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Understanding the details of metabolic reprogramming in hepatocellular carcinoma (HCC) is critical to 
improve stratification for therapy. Both multiomics analysis and cross-cohort validation were performed to 
investigate the metabolic dysregulation of 562 HCC patients from 4 cohorts. On the basis of the identified 
dynamic network biomarkers, 227 substantial metabolic genes were identified and a total of 343 HCC 
patients were classified into 4 heterogeneous metabolic clusters with distinct metabolic characteristics: 
cluster 1, the pyruvate subtype, associated with upregulated pyruvate metabolism; cluster 2, the amino 
acid subtype, with dysregulated amino acid metabolism as the reference; cluster 3, the mixed subtype, 
in which lipid metabolism, amino acid metabolism, and glycan metabolism are dysregulated; and cluster 
4, the glycolytic subtype, associated with the dysregulated carbohydrate metabolism. These 4 clusters 
showed distinct prognoses, clinical characteristics and immune cell infiltrations, which was further 
validated by genomic alterations, transcriptomics, metabolomics, and immune cell profiles in the other 3 
independent cohorts. Besides, the sensitivity of different clusters to metabolic inhibitors varied depending 
on their metabolic features. Importantly, cluster 2 is rich in immune cells in tumor tissues, especially 
programmed cell death protein 1 (PD-1)-expressing cells, which may be due to the tryptophan metabolism 
disorders, and potentially benefiting more from PD-1 treatment. In conclusion, our results suggest the 
metabolic heterogeneity of HCC and make it possible to treat HCC patients precisely and effectively on 
specific metabolic characteristics.

Introduction

Hepatocellular carcinoma (HCC) remains one of the most 
common malignant tumors and the second leading cause of 
cancer-related mortality in the world [1–3]. The development 
of HCC is a complex biological process that involves the inter-
play of various factors, including genetic and epigenetic alter-
ations, viral infection [4], altered cellular microenvironment, 
and various immune cells [5]. The highly heterogeneity of HCC 

seriously restricts early diagnosis and the research of HCC 
molecular mechanism as well as the exploration of precision 
treatment. Therefore, a better understanding of the pathogenesis 
of the driver of HCC is crucial. Although many genes and 
their expression changes can influence the progression of HCC 
patients, it is difficult to make an early diagnosis. HCC progres-
sion can be divided into 3 stages: predisease state, blast crisis, 
and advanced disease state. Studies found that there was a phase 
transition following the blast crisis, leading to an irreversible 
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Fig. 1. Metabolic dysregulation and dynamic changes in HCCs. (A) PCA of HCC tumor tissues (n = 343) and paired normal tissues (n = 49) in the TCGA-HCC cohort. (B) Global 
differences in metabolic gene expression between HCC tumors and normal tissues in the TCGA-HCC cohort. The Euclidean expression distances were calculated between tumors 
and normal tissues (red), within samples of tumor tissues (blue), and within samples of normal tissues (green). The inset summarizes the average distances between pairs of 
tissues as a percentage of the average distance between tumors and normal tissues. (Level of significance: ***P < 0.001.) (C) A representative GSEA plot showing significantly 
dysregulated glycan degradation (left) and purine metabolism (right) in the tumors versus normal tissues in the TCGA-HCC cohort. (D) The number of metabolic pathways that 
were significantly dysregulated (FDR < 0.05) in the tumors versus normal tissues in the TCGA-HCC cohort among each of 8 metabolic categories. The X-axis represents metabolic 
categories where metabolic pathways were classified according to the KEGG database. The Y-axis represents the number of pathways classified into corresponding category. 
(E) Comparison of the RCI of metabolic pathways between tumors and normal tissues in the TCGA-HCC cohort. FDR < 0.05 indicates differentially regulated pathways between 
tumors and normal tissues in the TCGA-HCC cohort. (F) PCA of HCC tumors at different stage and paired normal tissues in the TCGA-HCC cohort. (G) The series of diagrams depicts 
the dynamic changes pattern of 9193 metabolic genes during different stages in the TCGA-HCC cohort, using Mfuzz. (H) A schematic diagram illustrates a stage transition during 
HCC progression. The critical period after the early period changes the state of the biological system qualitatively and thus plays a key role in biological processes. (I) The graph 
illustrates that the critical transition occurs at Stage II of HCC, according to CIs over all time points in gene expression profiling. (J) The series of networks shows that the 3 criteria 
of DNB were satisfied at Stage II of HCC from dynamic changes in gene expression.
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change in diseases [6]. Since the blast crisis occurs soon after 
the predisease state, there is no significant difference between 
the predisease state and the blast crisis. "Traditional" molecular 
biomarkers cannot identify HCC patients who are in a blast 
crisis. Nowadays, dynamic analysis methods are becoming 
more and more important, detecting a significant difference 
between predisease state and blast crisis, which makes analysis 
at blast crisis possible and can be used to screen dynamic net-
work biomarkers (DNBs) [7].

In the dynamic changes of HCC development, metabolic 
reprogramming, a typical hallmark of cancer, plays an impor-
tant role in HCC diagnosis, prognosis, and treatment [8,9]. 
However, recent metabolic reprogramming studies only focus 
on the advanced disease state of tumors but lack attention on 
blast crisis. Similarly, metabolic drugs are usually delivered at 
the advanced disease state without any indication of metabolic 
dependence in previous failed trials [10,11]. The wrong time 
point may be the cause of failure while studies on dynamic 
changes at blast crisis are required.

In past years, considerable effort has been expended to 
divide HCC into several molecular subtypes with different 
static mutation profiles and genomic alterations on the advanced 
disease state [12]. However, it is powerless to analyze the com-
plex dynamic changes of HCC from a single static perspective 
on the advanced disease state only. A study focusing on the 
systemic dynamic analysis of HCC at blast crisis from the view-
point of multiomics analysis is urgently needed.

On the basis of the significant role of metabolic reprogram-
ming and multiomics analysis demand at blast crisis, we proceed 
a comprehensive assessment of the overall dynamic metabolic 
profile of HCC. We extract 227 DNBs of HCC at blast crisis and 
divided them into 4 clusters based on their expression trends. 
Clusters with different heterogeneity have different genetic alter-
ations, metabolic characteristics, immune microenvironment, 
prognosis, and sensitivity to targeted and immune drugs.

Result

Metabolic dysregulation occurred in HCCs
To explore HCC metabolic reprogramming characters, we 
obtained a total of 9,193 human metabolic genes which were 
assigned to 344 metabolic pathways in the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database. In the The Cancer 
Genome Atlas (TCGA)-HCC cohort, principal component 
analysis (PCA) showed that metabolic gene expressions of HCC 
were different from normal tissues (Fig. 1A). We then calcu-
lated Euclidean distance to investigate the global variance in 
metabolic gene expression between and within HCC tissues 
and their corresponding normal tissues. The expression dis-
tances between HCC and normal tissues or within HCC tissues 
were significantly larger than that within normal tissues, indi-
cating the metabolic divergence within HCC tissues (Fig. 1B).

