT and improv-
ing renal fibrosis118. For example, Tang et al.119 showed that 
BMMSCs treatment prevents renal interstitial fibrosis by 
blocking the Akt/GSK3β/Snail signaling pathway in ade-
nine-induced CKD. Another study proved that glial cell 
line–derived neurotrophic factor–modified ADMSCs sup-
pressed EMT and renal fibrosis via inhibition of the PI3K/
Akt pathway in CKD120.

As the research progresses, subsequent studies have shown 
that MSCs-Exo exerts anti-fibrotic and EMT-suppressive 
effects by delivery of genetic information to target cells, 
thereby alleviating renal fibrosis in CKD. For instance, 
Grange et al.121 found that EVs of MSCs can inhibit and 
reverse the progression of glomerular and tubule-interstitial 
fibrosis in the DN mouse models by downregulating fibrosis-
related genes (eg, Serpia1a, TIMP1, MMP3, collagen I, and 
Snail). The MSCs-Exo inhibited the EMT process of trans-
forming growth factor (TGF)-β1–treated renal tubular epithe-
lial cells and renal fibrosis in a unilateral ureteric obstruction 
(UUO)–induced renal fibrosis mouse model via delivery of 
miRNA-122a73 and miR-186-5p82. Liu et al.79 found that 
UCMSCs-Exo exhibits anti-fibrotic effects in CKD through 
the inactivation of the reactive oxygen species (ROS)–
mediated p38 mitogen-activated protein kinases/extracellular 
signal-regulated kinase (MAPK/ERK) pathway.

Anti-Oxidative Stress

Oxidative stress is involved in the development and pro-
gression of KD, including AKI122 and CKD123. Several 
studies have confirmed that oxidative stress induces renal 
tubular inflammation, fibrosis, and renal tubular epithelial 
cell apoptosis, and resulted in promoting the progression of 
KD124,125. Meanwhile, the kidney acts as an essential organ 
for the production of reactive oxygen species (ROS), and 
oxidative stress is a mediator of CKD progression126. In 
recent years, numerous studies have proved that MSCs 
were reported to be used as an antioxidant therapeutic drug 
in the treatment of KD98,127,128. Therefore, the regulation of 
oxidative stress is the essential mechanism of MSCs-based 
treatment in KD. Recently, Song et al.129 showed that MSCs 
alleviated adriamycin-induced nephropathy by inhibiting 
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oxidative stress and NF-κB-mediated inflammation. Another 
study showed that valsartan- and melatonin-modified 
MSCs improved renal architecture and function in CKD by 
diminishing oxidative stress130.

In addition, several preclinical studies demonstrate that 
MSCs-derived EVs promote tissue repair and reduce oxida-
tive stress in KD131. For instance, Zhang et al.132 revealed 
that human Wharton’s jelly MSCs-EVs could protect the kid-
ney against IRI by mitigating oxidative stress. Another study 
confirmed that exosomes derived from UCMSCs prevented 
AKI progression via suppressing renal oxidative stress and 
inflammation as well as improving kidney function of kid-
ney failure48. Cao et al.133 showed that human placenta 
MSCs-Exo reduced oxidative stress and mitochondrial frag-
mentation in a renal IRI model through activation of the 
Nrf2/keap1 pathway.

Regulating Autophagy

Autophagy is a type II programmed cell death134 that can be 
activated to promote cell survival135 or resulted in cell 
death136 by stimulating various physiological and pathologi-
cal factors. A basal level of autophagy occurs as a self-eat-
ing cellular process to degrade cytosolic proteins and 
subcellular organelles in lysosomes, recycle the cytoplasmic 
components, and regenerate cellular building blocks and 
energy, thus maintaining cellular and tissue homeostasis in 
all eukaryotic cells137,138. Recently, transplantation of MSCs 
has emerged as an effective strategy in regenerative medi-
cine to repair injured organ function via regulating autoph-
agy139. For instance, hypoxic MSCs alleviate AKI 
progression by promoting renal tubular autophagy32. Feng 
et al.140 found that transplantation of sirtuin3-overexpres-
sion amniotic fluid stem cells serves as promoting therapeu-
tic strategies for DN through activation of mitophagy and 
inhibition of apoptosis. Other studies confirmed that 
UCMSCs enhanced autophagy in advanced oxidation pro-
tein products–treated HK-2 cells through inactivation of the 
PI3K/Akt/mTOR pathway141,142. Intriguingly, upregulation 
of autophagy remarkably increased the secretion of TGF-β1 
from MSCs and suppressed the proliferation of CD4+ T 
lymphocytes143, whereas inhibition of autophagy reduced 
the responsiveness of T cells to mitogen IL-2 and increased 
the production of immunosuppressive prostaglandin E2144. 
For example, Yuan et al.25 showed that MSCs ameliorate 
kidney injury in DN via eliciting macrophages into anti-
inflammatory phenotype and elevating PGC-1α (peroxi-
some-proliferator-activated receptor-γ coactivator-1alpha)/
TFEB (transcription factor EB)-mediated lysosome-autoph-
agy. In addition, autophagy is active in the physiological 
state or can be activated by cellular stresses such as oxida-
tive stress145. Gergin et al.146 demonstrated that transplanted 
MSCs inhibited oxidative stress in colistin-induced nephro-
toxicity by modulating autophagy. Autophagy and oxidative 
stress are correlated, and the underlying mechanisms of 
MSCs-based treatment have not been fully explored.

