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Abstract

Motivation: Biomedical identifier resources (such as ontologies, taxonomies, and controlled vocabularies) common-
ly overlap in scope and contain equivalent entries under different identifiers. Maintaining mappings between these
entries is crucial for interoperability and the integration of data and knowledge. However, there are substantial gaps
in available mappings motivating their semi-automated curation.

Results: Biomappings implements a curation workflow for missing mappings which combines automated prediction
with human-in-the-loop curation. It supports multiple prediction approaches and provides a web-based user inter-
face for reviewing predicted mappings for correctness, combined with automated consistency checking. Predicted
and curated mappings are made available in public, version-controlled resource files on GitHub. Biomappings cur-
rently makes available 9274 curated mappings and 40 691 predicted ones, providing previously missing mappings
between widely used identifier resources covering small molecules, cell lines, diseases, and other concepts. We
demonstrate the value of Biomappings on case studies involving predicting and curating missing mappings among
cancer cell lines as well as small molecules tested in clinical trials. We also present how previously missing map-
pings curated using Biomappings were contributed back to multiple widely used community ontologies.

Availability and implementation: The data and code are available under the CC0 and MIT licenses at https://github.
com/biopragmatics/biomappings.

1 Introduction

Standardizing the identification of small molecules, proteins, and
other biomedical entities is an important step in creating and main-
taining findable, accessible, interoperable, and reusable (FAIR)
(Wilkinson et al. 2016) data in the life sciences. Resources that cata-
log and provide identifiers for such entities are essential for this ef-
fort. Such “identifier resources” include ontologies, taxonomies,
and other controlled vocabularies, e.g. the Human Disease
Ontology (DO) (Schriml et al. 2021), Medical Subject Headings
(MeSH) (Rogers 1963), and the Chemical Entities of Biological
Interest (ChEBI) (Hastings et al. 2016). However, many identifier
resources overlap in scope and include equivalent entities with dif-
ferent identifiers. For example, the small molecule cyclin-dependent
kinase inhibitor “alsterpaullone” appears in several chemical-
and drug-related identifier resources including ChEBI as
chebi:138488 and MeSH as mesh:C120793. Merging equiva-
lent entities is crucial for tasks dependent on data integration like
ontology merging (Lambrix and Tan 2008; Geleta et al. 2022; Guo
et al. 2022), entity linking (Gyori et al. 2022), construction of know-
ledge graphs (Himmelstein et al. 2017; Nicholson and Greene 2020;

Friedrichs 2021), and automated systems biology model assembly
(Gyori et al. 2017; Bachman et al. 2023). More generally, mapping
between equivalent identifiers from different identifier resources is a
ubiquitous task across computational life science analyses, work-
flows, and tools.

A “mapping” (often referred to as “ontology mapping” or
“semantic mapping”) represents a relationship between two entities
in different identifier resources using a specific predicate such as one
representing an exact match (i.e. when the entities can be used inter-
changeably), a broad match (i.e. when one entity is a super-class of
the other), or a narrow match (i.e. when one entity is a subclass of
the other). Each mapping can also carry additional metadata repre-
senting provenance for its creation. We refer to Figure 2 of
Matentzoglu et al. (2022a) for a more detailed description of map-
pings. High-quality, semantically rich equivalence mappings are
required to support merging and converting between identifiers
from different resources. Therefore, many identifier resources pro-
vide equivalence mappings to one or more other resources. We refer
to mappings provided directly by an identifier resource as “primary
mappings.” Such mappings are typically curated by the maintainers
of the resource and are provided along with entries in the resource

VC The Author(s) 2023. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 39(4), 2023, btad130

https://doi.org/10.1093/bioinformatics/btad130

Advance Access Publication Date: 14 March 2023

Original Paper

https://orcid.org/0000-0003-4423-4370
https://orcid.org/0000-0003-1307-2508
https://orcid.org/0000-0001-9439-5346
https://github.com/biopragmatics/biomappings
https://github.com/biopragmatics/biomappings
https://academic.oup.com/


in the form of cross-references. For example, the HUGO Gene
Nomenclature Committee (HGNC) (Yates et al. 2017) provides
mappings from its identifiers for human genes to the Entrez gene
database (Maglott et al. 2011), Ensembl (Zerbino et al. 2018), and
several other identifier resources. Similarly, ontologies like the
Mondo Disease Ontology (MONDO) (Vasilevsky et al. 2022) cur-
ate and distribute mappings to other identifier resources including
DO and MeSH.

