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The critical factor determining the in vivo effect of bone repair materials is the microenvironment, which 
greatly depends on their abilities to promote vascularization and bone formation. However, implant 
materials are far from ideal candidates for guiding bone regeneration due to their deficient angiogenic 
and osteogenic microenvironments. Herein, a double-network composite hydrogel combining vascular 
endothelial growth factor (VEGF)-mimetic peptide with hydroxyapatite (HA) precursor was developed to 
build an osteogenic microenvironment for bone repair. The hydrogel was prepared by mixing acrylated 
β-cyclodextrins and octacalcium phosphate (OCP), an HA precursor, with gelatin solution, followed by 
ultraviolet photo-crosslinking. To improve the angiogenic potential of the hydrogel, QK, a VEGF-mimicking 
peptide, was loaded in acrylated β-cyclodextrins. The QK-loaded hydrogel promoted tube formation of 
human umbilical vein endothelial cells and upregulated the expression of angiogenesis-related genes, such 
as Flt1, Kdr, and VEGF, in bone marrow mesenchymal stem cells. Moreover, QK could recruit bone marrow 
mesenchymal stem cells. Furthermore, OCP in the composite hydrogel could be transformed into HA and 
release calcium ions facilitating bone regeneration. The double-network composite hydrogel integrated 
QK and OCP showed obvious osteoinductive activity. The results of animal experiments showed that the 
composite hydrogel enhanced bone regeneration in skull defects of rats, due to perfect synergistic effects 
of QK and OCP on vascularized bone regeneration. In summary, improving the angiogenic and osteogenic 
microenvironments by our double-network composite hydrogel shows promising prospects for bone repair.

Introduction

Bone is a crucial and multifunctional organ. Orthopedic dis-
ease is a common complication that can be caused by trauma, 
bone tumor, and other pathological factors [1]. After injury, 
bone has inherent capabilities for regeneration, but fails to 
achieve self-healing if the size of defects is large. Currently, 
autografts and allografts are widely considered as the gold 

standard for bone regeneration, but the high risks of infection 
and rejection, limited supply, and donor site morbidity severely 
limit the efforts of this bone therapy [2,3]. In recent decades, 
bone tissue engineering has emerged as a promising strategy 
for bone reconstruction [3,4]. In bone tissue engineering, bio-
material can act as a temporary matrix that provides a favorable 
microenvironment and suitable structure for cell growth and 
bone formation [5]. Furthermore, the combination of scaffolds 
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and growth factors or drugs also shows excellent osteoinductive 
activity [3,6]. However, these materials are far from ideal can-
didates for guiding bone regeneration due to their deficient 
insufficient angiogenesis and osteogenic inductivity.

Bone is a highly vascularized tissue, and the skeletal vascular 
network plays a key role in bone development and repair [7–10]. 
After bone injury, the invasion of growing blood vessels is an 
important step in the process of osteogenesis [8,11,12]. Apart 
from exchanging nutrients, gases, hormones, electrolytes, and 
wastes, blood vessels are also involved in bone development, 
regeneration, and hematopoiesis [13]. Various studies have 
shown the importance of neovascularization for bone repair 
and regeneration [14–17]. After bone injury, the ingrowth of 
new blood vessels is important for the invasion of mesenchymal 
stem cells, which then promote osteogenic differentiation of 
cells and bone regeneration [18]. Furthermore, the blood vessels 
at injured sites are ruptured, and the blood flow in the total 
bone is reduced by 50% after bone injury, leading to a marked 
drop in oxygen tension inside the medullary [19]. Subsequently, 
the hypoxic microenvironment is formed at bone injury sites. 
The hypoxic microenvironment of bone injury could affect the 
genetic expression of osteoprogenitor cells [20], thus inhibiting 
osteogenic differentiation of cells and delaying bone repair. 
Therefore, developing an angiogenic microenvironment by the 
scaffolds that accelerates angiogenesis is an urgent need for 
bone formation.

Angiogenic growth factors are expressed by various cells and 
can combine with their respective receptors, inducing the migra-
tion and invasion of endothelial cells, and resulting in the forma-
tion of new blood vessels [18]. Therefore, the sustained delivery 
of angiogenic growth factors, such as the vascular endothelial 
growth factor (VEGF), is crucial to angiogenesis [21,22]. A scaf-
fold that releases the basic fibroblast growth factor (bFGF) also 
effectively promotes the angiogenesis of periodontal ligament 
stem cells and eventually facilitates satisfactory periodontal bone 
regeneration, further demonstrating the key role of angiogenesis 
for bone formation [23]. Moreover, VEGF also promotes recruit-
ment of cells to bone injury sites, participating in the process of 
bone repair, such as hematoma, endochondral bone formation, 
and intramembranous bone formation [22,24,25]. However, the 
use of growth factor proteins has several inherent disadvantages, 
such as lower stability, immunogenicity, and easy denaturation. 
Therefore, using short peptides for respective receptors instead 
of whole recombinant proteins will elude various side effects and 
minimize costs [26]. As a VEGF-mimicking peptide, QK is a 
synthetic 15-amino-acid peptide containing the 17–25 alpha 
region of the VEGF165 protein. Based on the region of VEGF, 
QK binds and activates both KDR (VEGFR-2) and Flt-1 (VEGFR-
1) receptors, and further activates the same angiogenic response 
as VEGF does [27,28]. In a previous study, QK could covalently 
bind to a poly(ethylene glycol) hydrogel, enhancing vessel branch 
points and vessel density and promoting angiogenesis in tissue- 
engineered constructs [27]. Furthermore, it could also graft to 
polyamide 66 polymer chains to strengthen angiogenesis and 
bone formation [29]. Therefore, a scaffold that can continuously 
deliver QK may act as an excellent candidate to promote angio-
genesis for bone regeneration.

