
REVIEW

Translating neonatal microbiome science into commercial innovation: 
metabolism of human milk oligosaccharides as a basis for probiotic efficacy in 
breast-fed infants
David A. Mills a,b,c, J. Bruce Germana,c, Carlito B. Lebrillac,d,e, and Mark A. Underwoodc,f

aDepartment of Food Science and Technology, University of California-Davis, Davis, CA, United States; bDepartment of Viticulture and Enology, 
University of California-Davis, Davis, CA, United States; cFoods for Health Institute, University of California-Davis, Davis, CA, United States; 
dDepartment of Chemistry, University of California-Davis, Davis, CA, United States; eDepartment of Biochemistry and Molecular Medicine, 
University of California-Davis, Davis, CA, United States; fDivision of Neonatology, Department of Pediatrics, University of California-Davis, 
Sacramento, CA, United States

ABSTRACT
For over a century, physicians have witnessed a common enrichment of bifidobacteria in the feces 
of breast-fed infants that was readily associated with infant health status. Recent advances in 
bacterial genomics, metagenomics, and glycomics have helped explain the nature of this unique 
enrichment and enabled the tailored use of probiotic supplementation to restore missing bifido-
bacterial functions in at-risk infants. This review documents a 20-year span of discoveries that set 
the stage for the current use of human milk oligosaccharide-consuming bifidobacteria to benefi-
cially colonize, modulate, and protect the intestines of at-risk, human milk-fed, neonates. This 
review also presents a model for probiotic applications wherein bifidobacterial functions, in the 
form of colonization and HMO-related catabolic activity in situ, represent measurable metabolic 
outcomes by which probiotic efficacy can be scored toward improving infant health.
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Consider the fragility of a typical human neonate. 
To say the infant is born naïve is a stark under-
statement. Humans are born with immature senses, 
nascent cognitive abilities, little muscle coordina-
tion, an undeveloped immune system, and limited 
ability to garner food more than reflexive behaviors 
(sucking, rooting, etc.). Consequently, early post-
partum life for humans necessitates a bidirectional 
interaction within the mother-infant dyad to 
ensure a stable life trajectory for the infant. Given 
the overwhelming needs of the neonate ex utero, 
this stage truly represents a “fourth trimester,” 
a term coined by anthropologist Sheila Kitzinger1.

There is no question that this bidirectional inter-
action between mother and infant results in 
a bewildering number of new experiences for the 
infant; chief among them is the paradigm shift 
from predominantly intravenous nutrition facili-
tated by the placenta to enteral nutrition, produced 
by the mother in the form of breast milk, a fluid 
shaped by millions of years of mammalian evolu-
tion. While significant emphasis has been placed 

upon the role of milk in nourishment, evidence 
from various perspectives argues that acute protec-
tion of the infant from infection and inflammation 
is an equally compelling role for milk. The in utero 
environment is both supportive and protective, 
especially from microbial pathogens. Breaches in 
the microbial barrier to the infant’s environment 
are typically devastating to a pregnancy. At 
a relatively early stage of their development, 
human infants are born, dropped, figuratively and 
occasionally literally, into the mud. Their world is 
transformed, from a sterile environment to an 
environment teeming with microbes. It is this 
potentially catastrophic environmental transition 
that has placed a profound selective pressure on 
the genetics of lactation and the composition and 
functions of milk throughout mammalian evolu-
tion. The most recent investigations of milk sup-
port the hypothesis that milk is indeed far more 
than simple nourishment of the infant, it is a living, 
active, dynamic biological system sculpted by the 
evolutionary process to protect the infant from 
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infection and guide the development of both the 
infant’s innate and adaptive immune systems and 
the developing intestinal microbiome. It has taken 
scientists considerable time and resources to dis-
cover that human milk is so broadly protective with 
the parallel emergence of two very different strate-
gies. First, milk delivers antimicrobial proteins, 
peptides, lipids and enzymes as an awesome array 
of tactical weapons to protect the infant from 
pathogenic organisms. Second, milk components 
shape a symbiotic protective microbiome that 
influences and interacts with the developing 
immune system. What mothers have done is truly 
astonishing: recruit another kingdom of biology to 
protect their infants. This strategy poses a daunting 
tactical challenge for mothers: delivering in parallel 
antimicrobial components to the infant to ensure 
acute protection and milk components that sup-
port specific beneficial microbes within the infant. 
These components nourish not the infant but 
a unique bacterial population that provides meta-
bolites and suppresses more inflammatory 
microbes, all with the selective advantage of pro-
tecting the infant!

Early research on a breast milk-gut microbiome 
association

Since the early invention of the microscope by von 
Leeuwenhoek, scientists contemplated the utility of 
the bacteria they witnessed in feces. Early specula-
tions by Frerich in 1846 declared “the bacteria 
neither aid nor interfere with the digestive pro-
cesses” a view held by many at that time2. Between 
1890 and 1930 three separate lines of research 
emerged that suggested there was something unu-
sual about the gut microbiome of breast-fed infants. 
The first was microscopic observations by Henry 
Tissier3 of fecal smears from healthy breast-fed 
infants, revealing a near monoculture of “bifid” or 
Y-shaped bacteria, then termed Bacteria bifidus, an 
observation repeated frequently throughout the 
early 1900s2,4–6. This “microbiome” observation dif-
fered dramatically from infants who consumed 
bovine milk, or fermented bovine milks, whose 
feces contained an assortment of bacterial 
shapes2,5–7. The second observation was that breast- 
fed infant feces were consistently more acidic (pH ~  
5) by comparison to that from bovine milk-fed 

infants which was also more variable (pH ~ 6–8)8– 

12. The third observation was an early correlation 
drawn between infants that lack Bacteria bifidus- 
dominated feces and the increased occurrence of 
infant gut-borne pathogens3. This led to speculation 
that human milk, unlike bovine milk, contains 
a specific component that encouraged growth of 
Bacteria bifidus and that its metabolism was protec-
tive of the infant intestinal environment7. In one 
sense, this was an early observation of 
a “microbiome” deficiency among a “dysbiotic” 
cohort when compared to that in a healthy popula-
tion – a common strategy employed in comparative 
gut microbiome studies today.

If Bacteria bifidus were frequently observed in 
breastfed infant feces in the early 1900s, what com-
ponents of breast milk were they consuming that 
were lacking in bovine milk? Solving this mystery 
took additional decades of research recently elabo-
rated in an excellent historical review by Clemens 
Kunz13. In short, dissecting of both human and 
bovine milk revealed specific, non-protein compo-
nents, responsible for the growth of this key bac-
terium, which, at that time, was termed 
Lactobacillus bifidus 9,14 (see Box 1). Gorgy and 
coworkers used growth of L. bifidus on different 
fractions of human milk as a guide to reveal 
a “bifidus” factor that was separable from larger 
glycoconjugates (like mucins) and from smaller 
sugars like lactose15. This fraction contained 
fucose, galactose, and N-acetyl-glucosamine 

Box 1. A taxonomic evolution from Bacteria bifidus to 
Bifidobacterium longum subsp. infan-tis.