Though primary mappings from identifier resources are often
available, a survey from Laadhar et al. (2020) of mappings in life
science ontologies highlights several widespread issues such as the
use of unspecific predicates (e.g. oboInOwl:hasDbXRef), the lack
of standardization of the syntax and semantics of the targets of map-
pings, and a lack of detailed provenance metadata. The Simple
Standard for Sharing Ontological Mappings (SSSOM) (Matentzoglu
et al. 2022a) was recently developed to provide a standardized for-
mat for mappings and thereby increase their reusability and inter-
operability. While SSSOM supports disseminating mappings
through a common standard, it does not in itself provide a solution
for identifying and curating missing mappings.

Several services aggregate, process, and redistribute mappings
including BridgeDB (van Iersel et al. 2010), TogoID (Ikeda et al.
2022), and the Ontology Mapping Service (https://github.com/
EBISPOT/OXO). However, these services only draw from primary
mappings provided by identifier resources and are therefore unable
to address gaps, lack of specificity, and lack of rich provenance
metadata in these resources.

Despite existing curation and aggregation efforts, there still exist
gaps in mappings between major resources (e.g. ChEBI and MeSH
both provide identifiers for small molecules but neither provides
mappings to the other) and mappings that are provided are often in-
complete (e.g. there are many gaps in mapping disease terms be-
tween MONDO and MeSH). Several automated methodologies
have been proposed to predict missing mappings, including algo-
rithms exploiting lexical similarity (Ghazvinian et al. 2009), ones
based on logical/structural alignment of resources (Jiménez-Ruiz
and Cuenca Grau 2011), and others based on machine learning
(Berrendorf et al. 2020). However, beyond routine benchmarking,
mappings produced by such automated mapping algorithms are not
systematically reviewed for correctness and then contributed back to
the primary sources to which the mappings apply, ultimately result-
ing in limited impact on the state of existing resources. Further,
existing automated mapping approaches often do not provide inter-
faces for curating (e.g. reviewing, confirming, and rejecting) pre-
dicted mappings, storing important metadata (e.g. mapping
confidence), and maintaining curation artifacts in accessible ways
(e.g. via public version control). For example, the Ontology
Alignment Evaluation Initiative (https://oaei.ontologymatching.org)
has used the same task of aligning the Foundational Model of
Anatomy Ontology (Rosse and Mejino 2003) and SNOMED-CT
(Donnelly et al. 2006) for more than 15 years [see Bodenreider and
Zhang (2006) and Wang and Hu (2022)]. However, the manuscripts
published on the task only focus on method development and nei-
ther predict novel mappings, curate them, nor contribute them back
to the upstream identifier resources. Overall, existing work does not
provide a workflow for finding, predicting, and curating missing
mappings.

To address this, we introduce Biomappings, a framework for
semi-automatically creating and maintaining mappings in a public,
version-controlled repository. Biomappings combines multiple con-
tributions: (i) a “curation cycle” workflow for creating mappings;
(ii) an extensible pipeline for automatically predicting missing map-
pings between resources, and automatically detecting inconsisten-
cies; (iii) a web interface for reviewing and curating predicted
mappings; and (iv) a public, version-controlled repository of pre-
dicted and curated mappings.

Biomappings currently makes available �9.2 thousand reviewed
mappings and �40 thousand predicted ones. Mappings are associ-
ated with necessary metadata in an intuitive tab-delimited format,
licensed permissively to encourage community contributions and
restriction-free integration back into primary identifier resources. In

addition to novel mappings, Biomappings provides an extensible
lexical mapping prediction pipeline based on Gilda (Gyori et al.
2022), and a web-based interface for curation of predictions and
adding manually constructed mappings. The mappings themselves,
functions supporting the programmatic creation and usage of map-
pings, the web-based curation interface, as well as several workflow
examples for generating new mappings are made available in the
open-source “biomappings” Python package.

We demonstrate the utility of Biomappings in three case studies.
First, we used Biomappings to predict and curate mappings for cell
lines in the Cancer Cell Line Encyclopedia (CCLE) (Ghandi et al.
2019) to two other resources providing identifiers for cell lines.
Biomappings added a total of 684 novel mappings that could not be
inferred from existing mappings (more than a 70% increase). These
mappings crucially improve the interoperability between databases
describing the characteristics and measurements of cancer cell lines.

Second, we used Biomappings to predict and curate mappings
between MeSH and ChEBI, both of which contain entries for chemi-
cals of biological interest but lack any mappings to each others’
entries. We show that the 2909 mappings added by Biomappings en-
able mapping chemicals (listed using MeSH identifiers) in 100 342
ClinicalTrials.gov trials to ChEBI identifiers, thereby enabling the
integration of clinical trials data with other ChEBI-aligned
resources.