In addition to angiogenesis, the bone tissue scaffolds with 
superior osteogenic microenvironment are more conducive to 
osteogenic differentiation of bone marrow mesenchymal stem 
cells (BMSCs) [30,31]. Bone is a kind of hard connective tissue 
made of cells, fibers, and the matrix, which contains abundant 

inorganic minerals, such as calcium phosphate (CaP) apatite 
crystals [32]. Octacalcium phosphate (OCP) is an acidic CaP 
and shows higher osteoconductive properties compared to 
hydroxyapatite (HA) and Ca-deficient HA or other precursors 
to HA [33,34]. Under physiological pH, OCP tends to be trans-
formed into HA and promotes osteogenic differentiation of 
stem cells. In addition, OCP can be biodegraded through direct 
resorption by osteoclast-like cells, which have faster degrada-
tion than HA [34]. Various studies have demonstrated the excel-
lent osteoinductive activity of OCP. For example, Saito et al. 
[35] found that OCP stimulated early osteocyte differentiation 
in the bone matrix. In addition, Amann et al. [36] fabricated 
sponge-like chitosan-collagen-OCP scaffolds, and OCP at the 
top of the bony layer showed excellent osteogenic induction. 
Hence, the combination of OCP and bone tissue scaffold can 
realize better osteoinductive activity for bone regeneration.

In this study, we added acrylated β-cyclodextrins (Ac-β-CD) 
to gelatin to fabricate a double-network hydrogel through the 
chemical crosslinking of Ac-β-CD and physical crosslinking 
by host–guest interactions between CD and gelatin. To build 
an angiogenic and osteogenic microenvironment for bone 
repair, QK, which is a VEGF-mimicking peptide, and OCP, 
which is an HA precursor and could release calcium ions 
(Ca2+), were introduced into the double-network hydrogel. The 
property of the double-network hydrogel and release behavior 
of QK will be characterized. Both in vitro angiogenesis and 
osteogenesis abilities of the composite hydrogels will be eval-
uated. The in vivo angiogenesis ability will be detected in the 
subcutaneous implantation experiment. The repair of calvarial 
defects of rats by the double-network composite hydrogel will 
be evaluated (Fig. 1).

Results

Characterizations of the double-network  
composite hydrogels
To prepare the composite hydrogels, we added gelatin and pre-
pared Ac-β-CD into phosphate buffered saline (PBS) solution 
and completely dissolved it at 37 °C, after which the initiators 
2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone 
(I2959) and OCP were added. After ultraviolet (UV) crosslink-
ing, the composite hydrogels were obtained. As shown in Fig. 
2A, the obtained hydrogels of G and GP both exhibited inter-
connected macroporous structures, and the pore size was 
increased with the OCP addition. The OCP that showed sheet 
structure (Fig. S1A) was distributed uniformly in composite 
hydrogels. As expected, the mechanical property of GP was 
increased to 1.11 ± 0.02 kPa (Fig. 2B). Moreover, as shown in 
Fig. S2, G and GP composite hydrogels could load QK, and the 
QK-loading efficiency of G and GP hydrogels was 39.9% ± 6.2% 
and 49.6% ± 15.8%, respectively. Figure 2C shows that about 
92.99% ± 3.02% and 91.24% ± 1.03% of QK were released from 
G and GP within 21 days, respectively. The drug release tests 
present that the release rate of QK from G and GP was parallel, 
exhibiting no significant difference.

To observe whether OCP can be converted into HA, G and 
GP composite hydrogels were immersed into PBS for 28 days, 
and the morphology of G and GP was observed. Scanning elec-
tron microscopy (SEM) images show that a large number of 
calcium minerals emerged in the GP composite hydrogel (Fig. 
S3). To determine the produced calcium minerals, the x-ray 
diffractometer (XRD) measurement was performed. The result 
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shows that OCP in the GP composite hydrogel barely converted 
into HA after 14 days while producing a large amount of HA 
after incubation in PBS for 28 days (Fig. 2D). Moreover, the GP 
composite hydrogel sustained released Ca2+; the cumulative 
release of Ca2+ reached 31.1 ± 2.1 μg ml−1, which was signif-
icantly higher than that of the G composite hydrogel (6.6 ± 
0.2 μg ml−1) (Fig. 2E). The results of the swelling property reveal 
that the G composite hydrogel showed a higher swelling ratio 
than GP after 24 h. The results of degradation measurement 
demonstrate that the weight of G and GP barely changed in 
PBS solution after 9 days (Fig. S4). Therefore, OCP may be an 
excellent candidate for bone repair due to its conversion into 
HA and sustained Ca2+ release properties.