Then, we investigated whether the selected metabolic genes 
could explain the dysregulated metabolic functions in HCC. 
Gene set enrichment analysis (GSEA) revealed that, compared 
with normal tissues, a total of 22 metabolic pathways were sig-
nificantly dysregulated in HCC tissues (false discovery rate 
[FDR] < 0.05, 3 pathways upregulated and 19 pathways down-
regulated). The upregulated pathways involved in glycan bio-
synthesis and nucleotide, such as other glycan degradation 
and purine metabolism pathways, whereas the downregulated 
pathways mainly included lipid, amino acid, and carbohydrate 

metabolisms (Fig. 1C and D). Besides, conservation differences 
of metabolic pathways between tumor and normal tissues were 
quantified by using differential rank conservation (DIRAC) 
analysis (Fig. 1E). The majority of metabolic pathways had sig-
nificantly lower rank conservation indices (RCIs) in HCC tumors 
(FDR < 0.05), indicating the higher variability and deregulation 
of metabolic pathways at the transcriptional level in HCC tumors. 
These results showed that there are noteworthy metabolic hetero
geneity and dysregulation in HCC tumors.

However, there was no clear difference in metabolic gene 
expression among 3 stages of the TCGA-HCC cohort (Fig. 1F), 
suggesting that traditional differential gene analysis may not 
be suitable for pinpointing the critical state. To characterize the 
dynamic changes in terms of gene expression during different 
tumor stages, we clustered these metabolic genes into 6 clusters 
(Trend 1 to Trend 6) via Mfuzz method [7] (Fig. 1G). Genes in 
Trends 1, 3, and 6 were significantly upregulated from the nor-
mal group to the Stage III group, while genes in Trend 5 were 
downregulated. Genes in Trends 2 and 4 were upregulated or 
downregulated only from the normal group to the Stage I 
group, respectively. These results suggested that disease pro-
gression was not gradual and monotonic, but nonlinear and 
drastic at certain points [13]. The significant changes in meta-
bolic gene expression from normal to stage III indicated the 
possibility of predicting tipping point. Different from the tra-
ditional static biomarkers with differential expression used 
previously, DNB members are dynamic biomarkers for a gen-
erally irreversible transition [6,13] (Fig. 1H). According to 3 
criteria, we identified in total 227 DNBs (see Materials and 
Methods, Fig. 1I, and Fig. S1A to C) when the system stage 
gradually achieved a tipping point. The distribution of criticality 
index (CI) values suggested a strong signal of the critical state 
at Stage II (Fig. 1I). On the basis of protein-protein interactions, 
we displayed the dynamics of DNBs as a network during the 
progression of HCC, where nodes and links were respectively 
weighted by SDs of gene expressions and Pearson correlation 
coefficients of pairwise gene expressions in a given stage versus 
those in normal group (Fig. 1J). Compared with the whole 
molecular network, we found that metabolic DNBs could signal 
the tipping point at Stage II, indeed.

Metabolic clusters of HCC based on DNBs
To reveal the metabolic heterogeneity of HCC tumors, we 
estimated the enrichment scores of 155 metabolic pathways 
enriched from 227 DNBs in the TCGA-HCC cohort through 
gene set variation analysis (GSVA) (Table S1). On the basis 
of enrichment scores of 155 metabolic pathways, 343 HCC 
tumor samples were clustered into 4 heterogeneous clusters 
via unsupervised k-means clustering (Fig. 2A). The optimal 
cluster number was identified through consensus clustering 
and NbClust testing, and Silhouette analysis demonstrated 
the stability of clustering results with k as 4 (Fig. S2, A to C). 
We found that cluster 1 and cluster 2 were less metabolically 
active than cluster 3 and cluster 4, and the clear metabolic 
changes were observed in cluster 3 (Fig. 2A). Despite the com-
plexity of metabolic genes in each cluster, we characterized 
each cluster in detail according to their metabolic expression 
differences. Cluster 1, designated the pyruvate subtype, was 
characterized by upregulation of the pyruvate metabolism 
pathway. Cluster 2, designated the amino acid subtype, was 
characterized by the dysregulation of amino acid metabolism 
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pathways, mainly including glutathione metabolism. Cluster 
3, designated the mix-metabolic type, was characterized by 
the dysregulation of lipid metabolism, amino acid metabolism, 
and glycan biosynthesis and metabolism. Cluster 4, thereafter 
designated the glycolytic subtype, was characterized by remarkable 
dysregulation of carbohydrate pathways, including glycolysis, 

pyruvate metabolism, and inositol phosphate metabolism. We 
then investigated the overlap between the clusters and HCC 
clinical characters (Fig. 2B and Table S2). Cluster 1 had a 
higher rate of early-stage patients, smaller tumor sizes, and 
less vascular invasion, whereas cluster 3 had a higher rate of 
terminal-stage patients, bigger tumor size, and more vascular 

Fig. 2. Metabolic clusters of HCC based on DNBs. (A) The clustering results based on the enrichment scores of 227 DNBs of HCC tumors in the TCGA-HCC cohort. Heatmap 
shows normalized enrichment scores of the 4 metabolic clusters. (B) Bar plots show the distribution of HCC clinical characteristics, including disease stage, tumor size, and 
condition of vascular invasion among the 4 metabolic clusters. (C) Kaplan–Meier curves of survival among the 4 metabolic clusters in the TCGA-HCC cohort. Log-rank test 
and BH method for adjusting P value. Among all clusters, P < 0.0001; cluster 1 versus cluster 2, P = 0.56; cluster 1 versus cluster 3, P < 0.0001; cluster 1 versus cluster 4, 
P = 0.0052; cluster 2 versus cluster 3, P = 0.0001; cluster 2 versus cluster 4, P = 0.022; cluster 3 versus cluster 4, P = 0.053. (D) Forest plot of multivariate Cox regression 
analysis for survival adjusting for disease stage, gender, age, and metabolic clusters in the TCGA-HCC cohort. The hazard ratios are shown with 95% confidence intervals. 
***P < 0.001; **P < 0.01; ns, P > 0.05. (E to G) Boxplots show the distribution of tumor purity (E), stromal score (F), and immune score (G) among the 4 clusters. Tukey’s 
post hoc test. (Level of significance: ***P < 0.001; **P < 0.01; ns, P > 0.05.)
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invasion. Moreover, cluster 1 and cluster 2 showed significantly 
better survival than cluster 3 and cluster 4, while cluster 3 showed 
worse survival than the other 3 clusters (Fig. 2C). Multivariate 
Cox proportional hazard models also revealed that cluster 3 
independently predicted a worse prognostic in HCC (Fig. 2D). 
We found that the tumor purity, tumor-stroma score, and immune 
score were rather different among the 4 clusters (Fig. 2E to G). 
In sum, our results demonstrated that the metabolic heterogeneity 

of HCCs fell into 4 metabolic clusters, but they could not be 
fully explained by transcriptome-based subtyping.