Third, we used Biomappings to predict and curate missing map-
pings between four widely used Open Biological and Biomedical
Ontologies (OBO) (Jackson et al. 2021) and MeSH. We then con-
tributed 1378 confirmed mappings back to the primary OBO
resources through GitHub pull requests. These contributions have
the potential for high impact given the ubiquity of these ontologies
in various workflows, tools, and analyses.

Biomappings is available through a web portal at https://bioprag
matics.github.io/biomappings and as a Python software package at
https://pypi.org/project/biomappings. All underlying data, code, and
governance documentation are accessible through GitHub at https://
github.com/biopragmatics/biomappings under the MIT and CC0
licenses and are archived on Zenodo (https://doi.org/10.5281/zen
odo.7307938).

2 Materials and methods

2.1 The Biomappings curation cycle
We propose a novel, semi-automated approach to curation and
maintenance of mappings supported by Biomappings (Fig. 1).

The first step of the cycle comprises retrieval and preprocessing
of target identifier resources, including any existing mappings be-
tween the resources. We automate this process for ontologies by
using the Bioregistry (Hoyt et al. 2022) to locate the ontology (i.e.
with a URL) and ROBOT (Jackson et al. 2019) to parse it.
Similarly, we use custom automated preprocessing workflows in
PyOBO (https://github.com/pyobo/pyobo) for other identifier re-
source types (e.g. databases like HGNC).

The second step comprises generating predictions through lexical
similarity or other approaches (see Section 2.2). This step is often
mediated by task-specific scripts which focus on generating map-
pings between two target identifier resources. At this stage, predic-
tions for mappings that have already been manually curated in
Biomappings or ones made available by other sources can be
excluded to ensure predictions are novel.

The third step comprises choosing a scope for manual review,
i.e. filtering predictions to a desired subset and applying additional
filters. For instance, one may filter for predicted mappings between
two specific identifier resources to focus curation on.

The fourth step is to review and curate predicted mappings as
positive (i.e. true), negative (i.e. false), or unsure. In Biomappings,
this step is mediated by a web interface described in Section 2.3.

The fifth step involves improving the first four steps of the cycle
based on insights gained from curation, as well as contributing cura-
ted mappings to external resources. For example, manual inspection
of predictions may reveal systematic errors in prediction that can be
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used to improve preprocessing or update the filtering step in order
to reduce curation burden. Concurrently, the novel mappings can be
contributed to external resources to increase their visibility and im-
pact (we demonstrate this in Section 4.3).

This curation workflow may support one of several goals such as
(1) the exhaustive curation of mappings between identifiers in two
identifier resources, (2) a task-oriented curation goal to maximize
return on fixed curation effort, often prioritized or driven by an ex-
ternal task-specific need, (3) analysis or quality assurance-driven
curation such as the example described in Section 2.4.2, or (4) open-
ended/interest-driven curation.

2.2 Generating predictions
We employ a lexical matching workflow in the case studies pre-
sented in Section 4. This relies on labels and synonyms associated
with entities for predicting mappings. The workflow is implemented
using Gilda (Gyori et al. 2022), a fast and extensible named entity
normalization system. Gilda takes an unnormalized string represent-
ing a biomedical entity as input (e.g. “k-ras”) and returns a list of
ranked, scored matching ontology terms (e.g. HGNC:6407 repre-
senting the KRAS gene). Initial retrieval of possible matches is done
based on string normalization (e.g. “Amyloid-b” becomes
“amyloid-beta”) after which possible matches are scored and
ranked. Scoring is based on an extension of Allen et al. (2015) and
takes into account string variations between the unnormalized
strings including dashes, capitalization patterns, Greek letters, and
their spelled out forms. When used to predict mappings between
two identifier resources, Gilda first generates an index of the labels
and synonyms for entities in one of the two identifier resources.
Second, Gilda takes labels and synonyms in the second identifier re-
source and finds ranked/scored matches to the first one.

Lexical matching has the advantage of being computationally in-
expensive, highly explainable, and ultimately easy to curate.
However, we note that the Biomappings workflow is able to support
other methodologies such as knowledge graph-based matching
workflows (see Supplement), structural matching (e.g. that exploits
ontology hierarchy, see Supplement), chemical structure-based
matching, or other custom workflows. Following generation, pre-
dicted mappings are filtered to remove predictions that appear in
primary identifier resources or have already been curated in
Biomappings in order to reduce duplicate curation. Importantly,
Biomappings also captures provenance about how mappings are
generated irrespective of the methodology.