Microbial taxonomy is ever-changing. While Tissier3 identified the 
predominant bifid-shaped bacteria in the feces of breastfed infants, 
it took the trained eye of the famous microbiologist Sigurd Orla- 
Jensen in 1924180 to give a name to these unusual Y-shaped bacteria 
to the genus, Bifidobacterium. Adoption of the new genus name was 
not universal, however, and seminal work by Gyorgy14 defined 
similar infant isolates as Lactobacillus bifidus (later determined to 
be Bifidobacterium bifidum). Bifidobacterium infantis was first defined 
as a species in 1963181, with the species name becoming official in 
197361. This designation held until 2008, when Mattarelli and 
colleagues62 revised the species by combining then B. longum, 
B. infantis, and B. suis into three B. longum subspecies – subsp. 
longum, subsp. infantis and subsp. suis. This designation still stands 
today confirmed by numerous pangenomic analysis of the clade57,58. 
Although the shortened term “B. infantis” is still routinely used in the 
scientific literature to refer to the subspecies, the official name is 
Bifidobacterium longum subsp. infantis. Despite the advances in 
molecular taxonomy, this subspecies has been incorrectly desig-
nated for various commercial probiotic products170.
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constituents, components that were known asso-
ciated with blood group glycans, an aligned and 
emerging scientific area at the time. Subsequent 
research in the years between 1950 and 2000 docu-
mented the remarkable abundance of milk oligo-
saccharides in human milk by comparison to other 
milks, notably bovine milk16, as well as isolation 
and characterization of individual human milk oli-
gosaccharide (HMO) species such as fucosyllac-
tose, lacto-N-tetraose, lacto-N-fucopentaose, and 
difucosyllactose, among others13.

As analytical methods to characterize and purify 
HMOs advanced from 1950 to 2000, little cognate 
advance in the understanding of the intestinal bifi-
dobacteria that grow on them took place. During 
that same time, the subject of probiotics experi-
enced a renaissance with the growth of research 
on lactic acid bacteria associated with food fermen-
tations and gut health, however research on the 
interaction between HMOs and infant-borne bifi-
dobacteria was lacking. In the mid 2000s Katayama 
and colleagues characterized extracellular 
fucosidase17 and lacto-n-biosidase18 from 
Bifidobacterium bifidum and Bifidobacterium 
longum subsp. longum (herein termed BL. longum). 
If HMOs were truly the “bifidus factor” responsible 
for enrichment of bifidobacteria in infants, did all 
bifidobacterial species grow equally? Early efforts 
by Ward19,20 and LoCascio21,22 clearly showed that 
only select bifidobacterial strains grow well (i.e. to 
a high cell density) on HMO as a sole carbon 
source. Growth rates differed among bifidobacter-
ial species, however individual isolates of 
Bifidobacterium longum subsp. infantis (herein 
termed BL. infantis) emerged as the most consis-
tently robust HMO consumers, suggesting it was 
a characteristic of the subspecies22.

Key to elucidating the relationship between 
HMOs and bifidobacteria were innovations in pro-
filing of discrete HMO species driven by a series of 
advances in analytical chemistry techniques. The 
analytical challenge here is not readily appreciated. 
More than 300 HMO structures may be possible, 
although only about 100 are detectible from any 
individual mother’s milk. Unlike many other meta-
bolites, HMOs contain many isomers, compounds 
with the same composition but different structures 
possessing identical masses (e.g. lacto-n-neote-
traose vs. lacto-n-tetraose). Differentiating these 

isomers was the subject of years of challenging 
analytical chemistry, particularly as separating the 
similar structures requires new chromatographic 
techniques. Additionally, the large amount of lac-
tose in milk confounded clinical studies as it 
swamped any carbohydrate-specific methods of 
detection. Furthermore, the presence of peptides 
and proteins diminished the effectiveness of sensi-
tive analytical techniques such as mass spectrome-
try. Thus, rigorous isolation of HMO pools was 
necessary to eliminate contamination from lactose 
as well as from peptides and proteins. Enrichment 
of the HMOs was accomplished using porous gra-
phitized carbon (PGC), which released lactose in 
the void volume and retained proteins in the 
matrix23,24. This method was highly scalable allow-
ing further enrichment of HMOs in gram amounts 
for biological assays. Although this enrichment 
procedure is today taken for granted, it was key to 
determining the biological activity of HMOs as it 
rigorously removed lactose, which was 
a contaminant in many early experiments on the 
biological functions of HMOs.

Initially, matrix-assisted laser desorption/ioniza-
tion (MALDI) Fourier transform ion cyclotron reso-
nance mass spectrometry (FT ICR MS) was used for 
compositional profiling of HMOs25,26. This high- 
performance method for mass detection yielded 
compositions including the number of hexose, deox-
yhexose (fucose), and sialic acid, but no stereoche-
mical information. Coincidentally, the development 
of nanoflow methods elsewhere coincided with ear-
lier HMO studies. Development of a microfluidic 
(Lab-in-a-chip) device that included a PGC enrich-
ment column and PGC separation column allowing 
injection and separation of HMOs produced the 
most comprehensive method for separating and 
identifying HMO components27,28. Using this 
nanoLC chip with a PGC as stationary phase for 
chromatographic separation and quadrupole time- 
of-flight (QTOF) analyzers for mass detection, 
a comprehensive analysis of each individual compo-
nent could be routinely performed of HMOs in 
various settings including mother’s milk29–31, 
urine32, feces,32 and even blood33.

Using purified HMO pools, these methods also 
allowed precise profiling of which specific HMO 
structures were metabolized by bacteria34. Strains 
of BL. infantis appeared to possess a generally 
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similar HMO consumption, although some differ-
ences among strains were noted22,35. However, 
other bifidobacterial species isolates commonly 
found in the infant gut lacked this more robust 
phenotype. With the exception of B. bifidum 36, 
vigorous HMO consumption appears to be an epi-
sodic trait among isolates of BL. longum 37, B. breve 
38, B. pseudocatenulatum, 39,40 and 
B. kashiwanohense 41 where most strains of those 
species do not grow on major components of 
HMOs, notably the fucosylated and sialylated 
HMOs. Among the BL. longum, B. breve, 
B. kashiwnohense, and B. pseudocatenulatum iso-
lates that do robustly grow on HMOs, many con-
sume only a portion of the HMO pool by 
comparison to BL. infantis 42,43 (Figure 1 depicts 
the consumption profile of BL. infantis). In general, 
this results in consumption of some fucosylated 
HMOs and non-fucosylated/non-sialyated HMOs 
but generally not the sialylated HMOs.

Early work on B. bifidum isolates showed con-
sistently strong growth of HMOs, however it was 
noted that this species left degradation products of 
consumption, namely fucose and sialic acid, in the 
growth media suggesting extracellular hydrolysis of 
at least some HMOs17,19. Quite different consump-
tion mechanisms elaborated by BL. infantis and 
B. bifdum illustrate the external (B. bifidum) versus 
transport and internal (BL. infantis) consumption 
mechanisms among bifidobacteria (Figure 2). 
Additional studies clearly showed the external 
degradation mechanism by B. bifidum enables 
cross feeding of HMO components of other bifido-
bacteria in vitro44. Given numerous genera present 
in the infant gut microbiome have been shown to 
externally consume HMOs45,46 like B. bifidum, it 
remains unclear what contribution these other 
clades might provide to HMO cross-feeding net-
works. Notably, others have demonstrated how 
mucin47,48 or HMO49 degradation can release 

Figure 1. Bubble plot representation of simultaneous glycoprofiling of 78 different HMO structures differentially consumed by BL. 
infantis. The size of the bubble depicts the percent consumption of that specific HMO. Reproduced with permission from Strum et al.42 

Copyright (2012) American Chemical Society.
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sugar monomers that promote growth of enteric 
pathogens, suggesting a potential advantage to the 
host of transport and internal degradation of 
HMOs by BL. infantis.