Genomic alterations of metabolic clusters in HCCs
In this study, we used the genomics data of HCC samples from 
the ZS-SEQ-HCC cohort with both whole-exome sequencing 
(WES) and RNA-sequencing data to explore genomic alterations 

Fig. 3. Genomic alterations of metabolic clusters in HCCs. (A) Genomic alterations in 10 oncogenic pathways were compared between all possible pairs of the 4 metabolic 
clusters in the ZS-SEQ-HCC cohort. The color in the box represents different types of genomic alterations (green, SNV_INDEL; orange, CNV gain; blue, CNV loss), and the color 
saturation represents the mutation frequency. The pathways with significant differences in mutation frequency in at least 1 of pairwise comparison among 4 clusters were 
labeled with asterisk. (Mann–Whitney test; level of significance: ***P < 0.001; **P < 0.01; *P < 0.05.) (B) Sankey diagram for the mutation frequency of genes that showed 
a significant difference (P < 0.05) in the comparison between all possible pairs among the 4 metabolic clusters in the ZS-SEQ-HCC cohort. (C) Comparison of the somatic 
CNVs between 1 to remaining clusters among the 4 metabolic clusters in the ZS-SEQ-HCC cohort. The upper plot shows the number of CNV gain (red) and CNV loss (blue) 
of each gene in each cluster. The lower plot shows difference of CNV numbers (represented as CNF Diff) between 1 to remaining clusters. Orange, compared by CNV Diff > 0; 
green, compared by CNV Diff < 0.
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Fig. 4. Metabolic clusters of HCC show distinct metabolic characteristics. (A) Diagram shows the glycolysis, tricarboxylic acid (TCA) cycle, lipid metabolism, and amino acid 
metabolism pathways enriched by differential metabolites in the ZS-SEQ-HCC cohort. The expression alteration of genes involved in the plotted pathways are depicted as log2 
fold change, with fold change as the ratio of average mRNA expression of genes in each cluster versus those in cluster 1. Red, upregulated genes compared with cluster 1; 
blue, downregulated genes compared with cluster 1. (B to D) Relative levels of metabolites, involved in (B) carbohydrate metabolism, (C) lipid metabolism, and (D) amino acid 
metabolism, that were differentially expressed among the 4 metabolic clusters in the ZS-SEQ-HCC cohort. Tukey’s post hoc test. (E) Bar plot shows metabolic pathway enriched 
by differential metabolites between cluster 2 and other clusters in the ZS-SEQ-HCC cohort. Red, upregulated pathways in cluster 2; blue, downregulated pathways in cluster 2.  
(F) Heatmap shows relative mRNA expression of genes related to tryptophan metabolism in cluster 2 and other clusters in the ZS-SEQ-HCC cohort. The significantly different genes between 
cluster 2 and other clusters are shown with asterisk. Student’s test. (G) Schematic pathway showing key genes in tryptophan metabolism. (H) Boxplots show relative mRNA expression 
of key genes of tryptophan metabolism in cluster 2 and other clusters in the ZS-SEQ-HCC cohort. Student’s test. (Level of significance: ***P < 0.001; **P < 0.01; *P < 0.05.)
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among the 4 metabolic clusters. We firstly used GSVA to obtain 
the enrichment scores of 155 metabolic pathways mentioned 
before in 30 HCC samples of the ZS-SEQ-HCC cohort. By using 
the nearest shrunken centroids (NSC) method (see Materials 
and Methods), there were 6, 9, 7, and 8 HCC samples classified 
into cluster 1, cluster 2, cluster 3, and cluster 4, respectively (Fig. 
S3A and B). Cluster 2 had a relatively higher copy-number var-
iation (CNV) burden and mutation burden among the 4 clusters 
(Fig. S3C and D). We further investigated the frequency of muta-
tions and CNVs in the ZS-SEQ-HCC cohort. Ten oncogenic 

signaling pathways [14] were used to explore the genomic charac-
teristics for each cluster. We found that cluster 2 had a significantly 
higher frequency of single-nucleotide variant (SNV)-INDELs 
in the HIPPO and phosphatidylinositol 3-kinase (PI3K) path-
ways (Fig. 3A and Table S3). In terms of CNV gain and CNV 
loss, we found there were significant differences in mutation 
number of some oncogenic pathways among clusters, such as 
CNV gain of the MYC, PI3K, and TP53 pathways and CNV loss 
of the HIPPO, NOTCH, and WNT pathways (Fig. 3A). When 
exploring cluster-specific mutated genes, we found that cluster 

Fig. 5. Immune characteristics of metabolic clusters in HCCs. (A) The clustering results based on the enrichment scores of 227 DNBs of HCC tumors in the TCGA-HCC cohort. 
Heatmap shows normalized enrichment scores of the 4 metabolic clusters in the ZS-HCC cohort. (B) Kaplan–Meier curves of survival among the 4 metabolic clusters in the 
ZS-HCC cohort. Log-rank test and BH method for adjusting P value. Among all clusters, P < 0.01; cluster 1 versus cluster 2, P = 0.15; cluster 1 versus cluster 3, P = 0.0001; 
cluster 1 versus cluster 4, P = 0.087; cluster 2 versus cluster 3, P = 0.0002; cluster 2 versus cluster 4, P = 0.73; cluster 3 versus cluster 4, P = 0.003. (C) Bar plots show the 
distribution of HCC clinical characteristics among the 4 clusters in the ZS-HCC cohort. (D) Forest plot of multivariate Cox regression analysis for survival adjusting for condition 
of vascular invasion, tumor size, tumor numbers, and metabolic clusters in the ZS-HCC cohort. The hazard ratios are shown with 95% confidence intervals. *P < 0.05; **P < 
0.01; ns, P > 0.05. (E) Representative multispectral images of 8 markers on HCC tumor tissues of the 4 clusters in the ZS-HCC cohort. 4′,6-diamidino-2-phenylindole: cyan; 
CD3: blue; CD4: purple; CD8: green; CD68: white, CD86: yellow; CD20: pink; CD56: orange; and PD-1: red. (F and G) The number or fraction of PD-1+ CD4+ T cells (CD3/CD4/PD-1) 
and cytotoxic T cells (CD3/CD8/PD-1)(F) or PD-1+ M1 macrophages (CD68/CD86/PD-1) and M2 macrophages (CD68/CD206/PD-1) (G) to investigate which type of immune 
cells is the main resource for PD-1. (H and I) Representative images of immune cells in cluster 2, (H) CD4+ T cells (CD3/CD4/PD-1) and cytotoxic T cells (CD3/CD8/PD-1);  
(I) M1 macrophages (CD68/CD86/PD-1) and M2 macrophages (CD68/CD206/PD-1).
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2 had a higher frequency of mutations among the HIPPO path-
way members (HMCN1 and TCF7L2) and PI3K pathway mem-
bers (EIF4EBP1 and IFNA1) (Fig. 3B and Table S3). To explain 
the metabolic characteristics and heterogeneity of 4 clusters, we 
moved attention to the mutation events in metabolic genes (Fig. 
3C). Our results demonstrated that cluster 1 and cluster 4 had 
more frequent somatic copy-number alterations in glycolytic 
genes, including HK1 (chr10:71,029,756-71,161,637), ALDH1B1 
(chr9:38,392,661-38,398,662), and PCK2 (chr14:24,563,483-
24,573,339), while cluster 2 had more frequent somatic copy-
number alterations in amino acid metabolism genes, including 
OTC (chr10:71,029,756-71,161,637) and SLC25A1 (chr9:38,392,661- 
38,398,662), and cluster 3 had more frequent copy-number 
alterations in lipogenic genes, including OLAH (chr10:15,085,895-
15,115,851), GPX1 (chr3:49,394,609-49,395,791), and DGKG 
(chr3:185,864,990-186,080,023). Besides, the CNV status of these 
genes in the mentioned genomic region were positively associated 
with their mRNA expression (Fig. S4A to C). Similar to the 
ZS-SEQ-HCC cohort, we also found genomic changes in the 
TCGA-HCC cohort, which showed the significant differences 
in fraction of genome altered (https://www.cbioportal.org/study/
summary?id=lihc_tcga_pan_can_atlas_2018) and tumor muta-
tion burden among the 4 clusters, especially cluster 2 (Fig. S5). 
Overall, our results indicated that genomic alterations in specific 
chromosomal regions might mediate the metabolic reprogram-
ming and heterogeneity in HCC.