2.3 Web interface for curating mappings
Biomappings provides a locally deployable web-based interface for
browsing, reviewing, and curating predicted mappings (Fig. 2). It
displays a paginated view of the subject, predicate, object, and confi-
dence of each predicted mapping that can be searched by the com-
pact uniform resource identifier (CURIE) for an entity (i.e. of the
form <prefix>:<identifier>), by entity name, and by resource to
support restricted curation scopes. On the right-hand side, it dis-
plays buttons for curating each prediction as positive, negative, or
unsure. After each curation, the interface updates the relevant re-
source files and includes provenance about the curation such as the
curator’s Open Researcher and Contributor Identifier (ORCID). It
then communicates with git to create the appropriate commits that
can be pushed to GitHub. Finally, the bottom of the interface also
includes a bar for inputting novel curations not included in the
predictions.

2.4 Quality assurance
Biomappings uses a combination of social and technical workflows
to maintain high data quality and integrity.

2.4.1 Version control and continuous testing

Biomappings uses git for version control to track all changes and
mediate releases via Zenodo. Second, it uses GitHub as a technical
platform to host and distribute the project’s code and data openly
and as a social platform to enable discussion and external contribu-
tion through pull requests. Third, it uses GitHub Actions as a con-
tinuous integration and continuous delivery system to apply data
quality checks [e.g. all mappings’ prefixes and local unique identi-
fiers are compliant with the Bioregistry (Hoyt et al. 2022)]. Further,
several summaries (e.g. charts, tables, and website), analyses (see
Section 2.4.2), and artifacts (see Section 3.1) are automatically
regenerated when a pull request is merged and archived on Zenodo
(https://doi.org/10.5281/zenodo.7307938).

2.4.2 Automated consistency checking of mappings

Biomappings implements three graph-theoretic approaches for iden-
tifying incorrectly curated, inconsistent, or missing mappings. This
serves as an automated quality check to maintain the global consist-
ency of the resource. First, a labeled, undirected graph is constructed
from the union of positive and negative exact mappings. Then, cer-
tain predefined motifs are found as shown in Fig. 3 to detect
inconsistencies.

The “duplicate prefix in clique” motif contains a set of nodes
connected by equivalence relationships (e.g. skos:exactMatch)
where two or more nodes originate from the same identifier resource
(Fig. 3A). In the example, two entities from MeSH [i.e.
“proanthocyanidin” (mesh:C013221) and “Proanthocyanidins”
(mesh:D044945)] appear in the same clique. Upon further inspec-
tion, “Proanthocyanidins” is found to represent a class of chemicals
with similar structures while “proanthocyanidin” represents a spe-
cific, prototypical instance of the class. Because the other entities in
the clique refer to the class of chemicals, the equivalence relations
between “proanthocyanidin” (i.e. the specific instance) and the
other entities in the clique should be removed. This removal, how-
ever, does not preclude the existence of other relationships, such as

Figure 1. The Biomappings curation cycle supports sustainable, efficient curation of

high-quality mappings between identifier resources, consisting of five steps.

Figure 2. A screenshot of the Biomappings curation interface filtered to ChEBI and

MeSH mappings showcases mappings of varying degrees of difficulty to curate. For

example, some are exact matches, some are close matches, and some are matched

due to synonyms.
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parent/child relationships. Such motifs can also help identify more
generic properties of the identifier resources that lead to curation
errors, such as the pluralization schemes of its chemical classes.

The “incomplete clique” motif contains a set of nodes that are
connected by equivalence relationships, but some nodes are not con-
nected (Fig. 3B). This motif provides support for curating additional
equivalence mappings via the transitivity of equivalence. In the ex-
ample, a mapping between “Spasms, Infantile” (mesh:D013036),
and “West Syndrome” (umls:C0037769) could be curated.

The “unstable clique” motif contains a set of nodes that are con-
nected by equivalence relationships, but two of the nodes are also
curated with a negative mapping (Fig. 3). This motif suggests that
one (or more) of the equivalence or negative mappings are incorrect
and should be removed. In the example, the equivalence between
“Severe Dengue” (mesh:D019595) and “Dengue Shock Syndrome”
(umls:C0376300) is incorrect. These analyses are run on all
changes to the Biomappings database using GitHub Actions as a
continuous integration service whose results are posted to https://bio
pragmatics.github.io/biomappings.

