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Rice plant counting is crucial for many applications in rice production, such as yield estimation, growth 
diagnosis, disaster loss assessment, etc. Currently, rice counting still heavily relies on tedious and time-
consuming manual operation. To alleviate the workload of rice counting, we employed an UAV (unmanned aerial 
vehicle) to collect the RGB images of the paddy field. Then, we proposed a new rice plant counting, locating, 
and sizing method (RiceNet), which consists of one feature extractor frontend and 3 feature decoder 
modules, namely, density map estimator, plant location detector, and plant size estimator. In RiceNet, rice 
plant attention mechanism and positive–negative loss are designed to improve the ability to distinguish 
plants from background and the quality of the estimated density maps. To verify the validity of our method, 
we propose a new UAV-based rice counting dataset, which contains 355 images and 257,793 manual 
labeled points. Experiment results show that the mean absolute error and root mean square error of the 
proposed RiceNet are 8.6 and 11.2, respectively. Moreover, we validated the performance of our method 
with two other popular crop datasets. On these three datasets, our method significantly outperforms 
state-of-the-art methods. Results suggest that RiceNet can accurately and efficiently estimate the number 
of rice plants and replace the traditional manual method.

Introduction

Rice is one of the three major food crops in the world. Approximately 
162 million hectares of land are used for rice cultivation world-
wide, with more than 755 million tons of paddy rice produced 
[1]. Rice plant counting in paddy field is a fundamental work 
and has a wide range of applications in rice production. In 
cultivation management, rice counting can be applied to choose 
a more effective planting density to improve the nutrition com-
petition between crops and weeds [2,3]. In rice growth obser-
vation, plant counting can be used for the disaster assessment 
caused by typhoons and floods [4,5]. Moreover, in crop phe-
notype analysis, the number of survival rice plants is one of the 
key metrics in rice breeding. With plant counting, breeders are 
able selectively to choose parents to hybridize to cultivate the 
next generation of excellent rice varieties [6]. At present, rice 
plant counting in China still heavily relies on manual sampling and 
statistics. The manual counting method has many disadvantages. 
Initially, plant counting in the field is labor-intensive and cum-
bersome. Furthermore, because of time and cost constraints, 

plant counts can only be performed in a small area in paddy 
field, making the results unrepresentative. In addition, human 
error often occurs during tedious manual counting. Finally, the 
manual observation in field tends to cause irreversible damage 
to rice. In this paper, we mainly focus on the accurate count of 
rice plants in paddy field with high-throughput unmanned 
aerial vehicle (UAV) images. Moreover, we also try to provide 
higher-level semantic information (plant location and size) that 
can contribute to downstream researches.

Many counting related techniques have been presented in 
agricultural research. Decision tree classifier and geometric 
descriptors were adopted to quantify early-season stand counts 
in corn [7]. Root nodule counting is utilized to indicate soybean 
health [8]. The pest population was counted to reduce the risk 
of crop exposure to pests and diseases [9]. Wheat ear counting 
approaches were proposed to estimate ear density under field 
conditions with zenithal color digital images [10] or thermal 
images [11]. The panicle numbers of pot-grown rice were deter-
mined by multiangle imaging and image segmentation [12]. 
Rice heading stage was automatic observation under field 
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conditions by multiclassifier-cascade-based rice spike detection 
procedures [13]. An indoor grain image acquisition system and 
grain counting algorithm were proposed for touching hybrid 
rice [14]. A Faster RCNN (Faster Region Convolutional Neural 
Network) detection method is utilized to detect wheat ears in 
an image [15]. Maize tassel counting method TasselNet was 
proposed by the means of local patch regression [16]. Liu et al. 
[5] used the image acquisition camera fixed in the field to 
obtain the rice image in a fixed area and realized the calculation 
of the rice planting density. Although many excellent approaches 
have been presented on corn stand [7], root nodule [8], pest 
[9], wheat ear [11], rice spike [13], etc. counting tasks, none of 
them can be used to accurate rice plant counting in paddy field. 
First, unlike the low-cost RGB camera that we use, previous 
researches may need to apply expensive infrared camera [11]. 
Second, some previous researches require specific imaging 
conditions, such as controlled illumination [9], multiangle 
imaging [14], and near range imaging at a fixed position 
[5,8,15]. Third, many traditional technologies are utilized in 
previous methods, such as the color threshold segmentation 
[12], watershed operation [14], and manual character classifi-
cation [7,9]. It will make their methods unable to adapt to the 
light variation in rice field. Last but not least, the counting 
objects in previous researches are different from us [10,13,16]. 
Obviously, different image objects and datasets have their own 
characteristics. For the counting methods well-designed with 
other datasets, Their performance cannot be guaranteed in the 
tasks of rice plant counting. Indeed, it is still an open problem 
to count rice plants in paddy field accurately and efficiently.