At the same time, some researchers demonstrated that 
MSCs-Exo has become a research focus for targeted therapy 
of KD147. Wang et al.50 discovered that UCMSCs-Exo pre-
processing can prevent cisplatin-induced AKI in vivo and in 
vitro by activating autophagy. Jia et al.148 identified that 
UCMSCs-Exo can prevent cisplatin-induced AKI by activat-
ing autophagy. Ebrahim et al.71 confirmed that MSCs-Exo 
enhances autophagy and then slows the progression of DN 
via activating the mTOR pathway.

Senescence

Cellular senescence is a specialized cell state of permanent 
cell cycle arrest caused by the accumulation of cellular dam-
age due to a variety of stressors such as telomere shortening, 
DNA damage, oxidative stress, and activation of oncopro-
teins80,149. Senescent cells are known to be present at 
increased levels in KD, and accumulation of senescent cells 
is thought to facilitate renal fibrosis, DN, severe AKI, and 
decay in renal function150,151. Several studies have shown 
that the removal of senescent tubular cells in the kidney by 
transgenic or pharmaceutical approaches reduced features of 
tissue aging and efficiently ameliorated glomerulosclerosis, 
inflammation, and renal function152–154. Of note, ADMSCs 
transplantation can alleviate ischemia–reperfusion (I/R)-
induced kidney injury through reducing renal senescence155. 
Rodrigues et al.156 found that UCMSCs can prevent IRI-
induced renal senescence in AKI.

In addition, several studies have demonstrated that MSCs-
derived exosomes exhibit therapeutic effects on KD by regu-
lating cell senescence157,158. For example, Wang et al.159 
showed that MSCs-derived exosomal let-7b-5p ameliorates 
cisplatin-induced AKI by reducing renal senescence and cell 
apoptosis. Another study confirmed that treatment with exo-
somes derived from MSCs efficiently reduced senescence in 
renal tubular epithelial cells by diminishing the transcription 
of senescence markers and senescence-associated secretory 
phenotype factors80. In addition, the paracrine effects of 
MSCs were enhanced after pretreated with metformin and 
inhibited MSCs senescence by suppressing SA-β-gal activ-
ity, p16Ink4a expression, and p53 and NF-κB activation, thus 
effectively reducing CKD inflammation and fibrosis160. 
Taken together, the above studies have proven that MSC-
EVs are effective in treating KD.