3 Results

Biomappings (v0.3.0) contains 9274 positive mappings, 1215 nega-
tive mappings, 67 unsure mappings, and 40 691 predicted mappings
of 6 types across 27 identifier resources curated by 6 individuals
(Table 1, see also detailed summary in Supplementary Fig. S2).
These mappings were generated through a combination of priori-
tized curation (e.g. motivated by creating mappings to support a spe-
cific downstream task), open-ended curation (e.g. motivated by
interest in a specific prefix or search term or motivated by curating
the highest confidence mappings), and exhaustive curation (e.g.

motivated by completing alignments between two or more identifier
resources). Examples of each can be found in Section 4.

While Biomappings is generally able to use any predicate
encoded as a CURIE, mappings typically use the Simple Knowledge
Organization System (SKOS) vocabulary to denote matches in the

sense of information retrieval. The three most common predicates
that are useful for curating mappings are skos:exactMatch for

terms that can be used interchangeably, skos:broadMatch for
when the object term is a super-class of the subject, and
skos:narrowMatch for when the object term is a subclass of the

subject. Three additional relations appear in Biomappings (v0.3.0)
for species differentia [e.g. for mapping species-generic and species-

specific pathways in KEGG (Kanehisa et al. 2017)], for homologs
[e.g. for mapping related species-specific pathways in WikiPathways
(Martens et al. 2021)], and for connecting different ionization states

(e.g. conjugate acid and conjugate base) of small molecules.

3.1 Availability
Biomappings stores mappings in four tab-separated values (TSV)
files corresponding to the positive (i.e. true), (non-trivially) negative

(i.e. false), unsure, and predicted mappings (Table 1) that can be
manually edited directly, modified via web-based manual curation,

or extended with new predictions programmatically. Each stores
rich metadata about the source, target, mapping type, as well as its
associated provenance. Further, the predicted mappings include con-

fidence assessments and additional provenance about how they were
generated. These are collated into a single SSSOM document which
fully represents all provenance, can be used to generate additional

exports (e.g. JSON and RDF), and can be readily consumed by cur-
ation workflows such as those in the Ontology Development Kit

(Matentzoglu et al. 2022b) for developing ontologies. These arti-
facts are re-generated by the continuous integration workflow trig-
gered on all data changes in the repository. Further, these mappings

can be accessed via the biomappings Python package, installable
through the Python Package Index (PyPI). Finally, the mappings are

available as an interactive network on the Network Data Exchange
(NDEx) (Pratt et al. 2015) under https://bioregistry.io/
ndex:402d1fd6-49d6-11eb-9e72-0ac135e8bacf.

3.2 Governance and sustainability
Biomappings is built using open source code and open data
distributed under a permissive license (MIT and CC0) in a public,
version-controlled repository that is archived on Zenodo in order to

encourage community reuse and incorporation into the upstream
resources that it describes. It leverages public infrastructure and

automation to support its maintenance and extension. It has well-
defined contribution guidelines (https://biopragmatics.github.io/bio
mappings/contributing) and a governance model (https://bioprag

matics.github.io/biomappings/governance) that enable contributions
directly from the broader community to support the project’s lon-

gevity. Finally, Biomappings has a transparent attribution model
that associates all mappings with the ORCID identifier of the cur-
ator. These are summarized on the auto-generated summary website

and also on APICURON (Hatos et al. 2021).

4 Case studies

We present three case studies demonstrating the utility of

Biomappings. In Section 4.1, we describe generating and curating
exhaustive mappings between several identifier resources for cancer

cell lines. In Section 4.2, we describe taking a prioritized approach
toward generating and curating mappings between ChEBI and
MeSH in order to support data integration with clinical trials data.

Finally, in Section 4.3, we describe predicting and curating missing
MeSH mappings for several OBO ontologies, then contribute the
results back to these ontologies.

Figure 3. Three motifs identified by graph-theoretic methods for quality assurance.

The red X represents a mapping (whether positive or negative) that was incorrectly

curated and should be removed. (A) A prefix appearing twice in a triangle of positive

mappings signifies that one node and all of its incident edges is incorrectly mapped.

(B) A missing edge in a path of positive mappings with three nodes suggests the ex-

istence of a high confidence mapping. (C) A triangle with a negative mapping and

two positive mappings implies one of the positive mappings is incorrect.

Table 1. Biomappings resource files.