Besides agricultural scenes, many achievements have been 
acquired in crowd counting [17–19], vehicle counting [20], cell 
counting [21,22], etc. Since crowd counting is the biggest and 
most successful branch in counting research, we mainly review 
the researches on crowd counting in this paper. Toward crowd 
counting, early methods were mainly based on detection [23], 
which applied low-level feature descriptors [24] and a sliding-
window-based detection to obtain the object number. Essentially, 
these detection-based methods are usually based on classifica-
tion, which requires a large number of manual bounding box 
annotations [25,26]. Of course, it is very time-consuming to 
prepare a large enough dataset for detection-based counting 
methods. However, severe occlusion, high congestion, and 
adhesion can make these methods perform poorly. To conquer 
the above difficulties, later researchers proposed regression-based 
methods that regress the object density map with the input 
image and then integrate the density map to obtain the count 
[27]. Nowadays, deep learning has brought unprecedented suc-
cess to the research of crowd counting. Zhang et al. [18] are the 
first to apply deep learning to simultaneously estimate object 
density maps and object counts. Since then, deep learning has 
become the mainstream method [5,28–32]. The great break-
through in crowd counting has important reference significance 
for the research of crop plant counting. However, there are still 
many shortcomings in the current deep learning counting meth-
ods. To begin with, the influence of irrelevant image background 
is still not completely solved, which will result in many false 
positives and a decline in counting accuracy [30,32,33]. In 
addition, many deep-learning-based counting networks need 
to apply complex image augmentation to ensure their perform
ance [31,34–36]. Furthermore, the existing deep learning methods 
are mainly focused on counting. There are still many other 
applications that have not been excavated [5,28,29,37].

With the popularity of UAVs, the collection of high-throughput 
crop images has become more accessible and affordable in crop 
phenotype research [38,39]. Using the acquired rice images in 
paddy field, we found that we can not only obtain the number 
of rice plants but also realize their location and size estimation, 
which can be beneficial to downstream crop phenotype analysis. 
However, plant location and size estimation have not received 
enough attention recently. On the basis of the above discus-
sions, the application of UAVs to complete field rice image 
acquisition and then design new deep learning networks to 
achieve automatic rice plant counting, locating, and sizing has 
far-reaching research significance.

In this paper, we present a new deep learning network 
RiceNet that can realize rice plant counting, locating, and sizing 
in paddy field with high-throughput RGB images from UAV. 
After considering the aforementioned shortcomings in current 
deep-learning-based counting methods, we made the following 
improvements in the design of RiceNet network: (1) To more 
effectively characterize the rice plants in high-throughput field 
images, multiscale features of different semantic information 
levels are carefully abstracted and incorporated in RiceNet. (2) 
To guide network to pay attention to more useful information 
in forward propagation, plant attention mechanism is presented 
and adopted in RiceNet. (3) Besides plant counting, RiceNet 
can also provide the plant location and size information by the 
presented plant location detector (PLD) and plant size estima-
tor (PSE) modules. Those plant location and size information 
can contribute to downstream crop phenotype researches. In 
general, sufficient number of manually labeled bounding boxes 
is required for deep learning network to realize the locating 
and sizing of rice [40]. Of course, it is time-consuming and 
laborious to manually label thousands of rice plants with 
bounding boxes on a high-throughput rice image. On the basis 
of the reasonable assumption that rice plants are evenly dis-
tributed in the image, we initialize pseudo-rice plant bounding 
boxes from the point-level supervisory. Then, we leverage those 
pseudo-bounding boxes to guide the regression of rice sizes 
via an L1 loss. With the same assumption in the obtained 
high-quality estimated density map, a local nonmaximum 
suppression (LNMS) is utilized to the estimated density map 
to get the plant location. Finally, by fusing the obtained location 
results with the size information given by PSE, RiceNet brings 
an efficient estimation of the plant size. (4) A new positive–
negative loss is proposed in RiceNet, which can be combined 
with Lmse and Lbce to enable network parameters to iterate accu-
rately. The utilization of (1), (2), and (4) allows RiceNet to 
distinguish the rice plants in image and suppress the false 
positives in background more effectively. All the source code 
of RiceNet is available at https://github.com/xdbai-source/
Rice-Plant-Counting.