Clinical Trials of MSCs Therapy in KD

In the last decade, the beneficial efficacy of MSCs in the 
treatment of KD has been confirmed in multiple cellular and 
animal experimental models. For example, MSCs-base ther-
apy was first shown to promote renal tubular regeneration 
and improve renal function in cisplatin-induced AKI mice 
models in 2004161. Subsequent studies have also confirmed 
that MSCs alleviate other animal models of AKI induced by 
ischemia–reperfusion, glycerol, sepsis, cecal ligation and 
puncture162,163, and so on. In addition, MSCs transplantation 
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significantly alleviated CKD progression by inhibiting renal 
tubular epithelial cell apoptosis, EMT process, and inducing 
cell autophagy15,164. For example, Liu et al.165 showed that 
treatment with BMMSCs restricted inflammation and renal 
damage in the IRI model. Of note, several clinical studies are 
completed or ongoing to evaluate the safety and efficacy of 
MSCs for the treatment of KD according to ClinicalTrials.
gov (Table 2). For example, a phase I/II clinical trial by 
Swaminathan et al.166 showed that BMMSCs alleviated 
inflammatory response in patients with AKI by secreting anti-
inflammatory factors. Two other clinical trials (NCT00698191 
and NCT01741857) confirmed that UCMSCs transplantation 
for refractory systemic lupus erythematosus improved dis-
ease activity and renal function, and reduced proteinuria, as 
well as no adverse events occurred. Currently, a total of seven 
and nine clinical trials are ongoing to evaluate the safety and 
efficacy of MSCs in patients with DN and CKD. However, 
MSC-based therapy is limited by the low survival rate of 
MSCs when used to treat severe KD167. Several factors such 
as poor control of the disease, cellular microenvironment, 
anoikis, ischemia, inflammation, and ROS production reduce 
the efficacy of MSC-based therapies168,169. Some preclinical 
studies have suggested that the preconditioning or cotreat-
ment of MSCs protects them from the harmful environment at 
the site of damage and improves their function23, including 
cytokines or natural/chemical compounds. In addition, as 
several clinical trials are in recruiting status, it is worthwhile 
to further consider and explore whether there are safety issues 
and insignificant efficacy of MSCs for the treatment of KD. 
Therefore, we will further explore multiple treatment strate-
gies based on MSCs for KD after obtaining the results of the 
existing clinical trials to prolong the survival of patients and 
delay the progression of KD.

Current Challenges of MSCs Therapy 
in KD

Selection of MSCs Source

Interestingly, the results of animal models and clinical trials 
have confirmed that MSCs have shown positive results for 
the treatment of various KD, and no adverse effects or seri-
ous adverse complications have been observed. Currently, 
MSCs are widely available in clinical trials, but the ultimate 
goal is to use MSCs to delay KD progression and avoid its 
progression to end-stage renal disease. Therefore, the choice 
of autologous or allogeneic MSCs for transplantation should 
be considered in clinical applications. Autologous MSCs 
have low immunogenicity and no risk of infection, but the 
longer time required for autologous cell preparation may 
limit their practical application in clinical treatment. 
Allogeneic MSCs can be selectively derived from young 
healthy donors and have the potential to be produced rapidly 
and in large quantities in vitro culture, significantly reducing 

costs118, while the use of allogeneic MSCs includes a higher 
risk of immunological reactions and shorter cell survival 
times following injection170. Although transplantation with 
autologous MSCs is safer and more ethical than allogeneic 
MSCs, there are still some problems in clinical applications. 
First, after autologous MSCs are extracted, the in vitro cul-
ture cycle is long, which may not fully meet the needs of the 
body. Second, there is a significant difference between the 
secretion and immune regulation of autologous MSCs171. 
However, a clinical study reported that injections of alloge-
neic or autologous BMMSCs were both associated with low 
rates of treatment-emergent serious adverse events (such as 
immunologic reactions) in patients with ischemic cardiomy-
opathy172. Further studies to overcome the immune rejection 
caused by allogeneic MSCs during the treatment process are 
necessary. Owing to the many sources of allogeneic MSCs 
and the high efficiency of in vitro culture, the treatment of 
immune rejection caused by allogeneic MSCs is still receiv-
ing widespread attention173. On the contrary, an obvious 
solution is to immediately use autologous MSCs as a ready-
made product. In addition, new products such as acellular 
exosomes and MSCs derived from human pluripotent stem 
cells are exciting developments that are attracting significant 
attention174.

Transplantation Protocol of MSCs

Currently, MSCs are mostly transplanted in animal experi-
ments by intravenous, arterial, intraperitoneal, and local 
injections for KD, whereas clinical transplantation of MSCs 
includes arterial and intravenous injections. Previous stud-
ies have shown that MSCs transplantation via arterial injec-
tion was more effective than intravenous injection in 
promoting renal regeneration175. Moreover, local injection 
of MSCs also plays a positive role in renal repair176, but this 
route was less commonly used in clinical practice. Impor-
tantly, different transplantation modalities have a significant 
impact on the survival and homing rate of MSCs, and the 
optimal implantation modality needs to be determined177. 
Furthermore, the timing of MSCs injection, the number of 
injections, the number of cells per injection, exploring the 
optimal strategy for MSCs migration to the damaged site, 
understanding the interactions between MSCs and other tis-
sue cells, and the adverse effects of MSCs after transplanta-
tion (eg, low differentiation in vivo and tumorigenesis)178, 
all of which pose challenges for MSCs to move from basic 
experiments to clinical applications.