Metabolic clusters show distinct  
metabolic characteristics
To gain a comprehensive insight into the dysregulation of cellular 
metabolism in HCCs, we performed untargeted metabolomic 
profiling and obtained in total 5,890 annotated metabolites in 
the ZS-SEQ-HCC cohort. The differential analysis and pathway 
enrichment analysis revealed that the differential metabolites 
were enriched in glucose metabolism, lipid metabolism, and 
amino acid metabolism, such as glycolysis and tricarboxylic acid 
cycle (Fig. 4A). We then compared the metabolite abundances 
across clusters. Consistent with increased lipogenic gene expres-
sion, various lipids were enriched in cluster 3, including adipic 
acid, arachidic acid, arachidonic acid, and hexadecanedioic 
acid. The significant accumulation of metabolites in carbo-
hydrate metabolism was observed in cluster 1 and cluster 4, such 
as lactate and succinate, whereas cluster 2 was characterized 
by lower levels of metabolites, especially amino acids (Fig. 4B 
to D). Subsequently, we found that the differential metabolite 
abundances between cluster 2 and other clusters were highly 
enriched in the tryptophan metabolism pathway (Fig. 4E), con-
sistent with the lower level of tryptophan in cluster 2. In the 
TCGA-HCC cohort, the differential genes between cluster 2 
and other clusters were also enriched in tryptophan metabolism 
(Fig. S6A). Besides, cluster 2 had distinctive expressions of key 
genes involved in tryptophan metabolism, including IDO1, 
ALDH2, and DDC, from other clusters in the ZS-SEQ-HCC 
cohort and the TCGA-HCC cohort (Fig. 4F to H and Fig. S6B 
and C). All findings above explained the reason why there was 
a significant metabolic discrepancy between cluster 2 and other 
clusters, especially in tryptophan metabolism.

Immune characteristics of metabolic clusters in HCCs
Recently, it has been proved that the trigger of tryptophan-
kynurenine-aryl hydrocarbon receptor pathway could lead to 

programmed cell death protein 1 (PD-1) upregulation in CD8+ 
T cells and damage their killing effects on tumors in the tumor 
microenvironment [15,16]. First, 159 HCC tumor samples 
from ZS-HCC cohort were classified into 4 similar clusters 
based on using the NSC method through analysis of previous 
HCC clusters [17] (Fig. 5A and Table S5). We found that cluster 
1 and cluster 2 had better survival than the other 2 clusters, 
while cluster 3 had significantly worst survival (Fig. 5B), con-
sistent with results in the TCGA-HCC cohort (Fig. 2C). Moreover, 
these clusters had distinct clinical features. Cluster 1 had a higher 
rate of early-stage patients, smaller tumor size, and less vascular 
invasion, whereas cluster 3 had a higher rate of terminal-stage 
patients, bigger tumor size, and more vascular invasion (Fig. 5C). 
Also, multivariate Cox proportional hazard models revealed 
that cluster 3 independently predicted a worse prognostic in 
HCCs (Fig. 5D). Then, we characterized immune cell distribu-
tion of these tumor samples and paired normal samples by 
multiplex immunofluorescence staining, which allowed simul-
taneous visualization of markers in each formalin-fixed and 
paraffin-embedded tissue section. In addition to the shape of 
the nucleus, the marker CD3+ was used to identify all T cells, with 
CD56+ as natural killer cell marker and CD68+ as macrophage 
marker. In detail, we defined CD3+CD8+CD4− cells as cytotoxic 
T cells, CD3+CD8−CD4+ cells as CD4+ T cells, CD68+CD86+ 
cells as M1 macrophages, and CD68+CD206+ cells as M2 mac-
rophages. Representative images of different immune cells with 
colocalization makers in tumor tissues and normal tissues are 
shown in Fig. 5E and Fig. S8A, respectively. We found that 
among these clusters, cluster 2 had an enrichment of immune 
cells in tumors and normal tissues, though without significant 
differences (Figs. S7A to C and S8B to D). Interestingly, the 
density of PD-1-expressing immune cells was higher in cluster 
2 than in other clusters (Figs. S7D and S8E). We then found that 
the density of PD-1+ immune cells was highly associated with 
densities of cytotoxic T cells and M1 macrophages in tumor 
tissues (Fig. 5F and G and Fig. S7E). Representative images 
with colocalization makers in tumor tissues are shown in Fig. 
5H and I and Fig. S7F. The dysregulated tryptophan metabolism 
might be an underlying mechanism of the rising density of 
PD-1+ immune cells in cluster 2. In addition, we examined 
the distribution of other immune checkpoints in immune cells, 
including programmed cell death ligand 1 (PD-L1), lympho-
cyte activating gene 3 (LAG-3), and fibrin original protein 1 
(FGL1), which attracted us before. We found the density of 
PD-L1-expressing tumor cells was higher in cluster 2, while no 
significant difference among clusters was found in the other 2 
checkpoints (Fig. S9A to D). Hence, we assumed that HCC 
patients of cluster 2 might benefit more from PD-1 treatment 
than other clusters.

Metabolic clusters have distinct sensitivity to 
various drugs
Tumor formation and growth involve in various biological 
metabolism processes. A pool of drugs has been developed to 
target tumor energy metabolism. We first analyzed transcrip-
tomic and metabolomic data of 12 human HCC cell lines from 
the Cancer Cell Line Encyclopedia (CCLE). Through the NSC 
method, HCC cell lines were classified into 4 clusters (Table 
S6), with Huh7 in cluster 1, PLC/PRF/5 in cluster 2, SKHEP1 
in cluster 3, and Hep3B in cluster 4 (Fig. S10A). Consistent with 
clusters in HCC tissues, the clusters of HCC cell lines also had 
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distinct transcriptional and metabolic profiles (Fig. S10A and B). 
Notably, the abundances of metabolites in amino acid metabo
lism were significantly different between cluster 2 and other 
clusters (Fig. S10B).

We then investigated the drug sensitivity among clusters of 
HCC cell lines. We selected clofazimine, disulfiram, flutamide, 

and all-trans retinoic acid (ATRA) for further analysis, which 
are known anticancer drugs and could target cancer energy 
metabolism in different ways. According to the drug sensitivity 
data (Fig. S10C), we found that clofazimine was more effective 
in cluster 1 and cluster 4, with flutamide and ATRA effective 
in cluster 4 and disulfiram effective in cluster 3. Notably, our 