In the current counting research, most count datasets are 
aimed at the crowd [19,30], cells [22], spikes [41], or flowers 
[42]. There is no UAV-based field rice counting dataset right 
now. In our research, we adopt low-altitude UAV to acquire 
RGB images of two paddy field from 2018 to 2020. Then, we 
propose a new UAV-based rice counting (URC) dataset that 
contains 355 image and 257,793 manual labeled points of rice 
plants. According to the current literature survey, we are the 
first to propose a rice plant counting dataset with UAV images, 
and the first to propose an efficient approach that simultaneously 
realizes the counting, locating, and sizing of rice. In experi-
ments, our proposed method achieves state of the art on 3 
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datasets in terms of counting accuracy. In summary, our main 
contributions in this paper are as follows:

1. We present a new UAV-based high-throughput rice plant 
dataset (URC dataset) for the counting research of field rice 
plants. According to the current literature survey, this is the 
first rice plant counting dataset with UAV RGB images.

2. We propose a new network RiceNet that can achieve auto-
matic, contactless, and accurate counting of rice plants in a 
large paddy field with UAV RGB imagery. In RiceNet, multi-
scale feature fusion, plant attention mechanism, and positive–
negative loss are presented and adopted to suppress false 
positives from the image background to generate high-quality 
density maps. Experiments show that the proposed RiceNet 
outperforms the state of the arts on our URC dataset and 
2 other popular datasets.

3. With the designed PLD and PSE modules in RiceNet, our 
method also brings higher-level semantic information such as 
plant location and size. This high-level semantic information 
is of great significance to downstream phenotyping research 
tasks.

Materials and Methods

UAV-based crop RGB image acquisition
The rice images used in the experiment were collected in 
Nanchang City, Jiangxi Province, China. Its location is shown 
in Fig. 1A. The rice variety used for observation is indica-type 
rice. As shown in Fig. 1B, two rice fields were applied to collect 
the images by a quadcopter UAV (DJI Phantom 4 Advanced) 
and DJI GS Pro ground station. DJI GS Pro was utilized to 
automatically generate efficient flight paths and waypoints to 
complete the aerial photographing missions of the specified 
paddy fields. In DJI GS Pro, the flight altitude was fixed at 7 m 
above the ground. The RGB camera on the drone applied the 
vertical downward shooting. To prevent image blur, the image 
acquisition method of hovering shooting was adopted at each 
waypoint. The front and side overlap ratios were set to 80% and 
70%, respectively. In the first image acquisition mission, we 
have to create a new UAV flight plan and set all flight parameters 
in GS Pro carefully. In the following missions, we only need to 

open GS Pro and perform the above flight plan again. Rice 
images were collected every three days when the rice was 
between the tillering and jointing development stages from 
2018 to 2020. For rainy and windy days when the UAV cannot 
take off, image acquisition will be postponed by one day. In this 
way, we collected an average of 25 UAV RGB image sequences 
per year. The original images with a resolution of 5,472 × 
3,648 were captured and saved in the UAV SD (Security Digital) 
card in JPG format. After each flight mission, rice images were 
exported and stored in the data server.

UAV-based rice counting dataset
According to our existing literature survey, there is still no pub-
lic UAV-based rice plant counting dataset. To realize the 
research of rice plant counting in a large paddy field, we present 
a new URC dataset in this paper. URC dataset contains 355 
original high-throughput rice images (size of 5,472 × 3,648), 
which collected between 2018 and 2019. Following the standard 
practice [41], the center positions of all plants in each image in 
the URC dataset are manually annotated with dots. Compared 
with box labeling, point labeling is a more much reasonable 
and feasible way to represent so many rice plants in UAV 
images. Specially, we wrote a MATLAB R2018 script to accu-
rately and conveniently label the center of each plant. Afterward, 
those images were downsampled into 0.25× of the original 
resolution to facilitate network training. Last, we got a dataset 
with 355 images (size of 1,368 × 912) and 257,793 manually 
labeled points. Among them, 246 images were randomly 
selected and used as training images and the remaining 109 
images as test images. Each image contains rice plants ranging 
from 84 to 1,125, with an average of 726 plants per image. In 
Fig. 2, we provide the rice plant histograms of the images in 
URC dataset.

The diversity of the rice images collected by UAV in the URC 
dataset is well illustrated in Fig. 3. For the convenience of 
demonstration, the image blocks of ten original UAV images 
are given in Fig. 3. As can be seen in Fig. 3, our dataset contains 
rice images taken under many lighting and weather conditions. 
Our URC dataset is not a single scene, and it is very represent-
ative. Moreover, we extracted some individual rice plants from 

Fig. 1. Image collection process of rice field based on quadcopter UAV. (A) gives the collection location. (B) shows the image collection process in field 1 and field 2, respectively.
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the images in the URC dataset, as shown in Fig. 4. Figure 4 
shows the richness of rice plant traits in aspect ratio, color, 
orientation, size, etc. As shown in Figs. 3 and 4, URC dataset 
is a quite challenging dataset for rice plant counting.