Migration and Survival of MSCs

A prerequisite for the efficacy of MSCs is the ability to 
migrate to damaged tissues. Previous studies have found that 
MSCs can localize to diseased sites179, but only a small frac-
tion of MSCs180. Several studies found that the migration of 
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Table 2. The Ongoing Clinical Trials of MSCs Therapy in KD.

No.
Estimated 
enrollment Phase MSCs source Status Sponsor Clinical trial ID

AKI
1 80 I/II UCMSCs Not recruiting Chinese PLA General Hospital, China NCT04194671
2 15 I ADMSCs Recruiting Tambi Jarmi, USA NCT04388761
3 15 I BMMSCs Completed AlloCure Inc., USA NCT00733876
4 24 I/II MSCs Not recruiting Sentien Biotechnologies, Inc. NCT03015623

CKD
1 7 I BMMSCs Completed Royan Institute, Iran NCT02195323
2 44 I/II UCMSCs Recruiting Tongji Hospital, Tongji Medical College, 

Huazhong University of Science & 
Technology, China

NCT05512988

3 20 I BMMSCs Recruiting Mayo Clinic Florida, USA NCT05362786
4 31 I/II ADMSCs Recruiting Bangladesh Laser & Cell Surgery Institute & 

Hospital, Bangladesh
NCT03939741

5 116 II UCMSCs Unknown Zhujiang Hospital, China NCT02966717
6 40 I ADMSCs Recruiting Mayo Clinic Florida, USA NCT04869761
7 6 I BMMSCs Completed Royan Institute, Iran NCT02166489
8 10 I BMMSCs Recruiting Pharmicell Co., Ltd., Korea NCT05042206
9 20 I UCMSCs Recruiting The Foundation for Orthopaedics and 

Regenerative Medicine, Antigua, and Barbuda
NCT05018845

10 7 I BMMSCs Completed Royan Institute, Iran NCT02195323
11 20 I/II MSCs Unknown Fuzhou General Hospital, China NCT00659620
12 30 II ADMSCs Recruiting Mayo Clinic in Rochester, USA NCT03325322
13 31 I/II ADMSCs Recruiting Bangladesh Laser & Cell Surgery Institute & 

Hospital, Bangladesh
NCT03939741

14 42 I ADMSCs Completed University of Alabama, USA NCT02266394
15 60 Urinary MSCs Not recruiting Hospices Civils de Lyon, France NCT04998461
16 100 Not applicable ADMSCs Unknown The Affiliated Hospital of Xuzhou Medical 

University, China
NCT03321942

17 30 I/II MSCs Unknown Nanjing Medical University, China NCT03460223
18 100 Not applicable ADMSCs Unknown The Affiliated Hospital of Xuzhou Medical 

University, China
NCT03321942

DN
1 30 I ADMSCs Recruiting Mayo Clinic in Rochester, USA NCT03840343
2 54 I/II UCMSCs Unknown Shanghai East Hospital, China NCT04216849
3 15 Early I UCMSCs Recruiting Yan’an Affiliated Hospital of Kunming Medical 

University, China
NCT04125329

4 38 Not applicable UCMSCs Unknown Renmin Hospital of Wuhan University, China NCT04562025
5 48 I/II BMMSCs Recruiting Mario Negri Institute for Pharmacological 

Research, Ireland
NCT02585622

6 20 I/II Wharton Jelly MSCs Unknown University of Jordan, Jordan NCT03288571
7 15 I ADMSCs Recruiting Albert Hakaim, USA NCT04392206

Lupus nephritis
1 16 I Human amniotic 

MSCs
Completed Yan’an Affiliated Hospital of Kunming Medical 

University, China
NCT04318600

2 230 II UCMSCs Unknown The Affiliated Drum Tower Hospital of Nanjing 
University Medical School, China

NCT03580291

3 20 I/II BMMSCs Unknown Fuzhou General Hospital, China NCT00659217
4 30 Not applicable UCMSCs Unknown The First Affiliated Hospital of Dalian Medical 

University, China
NCT03458156

5 36 II BMMSCs Not recruiting Hanyang University Hospital, Korea NCT03673748
6 7 I BMMSCs Completed Corestem, Inc., Korea NCT03174587
7 25 II UCMSCs Unknown Second Affiliated Hospital & SLE Research 

