Skip to main content
. 2023 Apr 4;28:28. doi: 10.1186/s11658-023-00442-z

Table 5.

Studies regarding circulating metabolomics and proteomics in blood as potential biomarkers for bladder cancer

Authors (year) Sample type No. of patients Laboratory technique Clinical application Detection rate Refs.
Cao et al. (2012) Serum 112 1H NMR measurements Discrimination of patients with BC from healthy individuals Detected abnormal serum metabolic profiles in 100% of patients [196]
Bansal et al. (2013) Serum 99 1H NMR measurements Diagnostic biomarker Sensitivity = 94%, specificity = 97% [197]
Tan et al. (2017) Serum 172 UHPLC coupled with Q-TOF MS Diagnostic biomarker AUC = 0.961 [198]
Schwamborn et al. (2009) Serum 248 MALDI-TOF–MS Diagnostic biomarker Sensitivity = 96.4%, specificity = 86.5% [199]
Bansal et al. (2014) Serum 90 MALDI-TOF–MS Diagnostic biomarker AUC = 0.946 (S100A8 and S100A9) [200]
Bansal et al. (2016) Serum 160 ELISA, MARS Diagnostic biomarker AUC = 0.957 (S100A9) [201]
Amara et al. (2019) Serum 87 LC–MS Predict disease progression OS (p = 0.0065) [207]
Minami et al. (2010) Serum 2 Reversed-phase high-performance liquid chromatography Predict prognosis RFS (p = 0.026), CSS (p = 0.041) [208]
Lemańska-Perek et al. (2019) Plasma 6 MALDI-TOF–MS Predict disease progression Increasing abundance in progressing BC [209]

AUC area under the receiver operating characteristics curve, ELISA enzyme linked immunosorbent assay, OS overall survival, RFS recurrence-free survival, CSS cancer-specific survival, NMR nuclear magnetic resonance, LC–MS liquid chromatography–mass spectrometry, Q-TOF MS quadrupole time of flight mass spectrometry, UHPLC ultra-high performance liquid chromatography, MALDI-TOF–MS matrix-assisted laser desorption/ionization time of flight mass spectrometry