An early mechanistic explanation for the robust 
growth of BL. infantis on HMO emerged from the 
genome sequence first generated in 200850. At the 
time, relatively few genes associated with specific 
HMO catabolism had been identified in any bifi-
dobacterial strain. Within BL. infantis the bulk of 
the HMO consumption genes were co-localized 
within a single 43 Kb locus. This HMO cluster 
contained all glycosyl hydrolases needed to cleave 
the various HMO linkages, namely intracellular 
fucosidase51, sialidase52, β-galactosidase53, and 
N-acetyl-β-hexosaminidase54 activities along with 
a number of associated ABC transporters55,56. This 
suite of genes linked to HMO catabolism was con-
firmed in other BL. infantis isolates35 and subse-
quent pan-genomic analyses aligned with this view 
that the subspecies diverged from other B. longum 
subspecies with HMO consumption as a common 

phenotype57–60. The genomic work also explained 
the lack of arabinose utilization by BL. infantis, 
a long-known phenotype that separates it from 
other B. longum subspecies61,62. Interestingly, the 
remnants of arabinose utilization genes are present 
in BL. infantis however they are disrupted by fuco-
sidase gene and associated permease, suggesting 
a unique specialization of this subspecies toward 
the breast milk niche and away from utilization of 
plant glycans50. A recent analysis of over 30,000 
metagenome assembled genomes (MAGs) from the 
infant gut microbiome clearly shows the unique 
presence of genes within the 43 Kb HMO cluster 
among several hundred MAGs of BL. infantis, vali-
dating these original observations59 (Figure 3). 
These researchers also noted a higher relative 
abundance of BL. infantis among all BL. longum 
genomes in infant metagenomes worldwide, sug-
gesting that large HMO cluster provides 
a competitive advantage for colonization of breast- 
fed infants. For more information on the different 

Figure 2. Prototypical strategies for HMO consumption by infant-borne bifidobacteria. GH, glycosyl hydrolase.
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mechanistic pathways of HMO consumption by 
infant-borne bifidobacteria, readers are referred to 
an excellent review by Katayama and colleagues63.

Are bifidobacteria a common presence in the 
breast-fed neonate gut or not? What’s old is 
new again

As insight emerged from early HMO-bifidobacterial 
work in the mid 2000s, a new technology came along 
that disrupted the field and put into question the 
importance of bifidobacteria in infants. Prior to the 
2000s, the consensus view was that bifidobacteria 
routinely represent a predominant sector of the 
breast-fed infant gut microbiome, a view derived 
from generations of scientists employing microscopic, 
culture-based observations and first-generation non- 
culture-based methods64. Typically, this bifidobacter-
ial predominance was observed after a short window 
early in lactation, wherein more aerobic taxa (i.e. 
enterococci, streptococci, staphylococci, Escherichia/ 
Shigella) initially dominate65,66. However, in the mid 
2000s, next-generation DNA sequencing provided 
a breathtaking new capacity to profile the assemblies 
of uncultured bacteria in the gut, thus providing 
unique insights into this ecosystem. In 2007, 
a seminal study by Pat Brown, David Relman, and 
colleagues at Stanford employed both 16S rRNA gene 
microarrays and sequencing of 16S rRNA gene 

amplicons to profile the microbiome of 14 
Californian infants over a period of 1 year67. This 
was the first in-depth look at the “uncultured micro-
biome” in the developing infant. However, despite 
probing this dataset in various ways, they did not 
witness predominance, or even much of presence, of 
bifidobacteria. At the time, the authors noted:

“Although it is conceivable that there are geo-
graphical or demographic differences in the pre-
valence of Bifidobacteria, we suspect that the 
emphasis on Bifidobacteria in studies and reviews 
of the infant GI microbiota may be out of pro-
portion to its prevalence, abundance, and rele-
vance to health”.

As it turned out, numerous studies have since 
shown geographic differences in bifidobacterial 
populations among infant gut microbiomes around 
the world, and their presence is increasingly linked 
to infant health status65,68–76. In a sense, this early 
confusion by the first “omics-driven” survey of the 
infant gut microbiome is a cautionary tale for 
scientists using new approaches to describe any 
well-studied system. With this new technology 
comes the potential for new insights driving an 
appropriate and compelling desire to re-interpret 
existing dogma. However, insight through that new 
window might still be hazy, and in this case, the 
dogma bit back.

Figure 3. Pan-genomic demonstration of the abundance of HMO related genes in BL. infantis by comparison to other infant-borne 
bifidobacterial species. (Reproduced with permission from Zeng et al.59).
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Prior to that seminal study, geographic differ-
ences among BL. infantis presence in infants were 
already a focus of attention. BL. infantis observed 
in Ghana cohorts was noted to be missing in New 
Zealand and United Kingdom cohorts77, and dif-
ferential immunological responses to these bifido-
bacterial strains were correlated to incidence of 
atopy64. Once the robust HMO consumption capa-
city of BL. infantis was established via phenotypic 
and genotypic means, more researchers examined 
the geographic distribution of the subspecies 
among various infant cohorts75,78–80. Notably, BL. 
infantis appears less prominent in USA and 
European cohorts70,81,82 in comparison to 
Bangladeshi83, rural Malawi84, rural Venezuela,84 

and Indonesian populations,80 suggesting 
a possible relationship to the level of industrializa-
tion experienced by a population. This geographic 
disparity was amplified in a recent survey by 
Sonnenburg and coworkers85 who compared infant 
metagenomes from the Hadza, a group of modern 
hunter-gatherers in sub-Saharan Africa, to aged- 
matched cohorts from Europe and the USA. 
These researchers also noted a high abundance of 
BL. infantis, and their HMO-utilization genes, 
among Hadza infants compared to infant cohorts 
from Europe or the USA. Fascinatingly, Jarvinen 
and coworkers recently identified a high popula-
tion of BL. infantis within infants from rural 
Mennonite communities by comparison to 
a neighboring community in New York,74 indicat-
ing regional pockets of high BL. infantis exist 
within the United States.

Why might the “champion” HMO-consuming bifi-
dobacterial subspecies86 be so differentially represented 
around the world? Sonnenburg and colleagues85 

argued that BL. infantis overrepresentation among 
more rural regions is a reflection of its loss due to 
a myriad of factors associated with modern lifestyles 
in more industrialized regions. Indeed, the loss of 
intestinal taxa associated with industrialization is now 
the focus of efforts to preserve our “ancestral” microbes 
with the eventual goal of employing these strains in 
intestinal health applications87,88. It is easy to compile 
the various ways modern lifestyles might influence the 
early infant microbiome, such as use of antibiotics89, 
birth delivery mode,90 and introduction of formula or 
complementary feeding91 among others. Such changes 
may even be magnified across generations, i.e. the 

grandmother born by cesarean section and formula 
fed in the 1960s may not have received an optimum 
colonization from her mother, thus was unable to pass 
the microbes selected by evolution to her daughter and 
granddaughter even though each was born vaginally 
and breast-fed. Recently, Taft and colleagues70 postu-
lated that the level of fecal bifidobacteria, and BL. 
infantis in particular, is associated with the regional 
history of breast-feeding practice wherein longer dura-
tions of breastfeeding by a population aligned with 
a higher level of BL. infantis.