Centre, Kunming Medical University, China
NCT01539902

8 7 I BMMSCs Completed Hanyang university hospital, Korea NCT03174587

ADMSCs: adipose-derived mesenchymal stem cells; AKI: acute kidney injury; BMMSCs: bone marrow mesenchymal stem cells; CKD: chronic kidney 
disease; DN: diabetic nephropathy; KD: kidney disease; MSCs: mesenchymal stem cells; UCMSCs: umbilical cord mesenchymal stem cells.
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MSCs in vivo was regulated by various surface adhesion 
molecules (eg, CD44, VLA-4/VCAM1, SDF-1/CXCR4, and 
CXCL5/CXCR2)181–183. Importantly, pretreatment with cyto-
kines or active substances can improve the localization/
migration ability of MSCs. For example, MSCs modified by 
CXC chemokine receptors (such as CXCR3184 and 
CXCR4185) exhibited better migration and localization abili-
ties. In addition, enhanced migration and anti-inflammatory 
activities of MSCs mediated by the transient ectopic expres-
sion of CXCR4 and IL-10 or IL-35186,187. However, the 
source, culture, and amplification methods of MSCs may 
affect the expression of their localized surface molecules188, 
as well as the cell activity, therapeutic effects, and safety of 
modified MSCs were difficult to control. Meanwhile, there is 
a lack of effective strategies to precisely localize MSCs to 
damaged tissues.

Safety of MSCs Transplantation

With the gradual increase of studies on the application of 
MSCs in clinical practice, the safety of MSCs has received 
widespread attention. In the phase I clinical trial by Liu 
et al.189, no physical abnormalities were found in healthy vol-
unteers after receiving BMMSCs infusion at a 2-month fol-
low-up. Wang et al.190 conducted a toxicity study of UCMSCs 
transplantation in 32 macaques and no adverse reactions 
were observed. Ra et al.191 evaluated the safety of ADMSCs 
preparations using an animal model of ulcerative colitis and 
no toxicity or tumorigenicity was found in immunodeficient 
mice. Hu et al.192 showed that no severe adverse reactions or 
tumorigenicity was observed in clinical trials with either 
autologous or allogeneic transplantations of MSCs. These 
results indicated that MSCs were relatively safe in the treat-
ment of diseases. Currently, no US Food and Drug 
Administration (FDA)-approved MSCs on market for dis-
ease treatment, whereas some MSCs-approved products for 
human disease are in other countries (Table 3). Meanwhile, 

most clinical studies of MSCs are still in the early stage, as 
well as the source, isolated, purified methods, and injection 
route of MSCs are different. Therefore, the safety of MSCs 
needs to be summarized and improved with continuous clini-
cal trials.

Others

Except for the current challenges mentioned above, clinical 
applications of MSCs have other limitations. For example, 
tissue sources and isolation methods can influence MSC pro-
liferation and differentiation potential193,194. In addition, 
microenvironment, donor age, and environmental factors 
affect the genetic stability of MSCs. No consensus on the 
standard properties (eg, phenotype, differentiation potential, 
physiological functions, and biological properties) of MSCs 
has been developed195. Of note, MSCs can only proliferate 
for a limited number of passages in vitro and will eventually 
enter a senescence state196. Progressively slow growth and 
lack of differentiation of high-passaged MSCs have been 
reported in several studies197,198. Other important challenges 
are the isolation and culturing of MSCs using xenofree con-
ditions199 as cells grown in media containing fetal bovine 
serum and other animal or bacterial products cannot be used 
for clinical purposes. Thus, a better understanding of the ori-
gin, biological properties, and function of MSCs derived 
from different tissues could provide insight into what truly is 
an “MSC.”

Improvement of MSCs’ Therapeutic 
Effect in KD

MSC-based therapy has been widely studied for KD therapy 
and has been shown to result in improved renal function and 
the recovery of damaged renal tissues in animal studies and 
clinical trials200. However, the limited effects of the current 
therapy for KD drive the need for the development of novel 

Table 3. Current Approved in South Korea, Europe, Japan, and Other Countries With MSCs for Diseases.