In vitro biocompatibility tests of the composite 
hydrogels
Rat BMSCs were used to determine the biocompatibility of G, 
GP, and QK-loaded hydrogels. The addition of OCP in G 
showed negligible cytotoxicity, indicating that GP composite 
hydrogels had good biocompatibility and could fabricate cell 
growth (Fig. 3A and B). The results of CCK8 demonstrate that 
after loading QK, GQ and GPQ also had no toxic effects and 
even promoted cell proliferation, and the number of cells on 
GQ and GPQ samples was higher (Fig. S5). Both the BMSCs 
and human umbilical vein endothelial cells (HUVECs) could 
maintain the high viability on all hydrogels, which provided 
basic conditions for further application.

Fig. 1. Schematic illustration of double-network composite hydrogels that build an angiogenic and osteogenic microenvironment for bone repair. The QK released from the 
composite hydrogel recruits BMSCs to the sites of bone injury and directly promotes angiogenesis, then Ca2+ and HA induce osteogenic differentiation of BMSCs and promote 
bone formation.
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Fig. 2. Characteristics of hydrogels. (A) SEM images of the cross section of hydrogels. (B) Compressive modulus of hydrogels. (C) QK release curves of hydrogels. (D) XRD 
measurement of the GP composite hydrogel. (E) Ca2+ release curves of hydrogels. *P < 0.05.
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Fig. 3. Growth of BMSCs and HUVECs on the surface of hydrogels. (A) Dil-labeled BMSCs cultured on the hydrogel surface after 3 days. (B) Morphology of HUVECs on the 
hydrogel surface after 2 days.
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Characterizations of cell migration
To determine the cell recruitment effect of the hydrogels, we 
performed the transwell assay in vitro. The results show that 
G and GP hydrogels had a faint ability to recruit cells, and the 
cells in G and GP groups were significantly lower. In contrast, 
the cell recruitment effect of hydrogels was significantly 
enhanced after loading QK. The recruited cells in GQ were 
about 3.5-fold those of G hydrogels, and GPQ composite 
hydrogels likewise showed an excellent cell recruitment effect 
(Fig. 4A and B). Furthermore, we carried out a cell scratch 
assay to further verify the cell recruitment effect of hydrogels. 
After 6 h of culture, we found that the wound-healing percent-
age of all groups reached about 10%, exhibiting no significant 
difference. However, the wound-healing percentage of G and 
GP hydrogels reached about 40% after 24 h of culture, which 
was similar to the Ctrl (C) group and showed no evident cell 
migration effect. In addition, the wound-healing percentage 
of GQ and GPQ hydrogels reached approximately 57% and 
50%, respectively, indicating that QK significantly promoted 
cell migration (Fig. 4C and D) and exhibited excellent cell 
recruitment effects for tissue repair.

Characterizations of vascularization
Angiogenesis was evaluated by the tube formation assay on 
the Matrigel. After 4 h, a primary vascular-like network struc-
ture was induced with QK-loading groups (GQ and GPQ), 
and the total length of the formed tubular structures by GQ 
and GPQ composite hydrogels reached about 5.8 and 6 mm/
mm2, respectively, which was significantly longer than G and 
GP hydrogels (G: 3 mm/mm2, GP: 3.1 mm/mm2) (Fig. 5A 
and B). Moreover, the hematoxylin–eosin (H&E) staining of 
hydrogels that were implanted into subcutaneous tissue of 
rats showed that GQ and GPQ composite hydrogels signifi-
cantly promoted angiogenesis. Five days after implantation, 
the area of new blood vessels in GQ and GPQ groups was 
about 2.0% ± 0.1% and 2.2% ± 0.2%, respectively, which was 
higher than G (0.4% ± 0.2%) and GP (0.6% ± 0.1%). The area 
of new blood vessels in GQ and GPQ groups reached about 
2.0% ± 0.2% and 2.3% ± 0.3% after 10 days of implantation, 
demonstrating the excellent property of QK for angiogenesis 
(Fig. 5C and D). We also visualized the blood vessel formation 
inside the hydrogels after intravenous injection of solution 
containing fluorescein isothiocyanate–dextran. After 10 days 
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of implantation, we found that the blood vessel formation in 
GPQ composite hydrogels was larger in size and had distinct 
branches, while the blood vessels in GP group were very small 
and with few branches (Fig. 5E).

To further examine the in vitro angiogenic potential of 
hydrogels, real-time polymerase chain reaction (PCR) was 
carried out to evaluate the expression of angiogenesis-related 
genes. The results show that QK-loading hydrogels (GQ and 
GPQ) could upregulate the expression of Flt1, Kdr, and VEGF, 
further indicating the excellent angiogenic activity produced 
by QK (Fig. 6).