Fig. 6. Metabolic clusters have distinct sensitivity to various drugs. (A to C) Representative pictures of colony formation assays and quantification of colony formation assays 
with different drug treatments in Hu7 (A), SKHEP1 (B), and Hep3B (C). Data are presented as the means ± SD of 3 independent experiments; Student’s test. (D to F) Oxygen 
consumption rate (OCR) and extracellular acidification rate (ECAR) levels were measured using the Seahorse assay, and the basal/maximal respiration and glycolysis levels 
were calculated accordingly with different drug treatments in Hu7 (D), SKHEP1 (E), and Hep3B (F). Data are shown as the means ± SD of 6 independent experiments; 1-way 
analysis of variance and Tukey’s post hoc test. (G) Molecular docking simulation between protein and drug. Upper, MECR and disulfiram; lower, PFKM and clofazimine. 
(H) Changes in MECR or PFKM with disulfiram or clofazimine treatment were detected by immunofluorescence assay. (I) Schematic pathway showing the targets of clofazimine 
and disulfiram in metabolism. (Level of significance: ***P < 0.001; **P < 0.01; *P < 0.05; ns, P > 0.05.)
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previous study has identified that ATRA could not impact the 
proliferation and metastasis of HCC cell lines [18]. Therefore, 
we used clofazimine, disulfiram, and flutamide for further valid
ation. In colony formation assays and Seahorse experiments, 
we observed the inhibitory effects of clofazimine on the growth, 
respiration, and glycolysis levels of cell lines within cluster 1 

and cluster 4, as well as the efficacy of disulfiram on the growth 
and respiration levels of cell lines within cluster 3, whereas 
flutamide could not function in any HCC cell line (Fig. 6A to 
F and Fig. S11A and B). By predicting the docking between 
drugs and protein involved in glycolysis and lipid metabolism, 
we found that disulfiram and clofazimine had a highest binding 

Fig. 7. Potential of metabolic clusters in precision therapy. (A to D) Scheme representing the experimental procedure (A), tumor volume and tumor weight of patient-derived 
xenograft (PDX) models established by implantation of PDXs into NOG mice injected with dimethyl sulfoxide (DMSO), clofazimine (25 mg/kg), or disulfiram (50 mg/kg) (n = 6). 
Cluster 1 / PDX1 (B), cluster 3 / PDX3 (C), and cluster 4 / PDX4 (D). Student’s test. ***P < 0.001. Data are presented as the means ± SD. (E) The clustering results based 
on the enrichment scores of HCC tumors in the TCGA-HCC cohort by using the NSC method. Heatmap shows normalized enrichment scores of the 4 clusters in the ZS-PD1-
HCC cohort (PD-1, 200 mg, every 3 weeks). (F) Pie chart shows the proportions of HCC tumors in each cluster. (G) Bar plots show the effect of PD-1 treatment among the 4 
clusters. Chi-square test. *P < 0.05. (H) Representative imaging pictures showing the effect of PD-1 treatment in each cluster. The arrows point to the location of the tumors. 
(I) Changes of immune cells in the tumor microenvironment after PD-1 treatment are detected by multiplex immunofluorescence assay.
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efficacy with mitochondrial trans-2-enoyl-CoA reductase (MECR) 
and 6-phosphofructokinase, muscle type (PFKM), respectively 
(Fig. 6G). Immunofluorescence assay confirmed our docking 
prediction that clofazimine and disulfiram acted on PFKM and 
MECR separately (Fig. 6H and I).

Interestingly, we found that compared with other clusters, 
many stemness-associated genes were more dysregulated in 
cluster 3 of the ZS-SEQ-HCC cohort, including ARPC5L [19], 
ASAP1 [20,21], CLDN4 [22], ELF3 [23,24], MAP2K2 [25], and 
PRKCD [26] (Fig. S12A and B). The abnormal stemness gene 
expressions may play a part in the worst survival outcome of 
cluster 3. Besides, the role of stemness genes in causing sorafenib 
resistance by dysregulating lipid metabolism and oxidative 
phosphorylation has been reported [27,28]. Subsequently, we 
used 3-dimensional fibrin gels to sort tumor-repopulating cells 
from SKHEP1 cells and found that disulfiram enhanced the 
sensitivity of HCC cells to sorafenib and reduced drug resistance 
(Fig. S12C to E). In conclusion, these results provide us with a 
great reference for precision treatments based on our metabolic-
pathway-based clusters.

Potential of metabolic clusters in precision  
therapy in vivo
We further validate potential of HCC clusters in precision therapy 
in vivo by using the previously established HCC patient-derived 
xenograft (PDX) models [18]. PDX1 were established using the 
xenografts from patients classified to cluster 1, PDX3 were estab-
lished using the xenografts from patients classified to cluster 3, 
and PDX4 were established using the xenografts from patients 
classified to cluster 4. These PDX models derived from these 
patients of the ZS-SEQ-HCC cohort. Then, PDX1 and PDX4 were 
treated with clofazimine, while PDX3 were treated with disulfiram. 
We found that clofazimine inhibited tumor growth in cluster 1 
and cluster 4, and disulfiram inhibited the tumor growth in clus-
ter 3 (Fig. 7A to D), consistent with those results in vitro.

Considering that cluster 2 had more PD-1+ immune cells and 
infiltration, we hypothesized that cluster 2 would be more sen-
sitive to PD-1 therapy. By using the NSC method, 30 HCC sam-
ples from ZS-PD1-HCC cohort were classified into 4 clusters. 
These samples also had unique transcriptional profiles in metab-
olism (Fig. 7E). Among them, 16.67% of patients was classified 
to cluster 2 (Fig. 7F). According to the clinical outcomes, we found 
that patients in cluster 2 got more partial remission or complete 
remission effects (Fig. 7G), indicating that PD-1 treatment was 
more effective in cluster 2. Imaging data also suggested that patients 
in cluster 2 had greater tumor necrosis and shrinkage after PD-1 
treatment (Fig. 7H), and multiplex immunofluorescence stain-
ing showed more immune cell infiltrations in cluster 2 after treat-
ment, including cytotoxic T cells (CD3+CD8+) and M1 macrophages 
cells (CD68+CD86+) (Fig. 7I). Together, our results indicated 
the potential of metabolic clusters as an auxiliary means for pre-
cision therapy.

Discussion

Accumulating reports have shown that metabolic reprogram-
ming is associated with disease progression, clinical outcomes, 
and treatment responses in various cancers [29]. However, the 
dynamics and heterogeneity of tumor metabolism are impor-
tant for early diagnosis and prevention of HCC. In this study, 
there was no significant difference in metabolic gene expression 
among different stages of HCC when we used the traditional 
differential gene analysis from TCGA cohort at first. Therefore, 
we introduced the concept of blast crisis based on DNBs and 
established a prediction model based on DNBs. Compared with 
traditional molecular biomarkers, DNBs showed its superiority 
in identifying critical states in disease progression in a dynamic 
manner. To our knowledge, this is the first systematic analysis to 
show the extent of metabolic reprogramming and heterogeneity 
based on the DNBs method in HCC. However, several published 
metabolic subtypes were established on the basis of the charac-
teristics of HCC gene or protein expression, which ignore the 
driver genes of HCC metabolism or do not reflect these gene reg-
ulated immune microenvironment well [17,30]. With the DNB 
method, we identified in total 227 substantial metabolic genes and 
successfully classified HCC into 4 heterogeneous clusters through 
these metabolic genes with different metabolic characteristics, 
prognoses, genomic changes, immune microenvironment, and 
sensitivity to metabolic inhibitors and immunotherapy.

Consistent with previous studies, we demonstrated that HCC 
exhibited dysregulations of lipid, amino acid, and carbohydrate 
metabolisms [31–33]. We then found the dynamic changes of 

Table. Summary of clinical, metabolic, and genomic charac-
teristics and potential therapeutic strategies of the metabolic 
pathway subtypes of HCC.