Curated Description Count

Yes Human-curated positive (i.e. true) mappings 9274

Yes Human-curated “non-trivial” negative (i.e.

false) mappings

1215

Yes Mappings that have been checked but not yet

decided

67

No Automatically predicted mappings 40 691

Note: Each row corresponds to a distinct TSV file in version control on

GitHub.
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4.1 Mapping missing cancer cell line identifiers
Several identifier resources have been constructed to describe cell
lines in order to support the generation of databases describing their
characteristics and associated experimental measurements. For ex-
ample, the CCLE contains a detailed genetic and pharmacological
characterization of hundreds of cancer cell lines constituting models
of various human cancers. Such detailed, large-scale databases have
proven useful in the prediction of anticancer drug sensitivity
(Barretina et al. 2012) and preclinical testing (Wilding and Bodmer
2014).

We were interested in integrating experimental data from CCLE
in a dialog system, but because CCLE provides an identifier resource
that does not contain lexicalizations (i.e. names and synonyms), it
was necessary to map CCLE to external identifier resources in order
to use their respective lexicalizations. Cellosaurus (Bairoch 2018)
and the Experimental Factor Ontology (EFO) (Malone et al. 2010)
were chosen for this purpose because of their high-quality curation
and detailed lexicalizations.

EFO (v3.49.0) contains no direct mappings to CCLE, but
Cellosaurus (v43.0) contains 1448 (black arrows in Fig. 4).
Cellosaurus also contains 1302 mappings to EFO which enables the
inference of 718 two-hop mappings from CCLE to EFO (blue
dashed line in Fig. 4). Further, we were able to recover a set of 718
three-hop mappings from CCLE to EFO when using the Cancer
Dependency Map (DepMap) as an intermediate (red dashed line in
Fig. 4, note that these 718 three-hop mappings are only partially
overlapping with the 718 two-hop ones). However, such inference is
inconvenient, relies on several implicit assumptions, and is still
incomplete.

In order to complete the alignments between CCLE, EFO, and
Cellosaurus, we first generated lexicalizations from CCLE names by
exploiting the naming convention where the cell line name is post-
pended with the tissue of origin (e.g. CL14_LARGE_INTESTINE).
From these names, we were able to extract the cell line name (e.g.
CL14) with high precision for each record in CCLE. Then, we gener-
ated novel lexical mappings (i.e. that were not inferrable) and cura-
ted 114 positive mappings (þ8%) from CCLE to Cellosaurus and
570 positive mappings (þ79%) from CCLE to EFO. We also cura-
ted 59 predicted mappings that we found to be incorrect (i.e. the
two terms cannot be considered equivalent) from CCLE to
Cellosaurus and 10 incorrect predictions from CCLE to EFO.

Explicitly storing these incorrect mappings as negative examples
helps avoid future errors in prediction. For example, we
flagged the proposed mapping of “CL14_LARGE_INTESTINE”
(ccle:CL14_LARGE_INTESTINE, a colorectal adenocarcinoma)
to “XPCS2BASV Cl-14” (cellosaurus:ZP40, a transformed
fibroblast) as incorrect. We measured the overall precision of the
lexical prediction pipeline for the 586 mappings predicted from
CCLE to EFO identifiers which, based on our curation, yielded 570
correct, 10 incorrect, and 6 unsure mappings. This corresponds to a
precision in the range 97%–98%, depending on the correctness of
the six unsure mappings. We found that precision was lower for the
186 predicted CCLE to Cellosaurus mappings (between 63% and
68%) likely due to the fact that most possible mappings (1448) are
already provided by Cellosaurus, and therefore the remaining space
of possible novel predictions is small (and enriched for the most dif-
ficult cases), resulting in a larger proportion of spurious predictions.
A more detailed analysis of these mappings is available at: https://
github.com/biopragmatics/biomappings/blob/master/notebooks/cur
ation-precision.ipynb.

While this case study focused on aligning cancer cell line terms,
it represents an important first step in more generally improving the
interoperability between cell line resources which support compara-
tive analysis, generation and characterization of disease models, and
many other efforts in drug discovery.

4.2 Chemical identifier mappings to improve clinical

trials data integration
ClinicalTrials.gov is a database of 430 thousand clinical trials pro-
vided by the United States National Library of Medicine. These tri-
als cover around 3600 unique interventions (e.g. small molecules)
and 4200 unique conditions (e.g. diseases), both annotated in the
database using MeSH terms. However, MeSH does not provide pri-
mary mappings to highly accessible identifier resources (e.g. ChEBI)
that are necessary to support data integration with other popular
datasets using different identifier resources. (Some mappings are
available from MeSH to CAS and UNII, but these are not annotated
well and these resources are relatively inconvenient to use.)

In this case study, we focused on generating and curating lexical
mappings from MeSH to ChEBI. Many interventions appear across
multiple clinical trials, so rather than exhaustively curating MeSH
term mappings for all unmapped interventions, we prioritized cur-
ation by frequency of appearance across all clinical trials. Because
the distribution of frequencies of interventions is long-tailed, we
selected a subset of MeSH terms that represented 80% of the re-
spective unmapped trial-intervention instances.