Characterizations of in vitro osteoinductive activity
To determine the in vitro osteogenic activity of BMSCs cultured 
with hydrogels, alkaline phosphatase (ALP) staining, alizarin 
red staining, and the expression of osteogenesis-related genes 
were tested. The results show that G and GQ hydrogels could 
slightly upregulate the expression of ALP, while GP and GPQ 
composite hydrogels significantly promoted ALP expression 
(Fig. 7A and Fig. S6A). After 21 days, plenty of calcium nodules 
were produced in the GPQ group. GP composite hydrogels also 
produced abundant calcium deposition, which was more than 
G and GQ hydrogels (Fig. 7B and Fig. S6B).
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Quantitative PCR results show that GPQ hydrogels obvi-
ously promoted the expression of osteogenic genes, such as 
Alpl, Spp1, and Runx2. Compared with G hydrogels, GP and 
GQ upregulated the expression of Spp1 and Runx2. After 21 
days, GPQ composite hydrogels could also promote the 
expression of Bglap and Col1a1, demonstrating the excellent 
effects for inducing osteogenic differentiation of BMSCs 
(Fig. 7C).

Promotion of in vivo bone formation by the  
double-network composite hydrogels
To verify the bone repair ability of our fabricated hydrogels, a 
rat cranial defect model was introduced. After 8 weeks of sur-
gery, there was barely observable new bone formed in Ctrl and 
G groups. Less new bone was formed in GP and GQ groups, 
while obvious new bone was formed in the GPQ group, demon-
strating a significant synergistic effect of OCP and QK for bone 
repair (Fig. 8A). The percent bone volume (BV/TV) indicates 
that the new bone in the GPQ group reached about 30%. The 
new bone repaired by GPQ completely filled the whole dam-
aged area, and the BV/TV value reached about 37% at 16 weeks 
after operation (Fig. 8B). However, the bone mineral density 
of samples repaired by composite hydrogels exhibited no dif-
ference (Fig. S7). H&E staining shows that new bone formation 
and bone maturation in the GPQ group were better than those 
in other groups (Fig. 8C).

Discussion
Bone tissue plays a key role in providing a framework for attach-
ment of muscles and other tissues, protecting internal organs from 
damage, and maintaining calcium homeostasis and acid/base 
buffering [37,38]. Although bone has a high self-healing capacity 
to realize regeneration, it is unable to achieve self- regeneration if 

the defects are larger than critical-size defects. Currently, bone 
tissue engineering is considered an alternative solution for repair-
ing large defects.

There have been plenty of scaffolds that show excellent osteo-
inductive activity, but these materials are far from ideal candi-
dates for guiding bone regeneration due to their insufficient 
angiogenesis and osteogenesis. Herein, we attempt to build a 
favorable osteogenic microenvironment by combining VEGF-
mimetic peptide and HA precursor with the hydrogels to pro-
mote both vascularization and osteogenesis capability. Compared 
with the other vascularization strategies, the method of loading 
QK is simple but has the same function as VEGF. Moreover, QK 
could recruit BMSCs to bone injury sites. To build an osteogenic 
microenvironment, the OCP, an HA precursor, is introduced 
into the hydrogels. Furthermore, OCP in the composite hydro-
gels could transform into HA and release calcium ions, which 
would be involved in bone regeneration. The double-network 
composite hydrogel integrated QK and OCP showed obvious 
osteoinductive activity.

Hydrogel, a tissue engineering scaffold with a very high water 
content, can simulate extracellular matrix to provide a suitable 
environment for cell survival, proliferation, and differentiation 
[39,40]. Moreover, hydrogel can also fill the damaged area per-
fectly and promote bone repair [41]. In this study, Ac-β-CD 
and OCP were added into gelatin to fabricate double-network 
composite hydrogels after UV-initiated polymerization. The 
obtained hydrogels exhibited an interconnected macroporous 
structure, which was beneficial to nutrient exchange and met-
abolic waste removal. As previously reported [42], G hydrogels 
showed excellent Young’s modulus due to photo-crosslinking 
[43]. Native gelatin can spontaneously form hydrogels at low 
temperatures (<30 °C) due to physical crosslinking; however, 
the triple helix of gelatin is disrupted at temperatures above 
30 °C, showing extremely labile performance and limiting their 
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application for tissue engineering [44]. In this study, the added 
β-CD does 2 things. On the one hand, it can form host–guest 
complexation with aromatic residues of gelatin (e.g., pheny-
lalanine, tyrosine, and tryptophan) in the hydrogels, which 
could enhance the mechanical performance under physiolog-
ical conditions and produce a stable hydrogel. On the other 
hand, it acts as the drug carrier of QK due to the inclusion 
complex formation of CD with a wide array of small molecules 
[45,46].

Many factors affect bone healing after injury, such as vas-
cularization [47], inflammation [48], osteoporosis, and infec-
tion [49,50]. Herein, we focus on the angiogenic and osteogenic 
factors in the microenvironment of bone injury. Bone is a 
highly vascularized tissue, and various studies demonstrated 
that angiogenesis is closely associated with bone regeneration 
[13,14,51]. When bone is fractured, the blood vessels are dam-
aged, hematoma forms, and inflammatory cells migrate into 
the fracture site. The ingrowth of new blood vessels is essential 
for the formation of a soft callus. The soft callus is converted 
into a rigid, calcified hard callus. Further mineralization and 
remodeling processes within the callus eventually lead to the 
repair of the damaged bone. Blood vessel formation is a nec-
essary part of bone repair due to its effects of providing ade-
quate nutrients, growth factors, and oxygen, and transferring 
waste products from the damaged area. Moreover, blood vessels 

can also maintain cell viability during the process of bone 
repair [52].