Subtype Cluster 1 Cluster 2 Cluster 3 Cluster 4

Clinical

Good 
prognosis 

(5-year 
RFS, 

64%); 
more 

BCLC A

Good 
prognosis 

(5-year 
RFS, 

58%); 
multiple 
tumor.

numbers

Poor 
prognosis 

(5-year 
RFS, 

29%); 
bigger 
tumor 
size; 

vascular 
invasion

Good 
prognosis 

(5-year 
RFS, 
47%)

Genomic

Frequent 
CNV gain 
in TP53 
pathway

Frequent 
CNV and 

SNV

Dysregu-
lation of 
cancer 
stem 
genes

N/A

Metabolic 
Features

Dysregu-
lation of 

glycolytic 
genes and 
interme-

diate 
metabo-

lites

Dysregu-
lation of 
amino 

acid 
genes and 
interme-

diate 
metabo-

lites

Dysregu-
lation of 

lipogene-
sis genes 

and 
interme-

diate 
metabo-

lites

Dysregu-
lation of 

glycolytic 
genes and 
interme-

diate 
metabo-

lites

Treatment

Clo-
fazimine; 
glycolysis 
inhibitors

Anti-PD-1

Disul-
firam; 
lipid 

synthesis 
inhibitors

Clo-
fazimine; 
glycolysis 
inhibitors

CNV, copy-number variation; SNV, single-nucleotide variants; RFS, relapse-
free survival; N/A, not available.
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metabolic genes during different HCC stages and identified in 
total 227 DNBs for predicting tipping point. According to the 
enrichment scores of metabolic pathways assigned by DNBs, 
we grouped HCC samples into 4 clusters that had distinct met-
abolic characteristics. Notably, cluster 3 with the mixed meta-
bolic dysregulation had worst outcomes. These results indicate 
that metabolic dysregulation play an important role in HCC 
prognosis. Moreover, the association between clusters and clin-
ical characteristics of HCC might be helpful to understand the 
metabolic heterogeneity of HCC better and provide biological 
significance to HCC treatment (Table).

Next, we performed the WES to identify the molecular drivers 
of different metabolic clusters in HCC. Our results proved that 
cluster 2 had a relatively higher CNV burden and mutation 
burden with more frequent mutations in the Hippo and PI3K 
pathways. Moreover, there were more somatic copy-number 
alterations in amino acid metabolism genes in cluster 2. Especially, 
pathway enrichment analysis based on differential metabolites 
and differential metabolic genes showed that the tryptophan 
metabolism was the top enriched pathway in cluster 2, with its 
related metabolic genes dysregulated significantly. The WES 
analysis implied that genomic alterations in specific chromo-
somal regions might mediate the metabolic reprogramming 
and heterogeneity of HCC.

Our multiplex immunofluorescence staining showed that 
cluster 2 had an enrichment of immune cells in tumor tissues, 
especially PD-1-expressing cells. The results might be explained 
by enriched tryptophan metabolism in cluster 2 of the TCGA-HCC 
cohort and ZS-SEQ-HCC cohort. Recently, many studies have 
found that enzymes and metabolites of tryptophan metabolism 
are widely involved in the regulation of immune system [34,35]. 
IDO1 as the key enzyme in tryptophan metabolism plays a vital 
role in differentiating CD4+ T cells into regulatory T cells in 
tumors, thereby promoting the immunosuppressive state of the 
tumor microenvironment [36]. In addition, IDO1 expression 
in the tumor can induce expression of PD-1 in T cells [37]. 
Inhibition of GCH1 by 2,4-diamino-6-hydroxypyrimidine 
could block IDO1 activity, halt tumor growth, and enhance the 
tumor response to anti-PD-1 immunotherapy [38]. These find-
ings supported the role of dysregulated tryptophan metabolism 
in inducing PD-1 expression. We further examined the distri-
bution of other immune checkpoints, including PD-L1, LAG-3, 
and FGL1. We found that there was a higher density of PD-L1+ 
immune cells in tumor tissues of cluster 2, while no differences 
were observed in LAG-3+ and FGL-1+ cell densities between 
cluster 2 and other clusters. Previous studies reported that patients 
with high expression of PD-L1 and low expression of LAG-3/
FGL1 had a better prognosis [39], explaining why cluster 2 had 
a higher survival. In the future, we will analyze more common 
immune checkpoints in HCCs to perfect our research results.

We then found that stemness-associated genes [27] were 
more dysregulated in cluster 3 when compared with other clusters. 
The abnormal expression of stemness genes can lead to the 
activation of lipid metabolism pathways and ultimately enhance 
self-renewal ability and drug resistance of tumor cells [28], 
explaining why patients in cluster 3 had worst outcomes.

Our study also indicates the application value of identified 
metabolic-pathway-based clusters in clinical translations, such 
as therapeutic strategies. The combination of experimental 
results and in silico modeling demonstrated that the sensitivity 
of these 4 metabolic clusters to drugs depends on their meta-
bolic features. Clofazimine blocked tumor growth in cluster 1 

and cluster 4 through inhibiting glycolytic reprogramming, 
while disulfiram inhibited tumor growth in cluster 3 by dis-
turbing oxidative phosphorylation. Through simulating the 
docking between drug molecule and metabolic enzymes and 
performing experiments, we demonstrated that clofazimine 
interacted with PFKM [40], a key glycolytic enzyme, and disul-
firam interacted with MECR [41], a key lipogenic enzyme. 
Notably, we used 3-dimensional fibrin gels to sort tumor-
repopulating cells from SKHEP1 cells (cluster 3) and found that 
disulfiram could enhance the antitumor effect of sorafenib and 
reduce drug resistance, which might be results from inhibitory 
effect of disulfiram on lipid metabolism in cluster 3. The under-
standing of dysregulated metabolic networks provided a refer-
ence for personalized therapy. At present, the construction of 
rodent hepatoma model and the research progress of drugs 
provide a basis for the development of advanced agents with 
clinical therapeutic potential for liver cancer [42]. In this paper, 
PDX mouse models were used in order to evaluate potential of 
metabolic clusters in precision therapy in vivo. Considering 
that the metabolic characteristics in cluster 2 may promote the 
expression of PD-1, we supposed that HCC patients in cluster 
2 would benefit more from PD-1 treatment. Expectedly, in the 
ZS-PD1-HCC cohort, HCC patients in cluster 2 had a better 
response to PD-1 treatment, supporting our assumption.

In conclusion, our study revealed the metabolic repro-
gramming and heterogeneity in HCC, identified 4 clusters by 
DNB method with distinct metabolic features, genomic alter-
ations, immune microenvironment, and sensitivity to drugs 
and immunotherapy by DNB method, and suggested the 
potential of metabolic features as a therapeutic strategy in 
HCC treatment.