Innovation – the translation of functional 
probiotics into the neonatal intensive care unit

Examined in various surveys, the gut microbiome of 
premature infants stands in stark difference to that 
observed in healthy breastfed infants92. This is, per-
haps, not surprising as the infant microbiome is 
shaped by early environmental exposures to 
microbes, which can be dramatically different in 
premature infants where mode of delivery, diet (i.e. 
breast milk or formula), use of antibiotics, respira-
tory support and use of proton pump inhibitors, 
among many other interventions, are factors that 
influence the early life gut microbiome93. In addi-
tion, essentially every aspect of the innate and adap-
tive immune systems of the preterm is immature, 
poorly regulated and dysfunctional including intest-
inal motility, acid production, apoptosis, tight junc-
tion composition, mucus production, secretion of 
antimicrobial peptides and mechanisms of regula-
tion of inflammation altering not only the gut 
microbiome but the host responses thereto. In gen-
eral, various surveys of premature infant gut micro-
biomes, both before and after the advent of next- 
generation sequencing microbiome analyses, have 
identified a lower overall diversity, increased relative 
abundance of Enterobacteriaceae and Enterococceae 
and decreased bifidobacterial populations as hall-
marks of premature infant microbiome94,95. By 
comparison to a healthy bifidobacterial-dominant, 
term breastfed infant gut microbiota, the “dysbiotic” 
premature infant microbiota is likely to trigger 
higher levels of endotoxin, a weakened barrier func-
tion, bacterial translocation, and inflammation96. 
These changes appear to be central to the pathogen-
esis of necrotizing enterocolitis (NEC) and late- 
onset sepsis in preterm infants.
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Even before the common use of the term “pro-
biotics”, these differences led to proposals to colo-
nize premature infants using “normal intestinal 
flora” in hopes of stabilizing their microbiome 
and preventing the onset of disease97. Of course, 
this was not a new concept as Tissier7 had dis-
cussed such an approach to treat infant disease 
more than 100 years ago. Early trials on probiotics 
in premature infants employed commercial strains 
of Lactobacillus, Bifidobacterium, or even the yeast 
Saccharomyces98,99. The most recent meta-analyses 
of prophylactic administration of probiotics in pre-
term infants include observational cohorts (30 stu-
dies, more than 77,000 preterm infants)100 and 
randomized controlled trials (56 trials, more than 
10,000 preterm infants),101 and have demonstrated 
significant decreases in NEC, late-onset sepsis, and 
death in this highly vulnerable population. Routine 
prophylactic administration to preterm infants var-
ies widely from high in Japan, Australia, New 
Zealand, Germany, and Scandinavia to moderate 
in Canada and low in the U.K. and U.S.102. Nearly 
all reviews cited the need for more information on 
strain specificity and mechanism of action as it is 
exceedingly difficult to compare probiotic trials of 
vastly different microbes. For example, it is likely 
that a mechanism of action of a probiotic yeast 
Saccharomyces cerevisiae (commonly called 
Saccharomyces boulardii although “boulardii” is 
not an accepted species name) is not the same as 
a probiotic BL. infantis given the microbes evolved 
within entirely different environments. Others 
argue that much more consideration on the safety 
of probiotics in fragile neonates is warranted103. 
A 2021 statement from the American Academy of 
Pediatrics echoed these concerns and cautioned 
against routine use of current commercial probio-
tics in premature infants citing lack of FDA- 
regulated, pharmaceutical-grade products and 
thus the potential for harm104, while the 
European Society for Pediatric Gastroenterology, 
Hepatology and Nutrition, the American 
Gastrointestinal Association and the World 
Health Organization examined the same data and 
provided conditional recommendations for routine 
probiotic use in preterm infants105. Box 2 presents 
some of the regulatory challenges pertinent to the 
study and implementation of probiotics in the U.S.

In addition to regulatory and safety concerns, key 
questions regarding prophylactic administration of 
probiotics to preterm infants include optimal strain 
or combination of strains, optimal dosing and 

Box 2. Oversight of U.S. probiotic clinical trials and future 
clinical directions

In 2004, Underwood and colleagues sought direction from the U.S. 
Food and Drug Administration (FDA) regarding clinical trials of pro-
biotics. At that time, the view of FDA was that a clinical trial could be 
performed without the oversight of the investigational new drug 
(IND) process if the primary outcome was not to prevent, treat, or 
mitigate a disease, but rather to alter the composition of the intest-
inal microbiota. The Institutional Review Board (IRB) at UC Davis 
agreed and approved the early trials116,189–192; the National 
Institutes of Health also agreed with this approach and provided 
funding. Subsequently, the FDA changed their guidance, requiring 
IND oversight for clinical trials of probiotics in preterm infants regard-
less of the measured outcome. Given the hesitation of probiotic 
manufacturers to participate in the IND process, it has become 
more challenging to perform studies of probiotics in U.S. NICUs, 
though analysis of samples from NICUs outside the U.S.193 and retro-
spective cohort studies117 are still possible. A large multi-center 
clinical trial of a Lactobacillus probiotic with IND oversight is nearing 
completion (Clincaltrials.gov NCT03978000), however to date there 
are currently no U.S. clinical trials with IND oversight of an HMO- 
consuming probiotic.

Recent network meta-analyses have summarized efficacy in the 
prevention of NEC, death, and sepsis of several different probiotic 
products93,97,187. Unfortunately, most of the clinical trials included in 
these meta-analyses were relatively small studies comparing a single 
probiotic product to placebo in different locations with differing baseline 
incidences of the primary outcomes. To answer the question of which 
probiotic and dose are most likely to decrease the risk of NEC, death, or 
sepsis, the ideal studies would be large multicenter cluster-randomized 
crossover trials adequately powered to look at NEC as an outcome (e.g. 
multiple NICUs randomized to probiotic A vs. B for 1–2 years then crossed 
over to the other probiotic). Smaller trials could still be helpful if they 
included one or more functional outcomes as proposed herein for 
example, a clinical trial including 100–200 preterm infants randomized 
to probiotic A or B would not be adequately powered for NEC as 
a primary outcome but could determine which probiotic lowered fecal 
pH or increased fecal lactate, acetate, or indole lactic acid. In the absence 
of such trials, the clinicians must consider whether routine probiotic 
prophylaxis for very preterm infants is justified and if so which of many 
probiotics is most likely to improve clinical outcomes. To address the first 
question, we have advocated for including the parents in this important 
discussion188 and considering the baseline rates of NEC and late-onset 
sepsis in a given NICU and the risks associated with probiotic adminis-
tration (including probiotic sepsis and the potential for contamination of 
commercial probiotics). To address the second question, key considera-
tions include evidence of clinical benefit (has the product been shown to 
be efficacious?), evidence of good-manufacturing practices in all aspects 
of probiotic production and distribution (is the manufacturer able to 
demonstrate reliable purity and viability of the probiotic strain(s)?), 
capacity of the local microbiology lab to detect the administered probio-
tic in infant blood cultures, and insights into the most effective antibiotic 
treatment options for the rare cases of invasive probiotic sepsis (most 
bifidobacteria are sensitive to penicillin, ampicillin, vancomycin, and 
clindamycin but resistant to aminoglycosides and metronidazole)194,195. 
Development and validation of biomarkers of microbiome and host gut 
function as advocated in this review would be a significant step forward 
in identifying infants at highest risk and probiotics with the highest 
potential benefit. The NEC society is a nonprofit organization and has 
prepared a probiotic toolkit for clinicians interested in considering pro-
biotic prophylaxis (NECSociety.org).
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timing of administration, and equally important, 
optimal performance criteria. What function does 
a probiotic need to perform to reliably benefit the 
neonate? Of equal importance, what diagnostics 
demonstrate that probiotics are performing their 
function(s)? To consider this we need to understand 
the ability of a microbe, any microbe, to reliably 
colonize the infant gut ecosystem. At birth, the 
infant gut ecosystem is mostly naïve to microbes 
with open food niches ripe for capture by environ-
mental microbes that enter into the system106. Thus, 
the early colonizers of the gut microbiome, in con-
cert with the food they have access to, determine the 
microbial constituents that initially persist. This 
concept is perhaps best exemplified in the seminal 
study by Jeff Gordon and colleagues who colonized 
germ-free mice with input “alien” microbial assem-
blies derived from human, zebrafish, termite, soil, 
and estuarine environments107. All alien microbial 
assemblies colonized the mouse's gastrointestinal 
tract with their populations differentially shaped 
over time by the obvious constraints of that parti-
cular host and its diet. Given that such diverse 
microbial assemblies colonized a mouse gut, it is 
not hard to image how an infant gut becomes colo-
nized by microbes in its environment. In short, 
a premature infant gut will be colonized with what-
ever microbes are available in the neonatal intensive 
care unit environment and that population will 
become constrained or amplified by diet, antibiotics, 
and host effects linked to that particular child108. 
One wonders if this “pioneer” effect is, in part, 
responsible for the generally beneficial effect seen 
in meta-analysis of probiotic trials in infants using 
quite different microbial species (or kingdoms!)109. 
Perhaps, these probiotics simply arrive early via 
supplementation into the premature infant gut, are 
shaped by the constraints of that setting, and even 
though they are “alien” to that environment, they 
delay arrival and/or establishment of other poten-
tially problematic clades, such as Enterobacteriaceae, 
Enterococceaceae and Staphylococcaceae.