Network architecture
In this section, we will introduce our network architecture. As 
illustrated in Fig. 5, RiceNet consists of a feature extractor and 
three designed network decoder modules, namely, density map 
estimator (DME), PSE, and PLD. In RiceNet, the first 13 layers 
of vgg16_bn [43] are used as the feature extractor. As shown 
in Fig. 5, an input image is first fed into the feature extractor, 
and then multilayer feature maps with different semantic levels 
are extracted. Next, the DME module adopts splicing and 
upsampling operations to fuse the multilayer features to gen-
erate high-quality estimated density map. Rice plant attention 
mechanism is added in the DME to improve the network’s 
ability to distinguish plants from background. Furthermore, 

RiceNet introduces the PLD module with LNMS to extract location 
information from the estimated density map and the PSE module 
to estimate the size information of the rice plants. Therefore, 
RiceNet can realize not only rice counting but also location and 
size estimation of the rice plants in UAV images. In the following 
subsections, we will describe each module in detail.

Density map estimator
We use the first 13 convolution layers in VGG16_bn [43] as the 
feature extractor of RiceNet. By the feature extractor, 4 multi-
scale features L1, L2, L3, and L4 were extracted from an input 
image. The downsampling rates of those feature levels are 1/2, 
1/4, 1/8, and 1/16, respectively. Next, we introduce the structure 
of the designed DME module. As shown in Fig. 5, Parser 1 
merges the feature maps of L4 and L3, and Parser 2 merges the 
output of Parser 1 and the L2 feature map. Then, a density map 
head combines the output of Parser 2 and L1 to get the initial 
estimated density map. Specifically, the structures of Parser 1 

Fig. 2. Statistical distribution of the URC dataset.

Fig. 3. Examples of image acquisition from different dates.

https://doi.org/10.34133/plantphenomics.0020


Bai et al. 2023 | https://doi.org/10.34133/plantphenomics.0020 5

and Parser 2 are given in Fig. 6. In Parser 1, L4 is upsampled 
to the same size as L3 and merged with L3. Next, several 
convolutional layers are employed to get the output. Parser 2 
upsamples the output of Parser 1 and merges it with L2. Similar 
to Parser 1, it is also fed into several convolutional layers before 
output. Finally, the density map head fuses L1 and the output 
of Parser 2 to obtain the initial density map (IDM). The reso-
lution of IDM is 1/2 of the original input image.

To further suppress the interference of image background 
and improve the accuracy of the IDM, plant attention mecha-
nism is presented and adopted in DME module as shown in 
Fig. 5. The plant attention mechanism is implemented by Parser 
3, Parser 4, and attention map head. Their detailed network 
structures were given in Fig. 6. Similar to Parser 1 and Parser 
2, Parser 3 and Parser 4 fuse the L4, L3, and L2 feature maps 
and then transfer its output into the attention map head. 

Attention map head merges the L1 with the output of Parser 4 
and then followed by several convolutional layers. Finally, 
attention map head outputs a plant attention map (PAM), 
which is 1/2 size of the input image and used to refine IDM 
into a higher-quality density map. We can see that Parse 1 and 
Parse 3 share the same network design, and Parse 2 and Parse 
4 have the same network design, which can reduce the com-
plexity and difficulty of network model realization.

PAM will assist the IDM to distinguish the rice plants from 
the background and noise. In detail, element-wise multiplication 
and a convolution operation are applied on PAM and IDM to 
generate refined final density maps (FDMs) as Eq. 1:

where ⊙ means Hadamard product and Conv represents con-
volution operation.

(1)FDM = Conv(PAM⊙ IDM)

Fig. 4. Diversity of plant morphology in URC dataset.
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Fig. 6. Module structure diagram of RiceNet. Parser 1/3 and Parser 2/4 respectively integrate feature maps of different levels. Attention map head and density map head are 
used to generate PAM and IDM, respectively. We can see that PSE is a lightweight module that realizes the size prediction.