Materials and Methods

Sample collection
A total of 219 patients with HCC who underwent curative resec-
tion between January 2009 and January 2010 were enrolled in 
3 independent cohorts at the Zhongshan Hospital of Fudan 
University (Shanghai, China), the First Affiliated Hospital of 
Wenzhou Medical University (Zhejiang, China), and eastern 
Hepatobiliary Surgery Hospital (Shanghai, China). Fresh tumor 
liver tissues were collected for analysis at transcriptional or 
metabolomic level. Ethical approval for the study was obtained 
from the First Affiliated Hospital of Wenzhou Medical University 
Ethics Committee. All patients who had not yet received drug 
treatment were identified by the pathologic diagnosis of HCC. 
The cohort 1 named as the ZS-SEQ-HCC cohort consists of 30 
patients with transcriptomics, metabolomics, and whole-exome 
capture sequencing analysis. The cohort 2 named as the ZS-HCC 
cohort is composed of 159 patients with transcriptomics, tissue 
microarray, and immunohistochemical analysis. The cohort 3 
named as the ZS-PD1-HCC cohort consists of 30 patients who 
accepted PD-1 immunology treatment and transcriptomics 
analysis (PD-1, 200 mg, every 3 weeks). The cohort 4 named as 
TCGA-HCC cohort consists of 343 HCC patients with tumor 
and paired nontumor samples. The transcriptomics sequencing 
data and clinical data of the TCGA-HCC cohort were collected 
from the TCGA database (https://portal.gdc.cancer.gov/).

All diagnoses of HCC were based on histopathology and 
followed World Health Organization criteria. Tumor grades 
were assigned using the system Edmondson–Steiner system, 
and Child–Pugh scores were used for liver function assessment. 
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Tumor stage was determined using the Union for International 
Cancer Control Tumor, Node, Metastasis Classification system. 
Tumor recurrence was diagnosed on the basis of computed 
tomography scans, magnetic resonance imaging, digital sub-
traction angiography, and elevated serum alpha-fetoprotein 
levels, with or without histological confirmation.

Patients who underwent palliative surgery only, had prior 
interventions (e.g., trans-hepatic artery embolization, chemo-
therapy, or radiotherapy), or were diagnosed with other primary 
malignancies or inflammatory diseases during the follow-up 
were excluded from the study.

Differential metabolic genes in TCGA-HCC cohort
On the basis of the clinical data of the TCGA-HCC cohort, 
HCC samples were divided into 4 groups (Normal, Stage I, 
Stage II, and Stage III). We performed pairwise comparisons 
using R package “limma” and selected genes with significant 
difference (adjusted P < 0.05) in at least 1 comparison. P values 
were adjusted for controlling the high false-positive rate in 
multiple comparisons by using the Benjamini–Hochberg (BH) 
method. The metabolic pathways and associated genes were 
downloaded from the KEGG database (www.kegg.jp/). The 
differential genes that involve in metabolic pathways in the 
KEGG database were selected. Finally, we obtained 9,193 dif-
ferential metabolic genes assigned to 344 metabolic pathways 
for later analysis.

Calculation of the global divergence between a pair 
of expression profiles
The global divergence between a pair of gene expression profiles 
was calculated as Euclidean distance:

RMSD =
�

∑n
i=1 (log2xi − log2yi

2∕n  , where xi and yi are the 
expression of gene i in 2 expression profiles, respectively, and 
n is the number of genes present in the expression profile.

GSEA
The GSEA (“GSEAbase” package in R) was performed on genes 
preranked by gene-expression-based log2 fold change between 
tumors and normal tissues. P values were adjusted for con-
trolling the high false-positive rate in multiple comparisons by 
using the BH method. The results with FDR below 0.05 were 
considered significantly differential pathways. The enriched 
pathways were classified into 8 metabolic categories according 
to the KEGG database.

DIRAC analysis
DIRAC analysis (“GSReg” package in R) was performed to quan-
tify the variability of various biological pathways or network 
across individuals. The gene expression profiles and metabolic 
pathways information would be used to calculate RCI of each 
pathway through gene ranking and pairwise comparison of gene 
expression. RCI represents the degree of pathway-level pertur-
bations between samples in a given phenotype (group). An RCI 
of 1.0 indicates mostly unchanged ranks of pathway genes 
among samples, and an RCI of 0.5 indicates greatly variable 
ranks of pathway genes among samples. In this study, we used 
the 344 metabolic pathways consisting of 9,193 metabolic genes 
to calculate the RCIs in normal samples or HCC samples of the 
TCGA-HCC cohort.

Dynamic changes analysis and DNB analysis
We performed dynamic changes analysis (“Mfuzz” package in 
R) on the metabolic gene expression profiles to get gene clusters 
and their changes during different stages. The optimal number 
of clusters was obtained using “Dmin” function in R package 
“Mfuzz”. We then used the metabolic gene expression profiles 
to identify DNB according to the nonlinear dynamic theory. 
The DNBs is a group of molecules or genes that satisfy the 
following 3 criteria:

• � The expressions of DNB members fluctuate widely, rep-
resented by the SD.

• � Pearson correlation coefficients (PCCi) among DNB 
members at the mRNA expression level are increased 
significantly.

• � Pearson correlation coefficients (PCCo) between DNB 
members and non-DNB genes are decreased significantly.

The CI was calculated as the numerical signal of the DNB 
method:

where PCCin is average PCCi (in absolute value) of all pairwise 
correlation in DNBs, PCCout is average PCCo (in absolute 
value) of all pairwise correlation between DNBs and other 
genes, and SDi is the average SD of DNB members.

We performed the following steps to identify DNB members 
at each HCC stage (Stage I, Stage II, and Stage III) with normal 
group as a reference group: (1) calculate SD of each metabolic 
gene at normal group and each HCC stage, and choose genes 
whose SD in a given stage are at least 2 times more than SD in 
normal group; (2) cluster the selected genes in the above step 
at each HCC stage (“hclust” function in R with method as “com-
plete”); (3) normalize the expression data of each gene at each 
HCC stage by Fisher z transformation; (4) calculate the 4 indi-
ces of each cluster at normal group and each HCC stage: 
average SD, average absolute Pearson’s correlation coefficient 
(|PCC|) among the cluster members, average |PCC| between 
the cluster members and other genes, and CI; (5) select cluster 
that match 3 criteria of DNB and have a highest CI, and regard 
the corresponding stage as a candidate stage.

Finally, we obtained 227 genes as DNBs and identified Stage 
II as a candidate stage. For constructing gene networks, we 
collected latest information of human protein-protein interac-
tion network from the string database (www.string-db.org/, 
2021.10). The visualization of networks was achieved by 
Cytoscape (version 3.7.1).

GSVA and metabolic-pathway-based clustering
We used GSVA (“GSVA” package in R) to calculate the enrich-
ment scores of 155 metabolic pathway assigned by 227 DNBs 
in each sample of the TCGA-HCC cohort. Before clustering, 
we scaled the enrichment scores profile of each sample. The 
k-means clustering (“kmeans” function in R) was performed to 
cluster 343 HCC samples based on Euclidean distance of enrich-
ment scores profile, with k in the range of 2 to 8. We then used 
consensus clustering (“ConsensusClusterPlus” package in R) to 
assess the robustness of clustering, with iteration as 1,000 and 
resampling as 80%. We applied 21 different testing methods by 
using NbClust testing (“NbClust” package in R) for determining 

CI =
PCCin

PCCout
SDi
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the optimal number of clusters. The stability of clustering was 
confirmed by Silhouette analysis.

Classification of HCC patients and their  
HCC cell lines
We firstly removed batch effects of mRNA expression data of 
HCC patients in other cohorts and HCC cell lines with expres-
sion data of HCC samples in the TCGA-HCC cohort as a ref-
erence (“ComBat” function in R package “sva”). Then, each 
mRNA expression dataset was normalized (“scale” function in 
R). The enrichment score of each metabolic pathway in each 
sample was calculated via the GSVA method. Then, we trained 
a model based on enrichment score profiles and clustering 
information of the TCGA-HCC cohort and utilized the model 
to classify other HCC patients and HCC cell lines to identified 
metabolic-pathway-based clusters, by using the NSC method 
in the R package “pamr”.