Two potential desired functions for a probiotic 
used in premature infants stem from the two obser-
vations made by Tissier3 more than century ago; 
dominant growth of bifidobacteria in situ is linked 
to (a) breastfeeding and (b) cognate lowering of the 
colonic pH. As a mechanistic understanding of the 
growth of bifidobacteria on HMOs advanced in the 

last 20 years, an enhanced view of the beneficial 
role of gut microbiome-generated organic acids, 
short chain fatty acids (acetate, propionate, and 
butyrate) and lactic acid produced by the gut 
microbiome, also emerged110–113. In a landmark 
study, researchers in Japan demonstrated that pro-
duction of acetate in situ by metabolically active 
bifidobacteria was protective against an otherwise 
lethal Escherichia coli O157:H7 infection114. A key 
discovery was that only strains with the capacity to 
ferment fructose, the sugar present in the mouse 
chow, were protective. Indeed, such strains also 
persisted longer in the mouse intestine, and the 
authors postulated that increased persistence 
drove cognate increases in acetate and thus 
improved protection. For those studying the differ-
ential capacity of bifidobacteria to grow on HMOs, 
the connection to protection of neonates via 
a similar mechanism was obvious – robust bifido-
bacterial colonization driven by robust HMO fer-
mentation should promote robust protection. But 
was this hypothesis true in humans? Underwood 
and colleagues first demonstrated HMO- 
consuming BL. infantis readily colonized prema-
ture infants fed breast milk in contrast to 
Bifidobacterium animalis subsp. lactis, a strain 
that lacked HMO consumption capacity115. 
Notably, the BL. infantis strain was even detected 
in infants who were provided the B. animalis strain 
implying cross contamination and/or horizontal 
transfer by BL. infantis into the other infants 
although a similar transfer did not appear in the 
reverse direction by B. animalis. Subsequent work 
by the same group showed high-level colonization 
of healthy breast-fed term infants with supplemen-
tation of BL. infantis (EvivoTM, USA) in compar-
ison to no-probiotic controls116. Within days of 
supplementation, increases in total bifidobacteria 
in the feces rose from ~20% relative abundance to 
roughly 80% an increase driven exclusively by the 
supplemented BL. infantis. Once probiotic supple-
mentation ceased on day 28, this high level of BL. 
infantis persisted in the infant microbiome 
throughout the study suggesting that breastfeeding 
and its delivery of HMOs was promoting contin-
ued, stable, colonization. The fecal biochemistry of 
the BL. infantis-supplemented infants also changed 
dramatically. Fecal HMOs plummeted with 
a corresponding rise in fecal organic acids, acetate, 
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and lactate, the end products of BL. infantis fer-
mentation. Notably, the average fecal pH of the 
unsupplemented infants in this trial was 5.97 
while that for the supplemented infants was 5.15, 
a level that mirrors those witnessed in the early 
1900s in bifidobacterial-dominated babies of 
the day10. A follow-up study on the same cohort 
demonstrated the BL. infantis strain persisted at 
a high level in infants with continued breastfeeding 
for up to 1 year but the strain was less prevalent in 
subsets of the cohort who received some formula or 
antibiotic treatments115. A recent study demon-
strated that premature infants supplemented with 
BL. infantis showed reductions in fecal HMO and 
increases in fecal organic acids in comparison to 
a similar cohort supplemented with a non-HMO 
consuming Lactobacillus reuteri strain117.

Efforts by Hall and colleagues followed a similar 
strategy supplementing premature infants with 
a probiotic cocktail (Infloran, Italy) containing 
Lactobacillus acidophilus and B. bifidum118. 
Lactobacillus acidophilus is a poor HMO 
consumer119 and as discussed above, B. bifidum 
readily consumes HMOs via an external degrada-
tion scheme similar to that employed by 
Bacteroides species45,120. Human milk-fed prema-
ture infants supplemented in that cohort exhibited 
higher levels of B. bifidum and lower amounts of 
specific HMO species, namely two fucosyl-lactose 
isomers, in the feces. In addition, fecal acetate and 
lactate were higher, and the fecal pH was lower, in 
the supplemented infants suggesting HMO fer-
mentation by B. bifidum colonization. A study by 
Watkins and colleagues121 also employed Infloran 
and clearly showed colonization by the 
Bifidobacterium genus but did not differentiate 
species, so it is unclear if an HMO-consuming 
B. bifidum in the Infloran cocktail was indeed 
a colonizing strain. A recent study employing 
a different bifidobacterial cocktail (FloraBABY, 
Renew Life, USA) containing BL. infantis, 
B. bifidum, BL. longum, and B. breve strains showed 
engraftment of all strains in premature infants 
initially for several weeks after supplementation 
ceased, however loss of BL. infantis occurred by 6  
months of age115,122. This diversity in responses 
likely reflects the use of formula in these children 
(over 50% had some introduction of formula by 
then) wherein the more breast milk-glycan focused 

BL. infantis was more readily lost as formula is 
introduced115. Surprisingly, even though fecal 
metabolite analyses were run and differences 
between the probiotic treated and untreated pre-
mature infants were noted, the known fermenta-
tion products lactic acid, acetic acid, and 1,2 
propanediol (a fermentation product of fucose41 

that would be expected from bifidobacterial fer-
mentation of HMOs in these children) were not 
discussed. Recently, Beck and colleagues123 

employed metagenomic sequencing of a large 
cohort of preterm infants separately receiving 
either Infloran (B. bifidum and L. acidophilus) or 
Labinic (the U.K.; contains B. bifidum, BL. infantis 
and L. acidophilus) and clearly demonstrated that 
probiotic provision was associated with dramatic 
changes in the premature infant gut microbiome. 
Similar to the work by Alcon-Giner118 described 
above, this analysis showed higher persistence of 
bifidobacteria than L. acidophilus. However, only 
a single unknown metabolite was differentiated 
from an untargeted metabolomic analysis of stool 
from probiotic treated and untreated premature 
infants. Thus, it is unclear if robust HMO fermen-
tation and production of acetic and lactic acids by 
these input bifidobacterial probiotics was a factor.