Because of the great importance of vascularization in both 
bone formation and in bone healing, it is clear that this aspect 
must be taken into account in bone tissue engineering. Qiu 
et al. fabricated periosteal extracellular matrix hydrogel for 
bone regeneration. The periosteal extracellular matrix hydro-
gel showed excellent potential for migration and development 
of blood vessels, indicating the importance of vascularization 
for bone regeneration [53]. In addition, Jin et al. [54] used 
poly(lactate-co-glycolate)/fish collagen/nano-hydroxyapatite 
(PFCH) fibrous membranes for bone repair and found that 
latticed PFCH membrane exhibits optimal function in induc-
ing angiogenesis. Apart from bioactive materials that promote 
angiogenesis, numerous scaffolds can also realize bone regen-
eration by delivering angiogenic growth factors to the sites of 
bone injury. For example, Zhou et al. [55] loaded bFGF into 
methacrylate gelatin to simulate angiogenic signaling, realiz-
ing evident angiogenic effects for bone regeneration by con-
tinuously releasing a high concentration of bFGF at bone 
injury sites. Herein, we combined QK and hydrogel to engi-
neer QK-loaded scaffolds due to the inclusion complex 
formation of Ac-β-CD with QK. Compared with the other 
vascularization strategies, the method of loading QK is simple 
but has the same function as VEGF. Moreover, the reversible 

GP

G GQ

GPQ

100 µm

G GQ

GP GPQ

100 µm

R
el

at
iv

e 
R

N
A 

ex
pr

es
si

on

0

5

10

15

Spp1

Ctrl G GP GQ GPQ 

*

0.0

0.5

1.0

1.5

2.0

Runx2

Ctrl G GP GQ GPQ R
el

at
iv

e 
R

N
A 

ex
pr

es
si

on

0.0

0.5

1.0

1.5

2.0

2.5

Alpl

Ctrl G GP GQ GPQ R
el

at
iv

e 
R

N
A 

ex
pr

es
si

on

Col1a1

0.0

0.5

1.0

1.5

2.0

Ctrl G GP GQ GPQ R
el

at
iv

e 
R

N
A 

ex
pr

es
si

on

0

1

2

3

4

Bglap

Ctrl G GP GQ GPQ R
el

at
iv

e 
R

N
A 

ex
pr

es
si

on

A

B

C

nsns

ns

*
*

*ns

*

*

*

*
ns

*

*
*

ns*
*

*

*

*
*

*

*

Fig. 7. Characterizations of in vitro osteogenic differentiation of BMSCs. (A) ALP staining of BMSCs in different groups after 7 days. (B) Alizarin red staining of BMSCs in 
different groups after 21 days. (C) Expression of osteogenesis-related genes of BMSCs cultured with hydrogels: Spp1, Runx2, and Alpl after 7 days; Col1a1 and Bglap after 
21 days. *P < 0.05. ns, no significant difference.

https://doi.org/10.34133/research.0021


Li et al. 2023 | https://doi.org/10.34133/research.0021 10

nature of host–guest interactions also allows the hydrogel to 
dynamically modulate the release of encapsulated drugs on 
demand. In addition, QK could recruit BMSCs to bone injury 
sites. Compared to G and GP, the obtained GQ and GPQ 
hydrogels continuously release QK, observably promoting 
HUVECs to form tubular structures. Various studies also 
accelerate bone repair by delivering VEGF [21,56,57], initi-
ating angiogenesis by binding to the transmembrane VEGF 
receptors [58]. However, VEGF shows low stability, easily 
denatures, and loses bioactivity. As a VEGF-mimicking pep-
tide, QK can avoid the side effects and minimize costs, while 
maintaining excellent angiogenesis capability. Therefore, our 
fabricated GQ and GPQ hydrogels could also significantly 
upregulate the expression of VEGF and VEGF receptors, such 
as Flt1 and Kdr, exhibiting perfect effects for vascularization. 
Bone repair is a long process, and early vascularization is 
important for bone repair. In this study, QK is released about 
90% within 21 days, which means it can promote early vas-
cularization. Moreover, the rapid release of QK in the early 
stage also recruits cells to help bone repair. Therefore, the 
composite hydrogel loading QK could promote bone repair, 
though the QK might not be involved in the whole process of 
bone repair.