Fig. 5. The overall architecture of the proposed RiceNet. An input image is fed into the feature extractor to generate four feature maps containing different semantic levels. The 
DME combined with plant attention mechanism to leverage multiple feature maps to generate a high-quality density map. The PLD and PSE are employed to output higher-level 
semantic information such as size and location.
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Now, we describe how to generate a ground-truth density 
map Dgt(x), which is used for network training. If there is a 
plant at pixel position xi, then we can represent it as a delta 
function δ(x − xi). Inspired by Lempitsky and Zisserman [27], 
we further convolve the above function with a Gaussian kernel 
Gσ. Thus, suppose that there are N rice plants in an image, and 
ground-truth density map Dgt(x) can be given as:

Next, we also introduce the generation method of the ground 
truth of the PAM. For the generated ground-truth density map 
Dgt(x), we believe that the nonzero pixel value region represents 
the existence probability of the plants. That is to say, the region 
with zero pixel values in Dgt(x) is the image background. 
Therefore, the ground truth of the PAM can be written as:

Plant location detector
In the third column of Fig. 7, we can see that the density dis-
tribution of our estimated the FDM is almost uniformly dis-
tributed and independent of each other. Naturally, each peak 
position on the FDM can be considered as the center position 
of a plant. Therefore, with a given estimated FDM, the locations 
of the plants can be obtained through the LNMS. First, we 
generate a pseudo-size for each image as its ground-truth size 
with the previous manual point annotations. If there is a plant 
at pixel position xj, following Shi et al. [44], then we first 
calculate the initial object size of point xj according to the 
distances to its K-nearest points, and then the pseudo-average 
size Dmean of an image is calculated using Eqs. 4 and 5.

(2)Dgt(x) =

N∑

i=1

�
(
x − xi

)
∗ G�(x)

(3)∀xi ∈ Dgt(x),Ggt
(
xi
)
=

{
1,

0,

if xi>0.001

otherwise

Fig. 7. Visualization of the counting, locating, and sizing results in the URC dataset. The first column is the four test images, the second column is the ground-truth density 
maps, the third column is the estimated density maps, the fourth column is the PAMs, and the fifth column is the plant location and size prediction results.
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where xj,k is the distance between point xj and its kth nearest 
neighbor. xj represents the initial object size of xj. β is a scalar 
and generally can be set to 0.8. M is the number of the plants. 
Second, following Zhang et al. [30], we adopt max pooling to 
obtain local maximum mask map, where the max pooling ker-
nel size is set to Dmean × 0.3. Third, the local maximum mask 
map and the density map are multiplied to obtain all local 
maxima. However, those local maximum points may even con-
tain some false positives from the background. According to 
the high-quality FDM generated by the DME module, we 
observe that the values of those false positives are much smaller 
than the true positives from the plants. It means that those 
positions with very small local maxima may originate from the 
image background. Finally, given an estimated FDM and its 
maximum pixel value M, an adaptive threshold M × 0.3 can be 
used to filter out the false positives. In particular, if the maxi-
mum value M is less than a small value (set to 0.01), then it 
means that there are no plants in the input image. The main 
flow of the PLD module to obtain the location information is 
shown in Algorithm 1.

Algorithm 1. LNMS algorithm.

Input: FDM - Predicted FDM of a given image I; 
Dmean - Pseudo-average size of plant in I. 
Output: The coordinates of the plant 
1: Function Extract coordinates(FDM, Dmean): 
2: Max_mask = max_pooling(FDM, kernel_size = (Dmean *0.3, 
Dmean *0.3))
3: Max_mask = (Max_mask = FDM)
4: Max_all = Max_mask × FDM
5: adaptive threshold = max(Max_all)×0.3
6: if max(Max_all)<0.01 then
7: coordinates = None
8: else
9: Max_all[Max_all > adaptive threshold] = 1
10: Max_all[Max_all < 1] = 0
11: coordinates = nonzero(Max_all)
12: end if
13: return coordinates
14: end function

Plant size estimator

Let 
{
dj

}M

j=1
 represent the coordinates generated by Algorithm 1, 

where dj = (xj,yj) is the two-dimensional coordinates of the 
center of the jth estimated plant in an image, and M is the total 
number of coordinates. Then, we can estimate a size value for 
each plant through the K-nearest neighbors algorithm.

where dj is the initial object size of dj, dk is the kth point closest 
to dj, the value of K is 3, and β is a scalar. However, for the plants 
in sparse region, their sizes obtained by the Eq. 6 will be too 
large. Therefore, we design a size estimate head structure in our 
research to regress a size limitation of the plants in the input 
image. The detailed network structure of the PSE module is 
given in Fig. 6. In the PSE, L4 feature map is processed by 
several convolutional layers to further abstract high-level infor-
mation. Afterward, an adaptive pooling, a flattening process, 
and 2 linear layers are applied to output the size limitation. We 
use L1 loss as the loss function of the PSE module and Dmean 
(mentioned in Plant location detector section) as the regression 
target. Finally, the size estimation comes from the fusion of the 
PSE and the PLD outputs, as described in Fig. 5. If the output 
value of PSE module is dp, then we combine the output of PSE 
module to bring a more reasonable plant size Dj, which can be 
written as:

Loss functions
In the training phase, we train the plant attention mechanism 
with a pixel-wise binary cross entropy loss between the network 
predicted PAM Mp and its corresponding ground truth Ggt, 
which can be given as:

where N is the batch size. Moreover, we train the DME module 
with mean squared error loss between the estimated density 
map Dp and its corresponding ground-truth map Dgt by:

To better suppress the false positives in background, we propose 
a positive–negative loss function. For the generated ground-
truth density map Dgt(x), we consider that the region with 
nonzero pixel value in ground-truth map is the positive region. 
Similarly, the region where the pixel value is zero is the negative 
region. The probabilities of having objects in the positive region and 
the negative region are p and 0, respectively. Correspondingly, 
the probabilities of being the background are 1 − p and 1, 
respectively. Let 

{
Dgt

(
xm

)}M
m=1

 be a density map, where xm 
denotes a two-dimensional pixel location and M is the number 
of pixels in the density map Dgt(x). So, we can get the object 
positive–negative probability map PO(xm) and background 
positive–negative probability map PB(xm) by:

(4)xj =
1

K

K∑

k=1

�xj,k

(5)Dmean =
1

M

M∑

j=1

xj

(6)dj =
1

K

K∑

k=1

�

√(
dj−dk

)2

(7)Dj =

{
dp,

dj,

if dp<dj

otherwise

(8)

Lbce = −
1

N

N∑

i=1

(
G
gt

i
⋅ log

(
M

p

i

)
+

(
1 − G

gt

i

)
⋅ log

(
1 −M

p

i

))

(9)Lmse =
1

N

N∑

i=1

(
D
p

i
−D

gt

i

)2

(10)∀xm ∈ Dgt
(
xm

)
,PO

(
xm

)
=

{
p,

0,

if xm>0

otherwise

(11)∀xm ∈ Dgt
(
xm

)
,PB

(
xm

)
=

{
1−p,

1,

if xm>0

otherwise
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The expected counts for positive region and for the entire neg-
ative region are defined as

In this case, the summation over the whole density map Dp 
consists of the object positive–negative counts CO and the back-
ground positive–negative count CB. Obviously, we would like the 
background positive–negative count to be zero, and the object 
positive–negative count is equal to the real count value Cgt. 
Thus, we have the following positive–negative loss function,

where Cgt is total number of objects, so the total loss function 
is as follows:

Evaluation metric
To assess the difference between the predicted counts and the 
ground-truth numbers, we applied the commonly used mean 
absolute error (MAE) and root mean square error (RMSE). The 
definitions of MAE and RMSE are as follows:

where Zi is real number of rice plant in the ith image, Ẑi is the 
estimated total number of plants in the ith image, and N is 
number of test image. The MAE indicates the accuracy of dif-
ferent approaches, while the RMSE reflects their robustness. 
A smaller value of MAE and RMSE indicates better network 
performance.

Implementation details
In the experiment, to reduce computational consumption, the 
resolution of input images is downsampled into 1/4 of the original 
resolution of 5,472×3,648. Image blocks in 320 × 320 are ran-
domly cropped from URC dataset images, and then they are 
randomly horizontal flipped with a probability of 0.5 and 
processed by a gamma contrast transform with a probability 
of 0.3 for data augmentation. Adam optimizer is utilized in the 
training process. The initial learning rate and batch size are set 
to 1 × 10−4 and 3, respectively. The hyperparameter λ and ϒ of 
the loss function are both set to 0.1. The value of p in the 
positive–negative loss function is set to 1. We first trained the 

DME module to output the estimated high-quality density 
maps. Afterward, the PSE module is trained with the parameter 
fine-tuning of the frontend feature extractor. Our experiment 
is implemented by the PyTorch framework and applied 
GPU NVIDIA RTX 3090 for acceleration.