While these studies in both term and prema-
ture infants demonstrated a high bifidobacterial 
colonization associated with the supplementa-
tion of an HMO-consuming bifidobacterial 
strain into neonates fed human milk, other fac-
tors could have influenced this outcome. 
Certainly, the pioneer effect, discussed above, 
likely influenced these outcomes. In addition, 
human milk contains many antimicrobial com-
pounds including lysozyme124, 
immunoglobins125, lactoferrin126, antimicrobial 
peptides127–129, glycerol monolaurate,130 and 
lactoperoxidase131 among others. Even HMOs 
can function as anti-infectives by binding to 
pathogens and deflecting their interaction with 
the host132. Moreover, some milk protein- 
derived peptides have been shown to directly 
stimulate bifidobacteria133,134. This constellation 
of anti- and pro-microbial activities likely play 
a role in shaping the development of infant gut 
microbiome and facilitating enrichment of bifi-
dobacteria. So how important is HMO- 
fermentation by key bifidobacteria in the 
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commonly witnessed enrichment of breastfed 
infants?

Insight into this question has recently emerged. 
Applications of bovine milk oligosaccharides 
(that are somewhat similar to HMOs135) and 
a B. animalis strain exhibited a synbiotic enrich-
ment in vitro, in fermentations of infant feces136. 
Heiss and colleagues137 demonstrated that provi-
sion of a single HMO (2’-fucosyllactose) along 
with a cognate 2’-fucosyllactose-consuming 
Bifidobacterium pseudocatenulatum strain39 

enabled a dramatic five-log increase in 
B. pseudocatenulatum in a wild-type mouse, 
reaching up to 60% relative abundance in the 
gut, an increase not witnessed with a different 
B. pseudocatenulatum strain that could not grow 
on 2’-fucosyllactose. Several aspects of this work 
are noteworthy. The dramatic enrichment of the 
B. pseudocatenulatum strain both persisted and 
increased after supplementation of the probiotic 
ceased as long as the 2’-fucosyllactose was pro-
vided. Once provision ceased, the supplemented 
B. pseudocatenulatum population rapidly 
declined. In addition, unlike the naïve infant 
gut, the adult wild-type mice employed in this 
study possessed a fully developed microbiome 
harboring normal colonization resistance138,139. 
Thus, the synbiotic application of HMO plus 
HMO-consuming bifidobacteria was able to over-
ride colonization resistance, indicating that HMO 
alone can provide an exclusive metabolic niche to 
the cognate bifidobacterial strain similar to that 
previously witnessed between porphyrin polysac-
charide and select Bacteroides strains140,141. 
Another paper recently reinforced this HMO- 
bifidobacterial synbiotic function, demonstrating 
that pools of purified HMOs combined with BL. 
infantis promoted engraftment of the strain in 
both human subjects and gnotobiotic mice con-
taining humanized gut microbiome142. Notably, 
a prior attempt by different authors but with 
a similar synbiotic combination (pooled HMOs 
and BL. infantis) did not show significant engraft-
ment in mice143. While more research is clearly 
needed in this area, it appears that under some 
conditions, HMOs alone are capable of enriching 
cognate HMO-consuming strains in the absence 
of priority effects or other microbiota modifying 

factors inherent to breast milk. Importantly, these 
findings suggest a route to engraft HMO- 
fermenting bifidobacteria in infants not receiving 
human milk. The increasing use of pasteurized 
donor human milk in preterm infants in the 
NICU is also relevant to this discussion as stan-
dard pasteurization techniques utilized by milk 
banks denature bioactive proteins and peptides, 
while HMOs are heat-resistant. It is likely that 
diminished activity of the previously noted 
human milk components (lactoferrin, immuno-
globulins, lactoferrin, antimicrobial peptides, and 
lactoperoxidase) in donor milk may be partially 
offset by the abundance of HMOs in donor milk 
(a pooled product including HMOs from 
a variety of women). Additional research asses-
sing the impact of individual HMOs, groups of 
HMOs (e.g. fucosylated vs. sialylated) and single 
donor vs. pooled donor milk on the gut micro-
biome and functional outcomes is needed.

Impact of bifidobacteria on infant health: data 
from preclinical models and infant biomarker 
studies

A century ago researchers linked the acid produced 
in the breast-fed infant colon to preservation of 
health status and, when absent, its association 
with disease. As stated by Marriott and Davidson 
in 192312

“In a number of instances, it was possible to study 
the same infants, first while normal, and subse-
quently when suffering from an infection. There 
was regularly a marked decrease in gastric acidity 
in the presence of infection”.

As discussed above, we now know much more of 
the mechanism by which bifidobacteria ferment 
HMOs, producing organic acids, and lowering colo-
nic pH. But does this action improve infant health? 
Henrick and colleagues144 compiled data on the fecal 
pH of breast-fed infants in studies performed over 
the last century, noting a clear increase in pH over 
time and hypothesized different connections to 
inflammation and immune disorders. Lower fecal 
pH in infants has been directly linked to reduced 
stunting145 and, recently, morbidity and mortality146 

in cohorts from less developed regions.
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While this reduction in pH is known to come from 
the production of acetic and lactic acids, other metabo-
lites produced by infant-borne bifidobacteria have been 
shown to beneficially modulate intestinal function. 
Indole lactic acid (ILA), a catabolite of tryptophan pro-
duced by many intestinal bacteria147, including most 
bifidobacteria148, is known to interact with the host 
aryl hydrocarbon receptors, a key factor in intestinal 
homeostasis acting on barrier function, epithelial 
renewal, and various immune cell types149. ILA is pre-
sent at a higher level in feces dominated by bifidobacteria 
(particularly BL. infantis) and is directly anti- 
inflammatory toward intestinal cells150–153. Henrick 
and colleagues154 showed that breastfed infants supple-
mented with BL. infantis had suppressed Th2 and Th17 
responses and increased interferon β response compared 
to no-probiotic controls. Fecal water from the supple-
mented infants contained high levels of ILA, which in 
turn upregulated immunostimulatory galectin-1 in Th2 
and Th17 cells during polarization. This work provides 
a nascent mechanistic rationale for why HMO-driven 
bifidobacterial enrichments in early life may be nega-
tively associated with immune-related diseases78,155. 
More recently, Laursen and colleagues151 discovered 
a larger range of aromatic lactic acids correlated with 
infant-borne bifidobacterial populations, all linked to 
a specific aromatic lactic dehydrogenase gene uniquely 
present in specific infant-borne species—BL. longum, 
B. breve, B. bifidum, and BL. infantis.

Direct demonstrations of the potential health benefits 
from active, HMO-consuming bifidobacterial probiotics 
have also emerged in both animal models and human 
trials. Jena and colleagues156 showed that synbiotic appli-
cations of BL. infantis and bovine milk oligosaccharides 
reversed nonalcoholic steatohepatitis in a mouse model. 
Heiss and colleagues137 demonstrated high-level coloni-
zation by B. pseudocatenulatum, driven by simultaneous 
2’-fucosyllactose provision, dramatically improved colitis 
within a mouse model. In both healthy and premature 
infant cohorts, early colonization by supplemented BL. 
infantis exhibited lowered fecal calprotectin and proin-
flammatory cytokines157 as well as reduced the incidence 
of antimicrobial resistance genes117,157–159.