Osteogenesis is the main endeavor for bone tissue scaffolds. 
G hydrogels could act as a good candidate for cell adhesion and 
proliferation and show evident biocompatibility. However, G 
hydrogels lack osteoinductive activity and thus delay bone heal-
ing. Compared with other orthophosphates, OCP is regarded 
as the precursor phase of apatite formation, which can be con-
verted to the apatite form under physiological conditions [59]. 
Thus, it is viewed as the most promising candidate for bone 

tissue regeneration [60]. HA is the major inorganic component 
in bone tissue and has been widely used to promote bone 
regeneration owing to its strong enhancement of osteogenic 
differentiation [61,62]. In this study, we found that OCP signif-
icantly converted into HA and released Ca2+. After addition 
into G hydrogels, the obtained GP composite hydrogel signifi-
cantly induced osteogenic differentiation of BMSCs. Moreover, 
the GPQ further increased the osteoinductive activity of BMSCs 
and exhibits good potential for bone repair. After implantation 
in rat cranial defects, our fabricated GP composite hydrogels 
showed excellent osteoinductive properties for bone regener-
ation. As expected, the GQ composite hydrogel could also form 
new bone owing to its good angiogenesis. More importantly, 
the engineered GPQ composite hydrogel formed abundant new 
bone and was almost full of the defects, indicating that the 
combination of QK and OCP could synergistically promote 
new bone formation and bone maturation by building an angi-
ogenic and osteogenic microenvironment. The blood vessels 
play a crucial role in bone repair. In this study, the composite 
hydrogel builds a favorable microenvironment for angiogenesis 
by constantly releasing QK. The OCP in the hydrogels could 
release Ca2+ and be transformed into HA, which builds the 
osteogenic microenvironment to induce osteogenic differenti-
ation of BMSCs and promotes bone formation. The angiogenic 
microenvironment and osteogenic microenvironment syner-
gically promoted bone regeneration.

Overall, it is important to build a favorable microenvi-
ronment by the scaffolds for bone repair. In the future, we 
can build a scaffold with stronger vascularization and bone 
regeneration function. In addition, there are many other fac-
tors that also affect bone regeneration, such as inflammation, 
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osteo porosis, and infection. Therefore, it is important to 
develop the corresponding scaffolds according to different 
bone injuries, to establish a suitable microenvironment that 
is conducive to cell survival, proliferation, and differentiation 
and bone regeneration.

A double-network composite hydrogel containing an HA 
precursor and a VEGF-mimicking peptide has been developed 
in this study. This composite hydrogel could constantly release 
Ca2+ and QK, which build a favorable microenvironment for 
angiogenesis and osteogenesis. This hydrogel promoted in vitro 
tube formation, upregulating VEGF and VEGF receptors and 
in vivo blood vessel formation. In addition, the hydrogel 
enhanced in vitro osteogenesis according to the results of ALP 
staining, alizarin red staining, and expressions of osteogenesis- 
related genes. The results of animal experiments show that the 
composite hydrogel enhanced bone formation in calvarial 
defects of rats, which shows perfect synergistic effects of QK 
and OCP for vascularized bone regeneration. It is concluded 
that the strategy of improving the angiogenic and osteogenic 
microenvironment by our double-network composite hydrogel 
shows promising prospects for vascularized bone repair.

Materials and Methods

Materials
Gelatin (type A, from porcine skin, isoelectric point: 7–9, Cat. No. 
G1890-500G, Sigma), triethyl amine, and I2959 were purchased 
from Sigma. QK (KLTWQELYQLKYKGI, 99% purity) was pro-
vided by Shanghai Qiangyao Biological Technology Co., Ltd. 
(Shanghai, China). β-CD and OCP were bought from Shanghai 
Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). 
Dimethyl formamide was purchased from Fisher Scientific. 
1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlo-
rate (Dil) was purchased from KeyGEN BioTECH (China). 
Alpha’s modified Eagle’s medium (α-MEM), Dulbecco's Modified 
Eagle Media:Nutrient Mixture F-12 (1:1) (DMEM/F12 [1:1]) 
medium, and PBS were provided by Hyclone (USA). Fetal bovine 
serum (FBS) was purchased from Gibco (USA).

Preparation of Ac-β-CD
Ac-β-CD was fabricated according to a previous study [42]. In 
brief, 10 g of β-CD was added to the solution, which contained 
150 ml of dimethyl formamide and 7 ml of triethyl amine. The 
mixture was stirred and cooled down to 0 °C; then, 5 ml of 
acrylic anhydride was added into the above solution and stirred 
for 12 h. The reaction mixture was filtrated and then concen-
trated to approximately 20 ml by vacuum rotary evaporation. 
Then, the solution was dripped into 600 ml of acetone to pre-
cipitate the modified β-CD. The precipitate was washed with 
acetone and vacuum dried for 3 days.

Preparation of the double-network  
composite hydrogels
To prepare composite hydrogels, gelatin (10% [w/v]) and 
Ac-β-CD (10% [w/v]) were added into PBS solution and then 
dissolved completely at 37 °C. The initiator I2959 was added at 
0.05% (w/v). After photo-crosslinking by UV light (365 nm), 
the double-network hydrogel was obtained, termed G hydrogel. 
Then, the OCP (100 mg ml−1) was added to the above mixture, 
and double-network composite hydrogels (GP) were obtained 
after photo-crosslinking.

Morphology of the composite hydrogels
The obtained composite hydrogels were dried via lyophiliza-
tion. After being sputter-coated with gold using an Ion Sputter 
(SC7620, Quorum Technologies, Lewes, UK), the morphology 
of the samples was characterized by SEM (Quanta 250, FEI, 
Hillsboro, OR, USA).