Transcriptome sequencing
After finishing RNA sample isolation, double-stranded com-
plementary DNA (cDNA) was synthesized using an mRNA 
template after mRNA enrichment by Oligo (dT) magnetic 
beads. The purified double-stranded cDNA later underwent 
terminal repair, poly-A tail addition, and adapter incorpora-
tion. The cDNA was screened by AMPure XP beads, amplified 
by polymerase chain reaction, and purified by AMPure XP 
beads again. Finally, a library was constructed. After checking 
the quality of the library, the high-throughput sequencing plat-
form was used to sequence the library. The libraries were 
sequenced on an Illumina HiSeq X Ten platform, and 150 bp 
paired-end reads were generated. Clean data were obtained for 
downstream analyses by removing reads containing adapter, 
reads containing ploy-N, and low-quality reads from raw data 
using Trimmomatic. The clean reads were mapped to the 
human genome (hg38p13) using HISAT2. FPKM value of each 
gene was calculated using Cufflinks, and the read counts of 
each gene were obtained by HTSeq-count.

WES and statistical analysis
The WES process includes 2 main modules: library construction 
and sequencing. Agilent SureSelect HS Target Enrichment System 
was used to enrich whole-exon regions, and high-throughput 
sequencing was performed on NovaSeq 6000 sequencer. The 
library construction and enrichment were conducted using 
Agilent SureSelect Human All Exon V6 kit. Sample DNA quality 
evaluation: 1 μg of DNA samples (Qubit quantitative value), aga-
rose gel electrophoresis quality test without degradation or RNA 
pollution. Qualified DNA was randomly broken into 150- to 
300-bp fragments. After terminal repair, poly-A tail addition, and 
adapter linkage, we constructed a DNA library. After pooling, the 
library was hybridized with biotin-labeled exon probes in liquid 
phase, and then the exon sequences were extracted by streptomy-
cin magnetic beads. After quality control, we used NovaSeq 
6000 to perform PE (pair-end) 150-bp sequencing. Every library 
fragment underwent PE 150-bp sequencing, after which a pair of 
150-bp sequences can be obtained and called as reads (the 
basic unit of sequencing data). According to a previous study [14], 
there are 10 typical oncogenic signaling pathways consisting of 
335 genes. For each sample, we calculated the number of SNV 
and CNV occurring in the genes that involve in these 10 oncogenic 
pathways. For each metabolic cluster, we calculated the sample 

proportion with at least 1 SNV or CNV in each of the 10 oncogenic 
pathways and performed comparisons in every 2 clusters 
and among clusters. The tumor sample is thought to have CNV 
or SNV in the given pathway whose genes have at least 1 CNV 
or SNV.

Liquid chromatography-tandem mass  
spectrometry analysis
The raw data was converted to MZXML format through 
ProteoWizard. Then, we used XCMS program for peak align-
ment, retention time correction, and extraction of peak area. 
The structure identification of metabolites was carried out by 
using the matching method of accurate mass number (<25 ppm) 
and secondary spectrum. In addition, the self-built database was 
retrieved. For the data extracted from XCMS, the missing ion 
peaks > 50% in the group were deleted. We used SIMCA-P v14.1 
(Umetrics, Umea, Swede) for pattern recognition. After the data 
was preprocessed by Pareto scaling, we performed multidimen-
sional statistical analysis, including unsupervised PCA, super-
vised least squares discriminant analysis and orthogonal least 
squares discriminant analysis. The differential metabolites in 
every 2 clusters or between 1 to other 3 clusters were obtained 
using Student t test. We used Omicsbean to perform KEGG 
pathway enrichment analysis.

Docking possibilities between proteins and drugs
We assessed the docking possibilities between the target pro-
teins and small drug molecules by using Autodock software 
(https://autodock.scripps.edu/), with crystal structure of each 
protein as the receptor and each drug molecule as the docking 
ligand. The crystal structures of metabolic genes involved in 
glycosis and lipid metabolism were downloaded from the 
Protein Data Bank (PDB, http://www.wwpdb.org/), processed 
by removing water molecules and heteroatoms, and saved for 
molecule docking. The structures of 2 small-molecule drugs, 
clofazimine and disulfiram, was obtained from the ChemSpider 
database (www.chemspider.com). We used Autodock to per-
form semiflexible docking, in which the receptor is rigid and 
ligand is flexible. By evaluating the binding free energy between 
receptor and ligand, we found that clofazimine and disulfiram 
exhibited the highest binding efficacy with PFKM (PDB_ID: 
4OMT) and MECR (PDB_ID: 2VCY), respectively. We used 
ProteinsPlus (https://proteins.plus/) to visualize the protein–drug 
docking results, with PoseView used to generate 2-dimensional 
diagrams of protein–drug interactions.

PDX mouse models and drug treatment
We isolated fresh tumor tissues from patients of clusters 1, 3, 
and 4 in ZS-SEQ-HCC cohort in the operating room and dis-
sected them into 1 mm3. We anesthetized the NOG mice and 
subcutaneously implanted the HCC tissues into the right supe-
rior flank of the mice. After 2 months, when the diameter of 
tumors reached 1 cm, the subcutaneous PDX tumors were 
removed, which later were dissected into 3 pieces about 2 × 2 × 
2 mm in size, and retransplanted to flanks of nude mice for 
about 30 days for growth. The mice were euthanized no more 
than 5 weeks, or at the time when tumors reached 10 mm in 
diameter. For the drug treatment groups, the mice received 
25 mg of clofazimine or 50 mg of disulfiram per mouse per kilo-
gram every 2 days via tail intravenous injection on the eighth day 
after transplantation. For the control group, the mice received 
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isovolumetric dimethyl sulfoxide per mouse per kilogram every 
2 days via tail intravenous injection on the eighth day after 
transplantation.

Quantification and statistical analysis
Comparisons of continuous variables between 2 groups of nor-
mally distributed data were made using Student t test, with 
non-normally distributed data tested by Mann–Whitney test. 
Comparison among multiple groups were made by 1-way anal-
ysis of variance and Tukey's post hoc test. Two-sided P values 
less than 0.05 were considered statistically significant (level of 
significance: *P < 0.05; **P < 0.01; ***P < 0.001; ns, P > 0.05). 
All results are shown as means ± SD unless otherwise indicated. 
Survival curves were constructed using the Kaplan–Meier 
method. The significant differences between 2 or more survival 
curves were tested using log-rank test. The BH method was 
utilized in multiple comparisons to decrease false-positive 
rates. The association between the clinical information and 
metabolic clusters was examined using the chi-square test. 
Univariate and multivariate Cox proportional hazard regres-
sion models adjusted or not adjusted for available prognostic 
clinical covariates were performed to calculate hazard ratios 
and 95% confidence intervals. Correlation analysis was con-
ducted with Spearman’s correlation. All statistical analyses were 
performed with R software (version 3.6.3) for statistical computing, 
Python Programming Language (version 3.8), or GraphPad 
Prism software (version 8.0).

Other materials and methods
For further details regarding the materials used, please refer to 
the Supplementary Materials.

Ethical approval 
The animal study protocols were approved by the Animal Care 
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