Impact of bifidobacteria on infant health: data 
from clinical studies

Reports on the clinical outcomes of the use of vali-
dated, HMO-consuming, bifidobacterial probiotics 

in premature infants are relatively rare precisely 
because most probiotic strains employed in the 
NICU are not assessed for HMO-growth capacity. 
Indeed, some have speculated that the lack of effi-
cacy in reducing NEC in large clinical trial employ-
ing a B. breve strain160 was due, in part, to the lack of 
HMO consumption and colonization by the pro-
vided strain161,162. A number of studies using the 
probiotic product Infloran containing L. acidophilus 
and either BL. infantis or B. bifidum (bifidobacterial 
species that consume HMO) have been shown to 
reduce the risk of NEC163–169. While these studies 
looked at clinical outcomes, they did not score for 
bifidobacterial colonization or cognate changes in 
fecal biochemistries so no direct links to HMO- 
fermentation can be ascribed. Moreover, analysis of 
these studies can be confusing as they differentially 
record the same Infloran product as containing 
either species BL. infantis or B. bifidum. Around 
the same time, our group demonstrated that many 
probiotic products containing bifidobacterial species 
(particularly BL. infantis) actually had different spe-
cies in the product than the label indicated170. 
Contamination of NICU-focused commercial pro-
biotics with alternative bifidobacterial species was 
recently demonstrated by Beck et al.123 where 
a B. animalis species, not described on the product 
label, was observed both directly in the probiotic 
cocktail and in the supplemented infants. Clearly, 
a needed component of future NICU probiotic trials 
is precise validation of input probiotic species.

Recent observational studies employing pro-
biotics in the NICU provide more direct links 
that the HMO-bifidobacterial axis may be 
a factor to infant health outcomes. In 
a companion paper to the study by Alcon- 
Giner et al.118 that demonstrated functional evi-
dence of HMO-fermentation of the input 
B. bifidum, Robertson and colleagues162 followed 
a larger cohort of 982 premature infants over 
a 10-year period, the latter 5 years of which the 
infants received a probiotic which changed from 
a cocktail of B. bifidum and L. acidophilus 
(Infloran) to one containing B. bifidum, BL. 
infantis, and L. acidophilus (Labinic). As seen 
in the studies described above, NEC and late- 
onset sepsis rates were reduced with use of 
HMO-fermenting bifidobacterial probiotics, 
however reductions in all-cause mortality were 
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not statistically significant. In a separate study 
employing a BL. infantis probiotic (EvivoTM) 
Tobias and colleagues171 demonstrated statisti-
cally significant reductions in NEC incidence 
and NEC-associated mortality in very low birth-
weight infants (N = 483 in cohort), including an 
extremely low birth weight subgroup (Figure 4). 
Robust colonization and evidence of HMO fer-
mentation in situ for this specific probiotic have 
been previously validated115,116,159. Why might 
these two recent studies show differences in 
mortality? First, the overall incidence of NEC 
was higher in the NICU examined in the 
Tobias et al.171 study, which facilitated a lower 
overall cohort number needed to reach statistical 
significance per NEC outcomes. However, addi-
tional factors such as notable differences in pro-
biotic species, format (cocktail vs. single strain), 
formulation (HMO-activated strains vs. not) and 
dosage may have influenced these outcomes.

Finally, a recent study focused on infants with 
severe acute malnutrition (SAM) illustrates how 
a focus on the HMO-fermenting bifidobacteria 
can help repair growth functions in these at-risk 
populations as well. Barrett and colleagues161 

demonstrated that supplementation of BL. infan-
tis (EvivoTM) in breastfed infants with SAM 
resulted in significant colonization by the pro-
biotic strain which correlated with improved 
weight gain and reduced inflammation.

Summary

Research over the last 20 years has provided key 
insight into the molecular mechanism of consump-
tion of HMOs by infant-borne bifidobacteria as 
well as applications of these HMO-consuming 
strains in the NICU. This new mechanistic under-
standing of a very old observation – the enrichment 
of bifidobacteria in breastfed infants – now drives 
new questions that challenge the concept of 
a probiotic “function”. While numerous reviews 
detail the litany of potential mechanisms associated 
with probiotic functions,172,173 little research has 
scored those precise functions for specific host 
responses and beneficial clinical outcomes in actual 
human clinical trials employing these probiotics. 
Indeed, since most probiotics do not robustly colo-
nize the host, it is perhaps not surprising that 
efficacy in their use across a range of clinical targets 
is questioned174 (see Box 3). We posit that 
breastfed neonate presents an unusual case where 
an overt mechanistic link has emerged between 
select supplemented probiotics and improvement 
in infant health. The assembled research described 
herein argues select HMO-consuming bifidobac-
teria readily colonize the breast-fed infant gut and 
ferment HMOs to produce organic acids and other 
key metabolites (such as ILA) which, in turn, ben-
eficially condition the gastrointestinal environment 
and restrict entry by other, often problematic, 

Figure 4. NEC incidence and mortality in the observational study employing BL. infantis EVC001 (EvivoTM) or no probiotic controls. Left 
panel, NEC incidence by birth weight and cohort. Error bars show 95% CIs around the estimates. ***P < .001; **P < .01;†P < .1, Fisher 
exact test. Right panel, NEC-related mortality rates by birth weight and cohort. Error bars show 95% CIs around the estimates. *P < .05, 
Fisher exact test. Reproduced with permission from Tobias et al.171.
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microbial taxa. However, numerous questions, 
research gaps, and debates remain. Several such 
questions are elaborated below.

Question – Is a greater focus on probiotic 
function in neonates needed? In terms of the 
breast-fed infant gut, we argue that microbiota 
function and its impact on the host should be 
the chief focus in clinical cohorts assessing the 
use of probiotics in neonates. Each year brings 
ever more elaborate microbiome analyses of 
infant cohorts. Early work on severe acute mal-
nutrition by Jeff Gordon and coworkers 
employed the use of microbial composition as 
a measure of “gut microbiota age”, determining 
a persistent “immaturity” in the gut microbiota 
of afflicted infants175. This concept of using 
microbial taxa alone to score the chronological 
age or maturity of the gut microbiome infers 
a cognate functional component to that micro-
biome. However, in the absence of a scored 
microbiota function (pH, organic acids, etc.), 
how informative is this measurement in neo-
nates? The recent comprehensive metagenomic 
analysis of probiotic use in the NICU by Beck 
and colleagues123 deemed the probiotic-treated 
neonates to have experienced an “accelerated 

maturation” due to the presence of 
a supplemented bifidobacterial population. 
However, that same cohort did not witness sig-
nificant differences in fecal organic acids. Is the 
mere presence of the supplemented probiotic in 
the naïve infant gut all that is needed for proper 
maturation? If so, would continuous delivery of 
nonviable (i.e. dead) bifidobacterial probiotics 
have performed the same function? Perhaps, 
the unusual abundance of HMOs in human 
breast milk can now be explained by the result-
ing metabolic output of a robust fermenter-like 
BL. infantis and the functions of those metabo-
lites within the intestine of neonates.