This resulted in the curation of mappings from 282 interven-
tions’ MeSH terms to ChEBI that covered 80% (120 thousand) of
the 150 thousand trial-intervention pairs with unmapped interven-
tions. Note that some previous curations from MeSH to ChEBI al-
ready existed in Biomappings from a combination of undirected
curation and various task-specific curations, causing this number to
be lower than if we had conducted this curation at the beginning of
the Biomappings project. Further, iterations of identifying the most
valuable 80% of remaining unmapped interventions become succes-
sively less impactful due to the remaining interventions appearing in
fewer trials.

To provide an unbiased estimate of the precision of the lexical
mapping predictions between ChEBI and MeSH, we randomly
selected 100 predicted mappings. Manual curation of these 100
mappings yielded 97 positive mappings, 2 negative mappings, and 1
unsure mapping. This corresponds to an estimated precision be-
tween 97% and 98%, depending on the correctness of the one un-
sure mapping. We provide additional details on this evaluation at:
https://github.com/biopragmatics/biomappings/blob/master/note
books/chemicals-unbiased-evaluation.ipynb.

Ultimately, Biomappings (v0.3.0) contains 2909 mappings from
MeSH to ChEBI. This allows mapping interventions of 100 342 clin-
ical trials (70.6% of all trials with at least one intervention MeSH
annotation) to 995 unique chemicals. These mappings enable the
previously difficult integration of clinical trials data from

Figure 4. Mappings between identifiers in four cancer cell line resources. Solid black

arrows represent primary mappings provided by identifier resources (arrows point

from an identifier resource that provides a mappings to its target, labels show the

number of mappings provided). Dashed arrows represent mappings inferred

through the combination of primary mappings through two hops (blue, 718 map-

pings inferred) or three hops (red, 718 mappings inferred). The red and blue arrows

represent partially overlapping sets of mappable entities. The green arrow represents

the added benefit of including manually curated lexical mappings from

Biomappings between CCLE and EFO, 1289 total with 570 not obtainable from

existing primary mappings nor mappings inferred from primary mappings.
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ClinicalTrials.gov with other resources using (or mappable to)
ChEBI. For example, this enables the integration of
ClinicalTrials.gov with chemical-protein bioactivities from
ChEMBL (Gaulton et al. 2017) and protein-pathway memberships
from WikiPathways in a knowledge graph that can be queried in a
simple way to answer questions like “What are the protein targets
modulated in a given clinical trial?” and “What are the pathways
modulated in a given clinical trial?”.

4.3 Extending community ontologies with missing

mappings
Several high-quality OBO ontologies cover similar topics/domains
as MeSH and therefore maintain mappings to relevant MeSH terms.
When reviewing mappings to MeSH in multiple widely used com-
munity ontologies, we found that mappings were incomplete. We
therefore predicted (using an automated lexical approach) mappings
from four OBO ontologies to MeSH outlined in Table 2.

We then implemented automated scripts for inserting the new
mappings into the respective version-controlled source files for each
ontology in the OWL/XML, functional OWL, or OBO text formats,
depending on the ontology. Finally, we made pull requests on the
associated GitHub repository for each ontology to integrate the pro-
posed mappings made using Biomappings through which ontology
maintainers were able to add these contributions.

Contributing curated mappings upstream is important and high-
ly impactful because it is propagated directly to users, generic serv-
ices that consume ontologies such as Ubergraph (Balhoff et al.
2022), other services that consume mappings such as the Ontology
Mapping Service (https://github.com/EBISPOT/OXO), and pipelines
that build knowledge graphs [e.g. PheKnowLator (Callahan et al.
2020)]. Together, these form the basis for a large number of compu-
tational workflows used by researchers and engineers in academic,
industrial, and research institutions.

5 Discussion

We presented Biomappings, a repository for community curated
mappings between biomedical entities. Biomappings stores predic-
tions and manual curations along with granular metadata and high-
level semantics for each. It relies on an open data, open code, and
open infrastructure philosophy combined with a governance strat-
egy that fosters community contributions and engagement. It also
explicitly encourages reuse and redistribution via its highly permis-
sive CC0 license. Biomappings uses public infrastructure for quality
assurance and distribution to promote transparency and increase
trust.