Sources Clinical condition Trade name Approving country (year)

ADMSCs Subcutaneous tissue defects Queencell South Korea (2010)
BMMSCs Acute myocardial infarction Cellgram-AMI South Korea (2011)
ADMSCs Crohn’s fistula Cupistem South Korea (2012)
UCMSCs Knee articular cartilage defects Cartistem South Korea (2012)
BMMSCs Graft-versus-host disease Prochymal Canada (2012)
BMMSCs Graft-versus-host disease Remestemcel-L New Zealand (2012)
BMMSCs Amytrophic lateral sclerosis Neuronata-R South Korea (2014)
BMMSCs Graft-versus-host disease Temcell HS Inj Japan (2015)
BMMSCs Critical limb ischemia Stempeucel India (2016)
BMMSCs Spinal cord injury Stemirac Japan (2018)
ADMSCs Complex perianal fistulas in Crohn’s disease Darvastrocel (Alofisel) Europe (2018)

ADMSCs: adipose-derived mesenchymal stem cells; BMMSCs: bone marrow mesenchymal stem cells; MSCs: mesenchymal stem cells; UCMSCs: umbilical 
cord mesenchymal stem cells.



Chen et al 15

strategies such as preconditioning, genetic modifications, 
and strategies for scalability. For instance, several cytokines 
and natural/chemical compounds have been shown to have 
protective effects by enhancing cell survival and prolifera-
tion201. Docosahexaenoic acid (DHA) is a necessary omega-3 
fatty acid found in the blood and the kidney. The 14S,21R-
dihydroxy-doxosa 4Z,7Z19Z,12E,16Z,19Z-hexaenoic acid 
(14S,21R-dHDHA) has been identified as a new DHA-
derived lipid mediator, and treatment with this compound 
has been shown to enhance the function of MSCs. In vitro 
and IRI mouse models, MSCs treated with 14S,21R-dHDHA 
show reduced apoptosis and inflammatory responses, and 
improved renal function202. Other studies have shown that 
the pharmacological agent, S-nitroso N-acetyl penicillamine 
(SNP), a nitric oxide donor associated with cytoprotective 
and tissue-protective effects, promoted MSCs functionality 
by increasing cell proliferation and survival in renal IR 
model203. Moreover, administration of SNP-treated MSCs 
resulted in a significant improvement in renal function and 
increased the expression of pro-survival and pro-angiogenic 
factors in ischemic renal tissue. Darbepoetin-α is an erythro-
poietic agent that shows similar protective and hematopoi-
etic effects and reduces kidney damage in an animal model 
of renal IRI204. In a mice model of renal ischemia, the admin-
istration of melatonin-pretreated MSCs increased the secre-
tion of angiogenic cytokines and the survival of engrafted 
MSCs in CKD-associated ischemic sites. Moreover, miR-
NAs (eg, miR-146a-5p205, miR-19a-3p206, miR-374a-5p207, 
and miR-34a208)-modified MSCs ameliorated KD progres-
sion via reducing inflammation, oxidative stress, renal fibro-
sis, cell apoptosis, and so on.

Conclusion

Numerous studies have confirmed the safety and tolerability 
of MSCs transplantation for the treatment of KD209–212. Given 
the increasing incidence of KD worldwide, MSCs-based ther-
apy appears to be an innovative intervention approach with 
tremendous potential for the management of KD, but there is 
still much work to be done before MSCs can be used for 
clinical treatment on a large scale. First, the issues of donor 
heterogeneity, mass production, immunogenicity, and cryo-
preservation of MSCs need to be addressed. Second, how to 
make MSCs with more efficient targeting ability, more pre-
cise immunomodulatory function, and safer application effect 
by artificial means need to be studied. Existing studies have 
provided several strategies, including genetic engineering, 
microparticle engineering, and preculture, which theoreti-
cally improve the efficiency of MSCs application. Third, the 
detailed underlying mechanisms of MSCs for the treatment of 
KD and the functional role of targeting kidney-related injury 
need to be further explored. Fourth, the therapeutic safety of 
MSCs (eg, carcinogenic) remains controversial. With the 
advancement of novel biotechnology, there are many strate-
gies to enhance the efficacy and safety of MSCs (such as drug 

conjugation, hypoxia condition, cytokine pretreatment, and 
genetic modification), but long-term efficacy has not been 
proven and standardized clinical trial protocols are still 
needed. Currently, the treatment of KD is limited to drug ther-
apy, dialysis, and renal transplantation, whereas MSCs trans-
plantation has emerged as a promising alternative therapy and 
has been supported by evidence from relevant clinical stud-
ies213,214. From the perspective of functional improvement 
and clinical parameters, the results of clinical trials are more 
favorable, and the development of new technologies is 
expected to overcome current barriers to the clinical applica-
tion of MSCs therapy. In conclusion, with the continuous 
innovation of treatment protocols and more and larger scale 
clinical trials in the future, MSCs-based therapy is expected 
to become a major “tool” for the treatment of KD.
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