Mechanical tests
The mechanical property of cylindrical hydrogels (diameter, 
4.5 mm; height, 5 mm) were tested (2 mm min−1) using a uni-
versal mechanical testing system (Shanghai Hengyi Precision 
Instrument Co., Ltd., Shanghai, China).

Measurement of QK-loading and release
The drug loading and delivery behaviors of composite hydro-
gels were measured; the obtained G and GP composites were 
dispersed in QK solution (2 mg ml−1) and shaken at 37 °C for 
12 h to obtain GQ and GPQ hydrogels. The loading rate of QK 
was measured via a bicinchoninic acid protein assay kit (Beijing 
ComWin Biotech Co., Ltd., Beijing, China) at the wavelength 
of 562 nm. At different time points, the suspension was col-
lected and the release of QK from GQ and GPQ composite 
hydrogels was measured via a bicinchoninic acid protein assay 
kit at the wavelength of 562 nm.

Calcium release tests
The property of calcium release from composite hydrogels was 
tested. A total of 100 μl of G and GP composite hydrogels was 
obtained after photo-crosslinking by UV light. Then, the G and 
GP composite hydrogels were soaked in 1 ml of PBS. At differ-
ent time points, the suspension was collected, and the amount 
of calcium was tested by the calcium colorimetric assay kit.

Swelling and degradation tests
The hydrogels were immersed into PBS solution. After 24 h, the 
weight of G and GP composite hydrogels was evaluated. The 
weight of the hydrogel after dehydration is WD. The weight of 
the hydrogel after swelling equilibrium is WS. The swelling rate 
of G and GP was calculated using the following formula:

Swelling rate (%) = WS/WD × 100%
The hydrogels were immersed into PBS solution. The initial 

weight of the hydrogel is WI, and the final mass of the hydrogel 
is WF. The remaining mass of G and GP was measured after 1, 
3, 5, 7, and 9 days.

Remaining mass (%) = WF/WI × 100%

X-ray diffraction
G and GP composite hydrogels were dried via lyophilization 
after testing calcium release. Then, the power of samples was 
analyzed by XRD (D8 Advance, Bruker, Karlsruhe, Germany) 
at 40 kV and 40 mA. Data were collected for 2θ ranging between 
51 and 701 under CuKα radiation (l = 1.54056). The step size 
was 0.0161, and the residence time was 10 s.

Measurements of biocompatibility
The biocompatibility of the hydrogels was evaluated using rat 
BMSCs and HUVECs. Rat BMSCs were labeled by Dil fluo-
rescence dye (10 nM) after incubation for 20 min; then, the 
Dil-labeled BMSCs were seeded on hydrogels (1 × 104 cells/
well) in a 48-well plate. In each well of the tissue culture plate, 
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150 μl of hydrogel was placed. Hydrogels were soaked 
in α-MEM culture medium containing 10% FBS and 1% 
penicillin– streptomycin. BMSCs cultured on the surface of 
hydrogels were observed using a laser scanning confocal 
microscope after 3 days. HUVECs were directly seeded on 
hydrogels (150 μl) at a density of 1 × 104 cells/well in a 48-well 
plate. Samples were incubated with DMEM/F12 (1 1) culture 
medium (10% FBS and 1% penicillin–streptomycin). The 
morphology of HUVECs cultured on hydrogels was observed 
by an inverted microscope after 2 days.

To measure whether the hydrogels promoted cell prolifera-
tion, BMSCs and HUVECs were seeded in a 24-well plate 
(5×103 cells/well) and cultured with α-MEM and DMEM/F12 
culture medium (10% FBS and 1% penicillin–streptomycin), 
respectively. After 12 h, 500 μl of extract liquid of hydrogels 
(600 μl of hydrogel immersed in 1 ml of cell culture medium) 
was added. The optical density value of samples at 450 nm was 
measured after incubating with CCK-8 working solution.

Characterizations of cell migration
Rat BMSCs were seeded in the upper chamber of a 24-well 
transwell plate (Corning, NY, USA) at a density of 1 × 104 
cells/well. Then, the hydrogels (300 μl) were placed in the lower 
chamber with α-MEM culture medium containing 10% FBS 
and 1% penicillin–streptomycin. After 24 h, rat BMSCs on the 
upper chamber were taken away and then fixed with 4% para-
formaldehyde. Rat BMSCs were treated with 0.1% crystal violet 
solution (Beyotime, Nanjing, China), and the cells migrated 
into the bottom chamber were counted in 5 random fields.

Rat BMSCs were seeded in a 12-well plate (2 × 105 cells/
well) and cultured with α-MEM culture medium (10% FBS 
and 1% penicillin–streptomycin). Upon reaching confluence, 
BMSCs were scraped to create a wound. Then, the culture 
medium was changed into 1 ml of extract liquid of hydrogels. 
The extract liquid of hydrogels was prepared by adding 600 μl 
of hydrogel in a 12-well plate and then adding 1 ml of cell 
culture medium. At each time point, 1 ml of extract liquid was 
taken out, and 1 ml of new medium was supplemented. Rat 
BMSCs were photographed using an inverted microscope after 
6 and 24 h. The distances of wound closure were observed using 
the microscope and calculated by ImageJ software (National 
Institutes of Health, Bethesda, USA).