Results

Experiment on the URC dataset
In this part, we compared our method with previous state of 
the arts and analyzed their results on the proposed URC data-
set. Table 1 shows the performance of different methods on the 
URC dataset. The leftmost column is several advanced counting 
methods and our approach. The third and fourth columns are 
their MAE and RMSE results. As can be seen from Table 1, our 
method outperforms other methods by a large margin. The 
MAE and RMSE of the proposed method reach 8.6 and 11.2, 
respectively. RiceNet sets the new state of the art with clear 
advantages over other competitors on the URC dataset. What 
is striking about the figures in Table 1 is that compared with 
the TasselNetV2 and FIDTM, the MAE of our method is 
improved by 70.8% and 67.3%, respectively. We believe that the 
reason why RiceNet performed better than TasselNetV2 is that 
RiceNet adds new plant attention mechanism in our DME 
module and enhances parameter learning capability through 
new loss function. Compared with the crowd counting approaches 
including FIDTM, their networks mainly solve the challenges 
in head scale variation and density distribution imbalance. 
Obviously, this is not the case for the almost evenly distributed 
rice plants in paddy field. Thus, our method can focus more on 
improving the accuracy of plant counting.

In the first and second columns of Fig. 7, we demonstrate four 
test images in the URC dataset and their ground-truth density 
map. The third column of Fig. 7 shows the estimated density 
map by RiceNet. We can see that the estimated high-quality 
density map in the third column is very close to the ground-
truth density map. At the same time, we also give the visuali-
zation of the predicting rice PAM in the fourth column of 
Fig. 7. We can see that the plant attention mechanism in the 
model promotes the model to focus more on rice plants and 
plays an important role. To summary up, the adoption of new 
plant attention mechanism and new loss function (see Ablation 
experiment section) makes RiceNet more suitable for plant 
counting, which we believe is the reason why RiceNet performs 
better than other methods.
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Table  1. The performance of different methods on the URC  
dataset.

Networks Venue, year MAE RMSE

MCNN [30] CVPR, 2016 25.5 34.1

CSRNet [17] CVPR, 2018 12.9 17.5

SANet [32] ECCV, 2018 10.1 13.4

TasselNetV2 [41] PLME 2019 29.5 39.4

FIDTM [45] Arxiv, 2021 26.3 31.5

RiceNet This paper 8.6 11.2
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By comparing the second and third columns in the last row 
of Fig. 7, we can find that the estimated density map given by 
RiceNet is even slightly better than the ground-truth density 
map around the image region with strong sun reflection. This 
reflects that our network has a certain robustness to the sun 
reflection in paddy field. Actually, how to fully overcome the 
impact of the strong sun reflection is still an open problem that 
needs further research.

Experiment on the MTC dataset
In addition, we also did comparison experiment on the MTC 
dataset. The MTC dataset is a maize tassels count dataset first 
introduced by Lu et al. [16]. It includes 361 images collected 
from four experimental fields across China between 2010 and 2015 
with six maize cultivars. Maize tassels in the MTC dataset have 
very large scale and shape changes. The original resolution of 
those images is 3,648 × 2,736, 4,272 × 2,848, or 3,456 × 2,304. 
In this dataset, 186 images are randomly selected and used as 
the training set, and the remaining 175 images are used as the 
test set. The number of maize tassels in each image varies from 
0 to around 100. In the experiment, the short sides of all images 
in the MTC are proportionally resized to 512 to speed up the 
calculation. Next, image blocks in the size of 256 × 256 are 
randomly cropped and used in the training. Other training 
details are consistent with the URC dataset. Table 2 shows the 
performance of different methods on the MTC dataset. As 
shown in Table 2, RiceNet achieves the best MAE (3.4) and 
RMSE (5.3), compared with other approaches. It is worth men-
tioning that our method achieves 81.0% improvement in MAE 
and 75.8% improvement in RMSE compared to the MCNN. 
Many images in the MTC dataset have very few maize tassels. 
This experiment shows that our network can also achieve good 
performance for the object sparse scenes. We believe that better 
performance in our method is due to its well object feature extrac-
tion and fusion ability between different levels of features. This 
indicates the superiority of the DME module in our method.

In addition, some counting results in this dataset are demon-
strated in Fig. 8. The third column of Fig. 8 shows that the 
estimated density map is similar to the ground-truth density 
map and the estimated counting result is close to the real value. 
We found that several maize tassels were lost in the network 
estimation density map. This phenomenon is mainly due to the 
shape and size of these maize tassels that are too special 
compared to others. As seen from the second row of Fig. 8, our 
network gives a high-quality estimation density map and 

counting result even when there are raindrops in the original 
RGB maize image. From another aspect, it shows the well per-
formance of our proposed network. Briefly, Table 2 and Fig. 8 
indicate that the proposed RiceNet can also achieve good per-
formance on the task of maize tassel counting.