5.1 Limitations
Biomappings enables the curation of missing mappings that are not
available from primary identifier resources. In some cases, however,
identifier resources have idiosyncratic curation guidelines for what
constitutes a mapping, e.g. in how strictly two terms need to match
to justify a mapping. This means that conflicts may arise if the cura-
tors of a primary identifier resource differ in their interpretation
with what is curated via Biomappings. These can be resolved
through community engagement and discussion, and—as demon-
strated in this article—direct contribution to primary resources in a
public space.

Further, even after completing an exhaustive curation campaign
to create mappings between two identifier resources, it is still pos-
sible that new terms will be added, more complex operations will be
performed such as the splitting or merging of terms, or changes will
be made to the scope of a given term’s definition. The automation of
predictions in Biomappings can facilitate keeping up with updates to
identifier resources; however, automation does not yet extend to
interpreting more complex changes to resources over time, so man-
ual review is still required.

5.2 Extensibility
The initial focus of Biomappings is on entities in the biomedical do-
main. However, the tooling and philosophy can be readily adapted
to domains outside of biomedicine, in fields where multiple overlap-
ping identifier resources exist and need to be mapped for data inte-
gration. One such example is agriculture and agronomy: as a proof
of concept, Biomappings includes 142 curations contributed to align
concepts related to soil in the Agronomy Ontology (Arnaud et al.
2020) and Agronomy Vocabulary (Mietzsch et al. 2021). This dem-
onstrates the possibility of the extension of Biomappings’ scope and
the project’s ability to motivate external contribution.

In our case studies, we used a lexical approach to predict missing
mappings between resources. However, the Biomappings curation
workflow does not depend on a specific approach for generating po-
tential mappings between identifiers in two resources. For instance,
knowledge graph-based or machine learning-based methods such as
those demonstrated by Berrendorf et al. (2020) can be readily used
with Biomappings. Our future work will involve making use of such
methods to find mappings not found via lexical alignment.

5.3 Future work on Biomappings
Following the initial development and curation of Biomappings, two
ongoing challenges remain. First, there are multiple ways in which
the (semi-)automated approach to the generation and curation of
predictions could be improved. These include improving the data
model to propagate information about the version of each identifier
resource used for the generation of predictions, and enabling re-
running generation workflows in an automated way, then notifying
relevant curators when new content is available. In order to reduce
curation burden, maximize return on curator time, and ultimately to
scale curation of mappings, we will need to develop more accurate
approaches for prediction, filtering, and prioritization.

The second challenge is to build, train, and engage a community
of curators. One sub-challenge of this is to create curation interfaces
that can be more easily deployed (or hosted) and seamlessly interact
with git and GitHub (e.g. similar to the OntoDev suite, see https://
github.com/ontodev) to support potential curators who might not
be familiar with social software workflows or comfortable with ver-
sion control. These steps may eventually enable more widespread
crowd-sourced curation, which has recently been employed by
Wong et al. (2021) and Ramsey et al. (2021). A second sub-
challenge is to improve the ability to contribute content curated in
Biomappings back to primary identifier resources. While we demon-
strated this for four OBO ontologies, there are both technical chal-
lenges (e.g. the data are not curated in public version control) and
social challenges (e.g. the maintainers are not receptive to contribu-
tion) for contributing content to primary resources. Distributing the
burden of curation, e.g. using Biomappings, has substantial potential
to improve ontologies which are used either directly or indirectly by
most modern scientists.

5.4 Future vision
We envision the broader community of curators and developers who
create and consume ontology mappings working in several direc-
tions to better support the tasks (e.g. ontology merging, entity align-
ment) that rely on mappings. First, we hope to see more resources
adopting formats and minimum metadata standards like SSSOM to
make their mappings more reusable (e.g. by assigning more precise
predicates and including provenance information). Second, we hope
to see these resources converging on external standards for the

Table 2. A summary of upstream contributions of 1378 MeSH map-

pings back to primary ontology resources.

Resource Count Link

DO 974 PR No. 1073

MONDO 190 PR No. 4930

UBERON (Haendel et al. 2014) 130 PR No. 2432

Cell Ontology (CL) (Diehl et al. 2016) 84 PR No. 1561
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syntax and semantics used to communicate the entities and predi-
cates appearing in mappings, such as the Bioregistry (Hoyt et al.
2022) in order to improve interoperability. Third, we hope to see
large-scale efforts to aggregate, store, and redistribute mappings
with more general scope than existing mapping services. Finally, we
hope to see the development, implementation, and deployment of
standardized, efficient algorithms for inference and retrieval of map-
pings, as well as an associated provenance model. We believe
Biomappings will have an important role in supporting curation
efforts and applications of mappings as the community works to-
ward these goals.
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