A crude, but useful, analogy emerges from the 
use of starter cultures in food and beverage fer-
mentations. For centuries, wine and dairy fermen-
tations were carried out wherein the indigenous 
microbiota (yeast and lactic acid bacteria, respec-
tively) performed the main fermentations. 
However, advances in fermentation science 
brought the use of select starter cultures that, 
upon supplementation, far more reproducibly 
drove those fermentations. Further sophistication 
in starter culture science drove novel strain selec-
tion as well as strain inoculation and management 
practices, all for the purpose of maintaining 
a robust fermentation, a function that was easily 
measured (e.g., alcohol or acid production or sugar 
loss). In these industries, a real-time assessment of 
the fermentation is the norm and any fermentation 
that lacks proper functional outputs is considered 
at risk and remediation would start immediately. 
Now that we better understand the factors behind 
HMO-driven bifidobacterial colonization of 
infants, should the NICU adopt a similar approach 
with premature infants? We argue that there is 
enough evidence to suggest a path for the NICU 
to routinely track such fecal fermentation products 
(e.g. decreased fecal HMOs, increased fecal organic 
acids, decreased fecal pH) as a means to provide 
clinicians with critical real-time insight into the 
nature of the gut fermentation occurring in pre-
mature infants. Such routine measurements will 
similarly provide data the scientific community 
needs to accurately and quantitatively compare 
and contrast probiotic trials and ultimately provide 
an evidential basis to enhance effective treatments.

Box 3. The problem with probiotics.

Since the early proposal as a general concept by Metchnikov182 to 
the development of the first commercial product by Shirota183, 
probiotics have been simultaneously popular and 
controversial174,184–186. The current definition of a probiotic as 
“Live microorganisms that, when administered in adequate 
amounts, confer a health benefit on the host” originated in 
2001 by FAO/WHO178. Many current best-selling probiotics were 
developed decades ago wherein appropriate commercial concerns 
(oxygen tolerance, fermentation scale up, strain stability, shelf life) 
were important considerations for their commercialization in order 
to deliver a live microbe in “adequate amounts”. Efficacy toward 
a specific health target was not the sole criteria early on, but 
rather a more general effort to mitigate “dysbiosis”, typically in 
the form of increased presence of the probiotic and thus lowering 
of other pathobiont clades. In general, commercial probiotics have 
been shown not to persist, much less increase, in the host beyond 
supplementation and various probiotic trials have not shown 
significant alterations in the host gut microbiome187. This failure 
of probiotics to contribute quantitatively to the host microbiome 
is not surprising. Colonization resistance inherent to established 
gut microbiomes provides protection from exogenous bacterial 
interlopers, due in part to the established and resilient food net-
works that form within a health gut ecosystem. Suez and 
coworkers174 proposed that the lack of persistence, level of colo-
nization and associated mucosal interaction is a likely factor 
impacting efficacy in probiotic trials.
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Question – What version of probiotic(s) should 
be used in the NICU? As described above, there are 
various probiotic formats containing HMO- 
consuming strains. Two main themes emerge: (a) 
use of single strains versus a cocktail of strains and 
(b) employing strains that catabolize HMO externally 
(i.e. B. bifidum type) vs. internally (i.e. BL. infantis 
type) (as discussed previously, see Figure 2). Strain 
cocktails are a common format for probiotics. The 
general rationale for cocktails is obvious – they pro-
vide more functions and/or duplications of functions 
in the face of different host environments. In a sense, 
this mirrors the concept that multiplicity and diversity 
of function providing a robust resilience to the adult 
human gut microbiome to meet a diversity of diets 
and ecological interfaces (e.g. bacteriocins and bacter-
iophage), among other interactions. However, the 
naïve infant gut is a unique environment provided 
with a unique food, breast milk, which itself is selective 
for HMO-consuming bacteria, primarily bifidobac-
teria. Recent work from Katayama and colleagues 
provides a nascent view of how HMOs might drive 
different bifidobacterial communities to form176. The 
ability to supplement HMO-consuming bifidobac-
teria early in life enables neonatologists to direct 
a bifidobacterial community structure of the early 
breast-fed infant gut123. Choices of internal vs. exter-
nal HMO degradation formats (Figure 2) will also 
likely influence community structure as external 
degradation would be expected to prompt cross- 
feeding interactions among other gut microbes, be 
they good40,44 or bad49. As argued above, perhaps 
a better rationale for the use of any probiotic is 
one of function. Which format more reproduci-
bly delivers the most robust HMO-fermentation 
in situ? As this is readily measured, more research 
on such functional outputs of NICU probiotic use 
will help decipher this question. Finally, the use of 
non-HMO consuming species, or postbiotics177, 
in breastfed infants and approaches to optimizing 
the microbiota of formula-fed infants need more 
research on possible mechanistic rationales for 
their efficacy.

Conclusion

In the last two decades the field of microbiology has 
experienced an incredible transformation. The advent 
of “omics” tools, particularly next-generation 

sequencing to determine uncultured microbial com-
munities has provided a wealth of insight into our gut 
microbiome and its function. At the same time, general 
knowledge of probiotics and their use by both physi-
cians and the public has increased dramatically,178 yet 
significant challenges to their clinical efficacy 
remain174. The use of HMO-consuming bifidobacterial 
probiotics in neonates represents a novel, tailored, use 
where the direct function of the implanted probiotic is 
readily observed and can be related to clinical efficacy. 
We propose that similarly “functional” synbiotic                                       

Box 4. The route from discovery to invention to translation.

“To him who devotes his life to science nothing can give more happiness 
than increasing the number of discoveries, but his cup of joy is full when 
the results of his studies immediately find practical applications.” Louis 
Pasteur 188

The central goal of research in the life sciences is discovery; 
how does the world work? Breakthroughs in our understanding of 
how biology functions from atomic-level mechanisms to ecological 
behavior of entire communities do not, however, immediately 
identify how such discoveries can be translated into practice. 
Invention is the cognitive process of recognizing a utility that can 
be provided by explicitly acting upon new understanding. 
Scientists, innovators, and regulators alike are faced with major 
challenges in building utility from the discoveries of microbiome 
research. Indeed, for the average microbiologist or neonatologist 
embracing a new discovery, application is not always so easily 
recognizable. This was the case with the UC Davis Milk Bioactives 
group (initiated by authors German, Lebrilla and Mills), 
a multidisciplinary team that examined the HMO-bifidobacterial 
axis. Early discovery of specific bifidobacteria, most notably BL. 
infantis, consume the bulk of HMOs in mother’s milk21 suggested 
a unique partnership between these abundant oligosaccharides 
and specific bifidobacterial taxa. The initial excitement of this 
discovery was the normal academic joy of recognizing a clear 
and compelling research path to identify the mechanism under-
lying this phenotype. However, finding a utility for this phenotype 
was not obvious at the time. It was with the connection to 
neonatologist (and coauthor) Mark Underwood and witnessing 
premature infants in his NICU suffering from NEC and infections 
that the “real world” intersected with our otherwise lofty academic 
pursuits. The Milk Bioactives group immediately recognized that, 
BL. infantis, the “champion” HMO consumer, should be able to 
populate the premature infant gut, reduce suffering, and improve 
outcomes. As a consequence, the company Evolve Biosciences 
(now Infinant Health) was launched jointly by the University of 
California, Davis, and the scientists responsible for the discovery 
research. To date, over 50,000 infants have been supplemented 
with BL. infantis EVC001.

What were the key elements that facilitated this translation? First 
and foremost, it was the interdisciplinary nature of the UCD Milk 
Bioactives group. The historic academic model of siloed research can 
be an anathema to the kind of integrated thinking that advances 
understanding of complex biology, but it also mutes innovative 
thinking. A second component was the increasing recognition that 
translation in the form of entrepreneurial activity is a required (and 
very much desired) component of a University’s public service. This 
has not always been the case, particularly at land grant universities 
where translation was/is typically done in the form of publishing and 
extension. Thankfully, the fruits of this new thinking are being rea-
lized and the field of microbiome science has no shortage of uni-
versity-fostered startup companies addressing a range of 
applications.
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applications179 may drive new discoveries, inventions 
and translations (see Box 4) to advance human health 
in a range of settings.
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