In vitro and in vivo pro-vascularization properties
HUVECs were seeded on the surface of growth factor-reduced 
Matrigel (1.8 × 105 cells/well) in a 12-well plate. After half an 
hour, 1 ml of extract liquid of hydrogels was added. The extract 
liquid of hydrogels was prepared by adding 600 μl of hydrogel 
in a 12-well plate and then adding 1 ml of cell culture medium. 
After 4 h, the morphology of HUVECs was observed using an 
inverted microscope, and the average parameters of tube for-
mation in 6 random fields were quantified by ImageJ software.

Rat BMSCs were seeded in the lower chamber of a 6-well 
transwell plate (1 × 105 cells/well). When the cell fusion degree 
reached 60%, the complete medium was removed and replaced 
by the osteogenic differentiation medium (10 mM β-glycero-
phosphate, 10 nM dexamethasone, and 50 μg/ml l-ascorbic 
acid 2-phosphate, Cyagen Biosciences Inc., Guangzhou, China). 
Then, 1 ml of hydrogel was placed in the upper chamber and 
immersed in the cell culture medium. Hydrogels were placed 
in the upper chamber and immersed in the cell culture medium 
(control group: α-MEM complete medium). The expression of 

the vascularization-related genes (Flt1, Kdr, and VEGF) was 
measured using real-time PCR. Primer sequences are listed in 
Table S1.

The hydrogels (5 mm in diameter and 1 mm in thickness) 
were implanted into the subcutaneous tissue of rats to evaluate 
vascularization. After 5 and 10 days, the samples were gathered 
and fixed with 4% paraformaldehyde solution and cut into 
10-μm-thick histological frozen sections; H&E staining was 
performed to assess the vascularization of hydrogels in vivo. 
After 10 days, perfusion was performed with a solution con-
taining a fluorescent agent. The solution was prepared by adding 
fluorescein isothiocyanate–dextran (Sigma) into 4% paraform-
aldehyde solution at a concentration of 50 mg/ml. Then, the 
samples were visualized by a laser scanning confocal micro-
scope to evaluate the in vivo vascularization of hydrogels.

Determination of in vitro osteogenesis ability
Rat BMSCs were seeded in the lower chamber of a 24-well 
transwell plate (5 × 104 cells/well). Three hundred microliters 
of hydrogel (G, GP, GQ, and GPQ) was placed in the top cham-
ber. The cells were cultured with α-MEM complete medium. 
When the cell fusion degree reached 60%, the medium was 
replaced by osteogenic differentiation medium. Samples were 
fixed with 4% paraformaldehyde and then incubated with ALP 
staining solution (Beyotime, China) after 7 days. The quantita-
tive characterization of ALP was performed by the ALP assay 
kit (Beyotime, China). The images of samples were collected 
by an inverted microscope. After 21 days, alizarin red staining 
(Cyagen Biosciences) was performed. The quantitative charac-
terization of alizarin red staining was performed by measuring 
the optical density value at 420 nm after incubating with per-
chloric acid (10%).

Rat BMSCs were seeded in the lower chamber of a 6-well 
transwell plate (1 × 105 cells/well). When the cell fusion degree 
reached 60%, the medium was replaced by osteogenic differ-
entiation medium. Then, 1 ml of hydrogel was placed in the 
upper chamber and immersed in the cell culture medium. The 
expression of the osteogenesis-related genes (Alpl, Spp1, Runx2, 
Col1a1, and Bglap) was determined by real-time PCR. The 
primer sequences are listed in Table S1.

Animal experiment
The procedures followed the National Institutes of Health Guide 
for the Care and Use of Laboratory Animals and were approved 
by the Institutional Animal Care and Use Committee of 
Soochow University (ECSU-201700041). The calvarial defects 
in rats were used to determine the in vivo bone formation abil-
ity of hydrogels. The male Sprague–Dawley rats (8 weeks old) 
were administered an intraperitoneal injection of pentobarbital 
sodium (30 mg/kg, Sigma). After deep anesthesia, calvarial 
defects (5 mm in diameter and 1 mm in thickness) were made 
using a micro bone drill, and then the hydrogels (G, GP, GQ, 
and GPQ) were implanted into the defect sites. In the Ctrl 
group, no material was implanted into the defects. Skulls of rat 
were acquired at 8 and 16 weeks after surgery, respectively. Each 
group had 3 replicates. Samples were harvested and managed 
using Micro-CT (65 kV, 385 mA, 1 mm Al filter). Then, rat 
skulls were decalcified, sliced, and stained with H&E.

Statistical analysis
Data were presented as mean ± standard deviation. Statistical 
analysis (GraphPad Software, USA) was evaluated using 
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one-way analysis of variance followed by Tukey’s multiple 
comparisons to evaluate differences between the groups. A 
probability value (P) of less than 0.05 was considered statis-
tically significant.
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