Experiment on the WED
The WED is a widely used wheat ear dataset, which is first 
introduced by Madec et al. [6]. The wheat images collected in 
fields have 20 different genotypes. The image resolution is 
6,000 × 4,000. The number of ears in each image varies from 
80 to 170. This dataset includes 236 images, where 165 and 
71 images are used for training and testing, respectively. For 
some genotypes, the color of wheat ears is extremely similar to 
the color of adjacent leaves. Bounding box annotations are pro-
vided in this dataset, while we only use the center point of each 
box in the experiment so as to unify the comparison of different 
methods. The resolution of the image is sampled to 1/8 of the 
original resolution and ϒ is set to 0.01. Image block in 256 × 
256 was randomly cropped from those downsampled images 
and applied in the training. Other training details are consistent 
with the URC dataset. Table 3 shows the performance of different 
methods on the WED. The MAE and RMSE of our method 
reached 3.7 and 4.6, respectively. In particular, compared to the 
MCNN, we get 67.8% MAE and 70.5% RMSE improvement. 
We believe that the plant attention mechanism strengthens the 
ability of the proposed network to distinguish objects form 
image backgrounds and improves the counting accuracy. 
Moreover, we bring some counting results in the WED in 
Fig. 9. The results in Fig. 9 demonstrate that the network esti-
mated density maps and counting results have a very high 
accuracy even when the distribution of the crop objects(wheat 
ears in the WED) is disordered. Table 3 and Fig. 9 indicate the 
well performance of the proposed RiceNet on the task of wheat 
ear counting.

Coefficient of determination analysis of  
counting results
For the count results of the 3 different crop count datasets, we 
calculated their R2 values by Eq. 18. As shown in Fig. 10, the 
R2 values of 3 datasets reach 0.997, 0.957, and 0.975, respec-
tively. Figure 10 demonstrates that the estimated counting 
results and the real values obtained by manual counting method 
have a high correlation. From another side, Fig. 10 indicates 

Table 2. Performance of different methods on the MTC dataset.

Networks Venue, year MAE RMSE

MCNN [30] CVPR, 2016 17.9 21.9

CSRNet [17] CVPR, 2018 6.9 11.5

BCNet [46] TCSVT, 2019 5.2 9.2

SFC2Net [5] PLPH, 2020 5.0 9.4

TasselNet [16] PLME, 2017 6.6 9.9

TasselNetV2 [41] PLME, 2019 5.4 9.2

RiceNet This paper 3.4 5.3

Table 3. Performance of different methods on the WED.

Networks Venue, year MAE RMSE

MCNN [30] CVPR, 2016 11.5 15.6

CSRNet [17] CVPR, 2018 4.2 5.2

BCNet [46] TCSVT, 2019 4.1 4.9

Faster R-CNN [6] AGRFORMET, 2019 4.6 5.9

SFC2Net [5] PLPH, 2020 4.2 5.1

TasselNet [16] PLME, 2017 6.8 8.3

TasslNetV2 [41] PLME, 2019 5.3 6.8

RiceNet This paper 3.7 4.6
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that our network not only has high counting accuracy but also 
has good generalization capabilities. According to the plots of 
coefficients of determination in Fig. 10, there are still some 
count results of being overestimated or underestimated, espe-
cially for the MTC dataset. This phenomenon is mainly due to 
the more severe shape and color variation of maize tassels in 
the MTC dataset.

Ablation experiment
In this section, we verify the effectiveness of the added positive–
negative loss with the URC dataset. As shown in the last row 
of Table 4, the positive–negative loss can improve the counting 
performance of the proposed RiceNet on the URC dataset. 
Meanwhile, we incorporate positive–negative loss on other 
counting methods so as to explore the effectiveness of this loss 
function on other networks. Table 4 shows the effect of 

positive–negative loss in different models on the URC dataset. 
It can be seen from Table 4 that the performance of MCNN, 
CSRNet, and TasselNetV2 is improved after adding positive–
negative loss. Compared with MCNN, MCNN with positive–
negative loss decreases by 54.1% in MAE.

In addition, we analyze the influence of the parameter σ 
mentioned in Density map estimator section. The σ parameter 
determines the size of the Gaussian kernel when generating the 
ground-truth density map. From Table 5, we can see that when 
the σ value is 6 and the network performs best. We can observe 
from the Table 5 that the performances with different σ values 
do not change seriously. Comparable performance was achieved 
with Gaussian kernel sizes of 2 and 4. The experimental results 
in Table 5 show the robustness of our method to the Gaussian 
kernel size parameter.

Estimation of plant location and size
In previous methods, to estimate the plant location and size, it 
is often necessary to resort to the bounding box labeling 
method. For rice UAV images with so many rice plants, bounding 

(18)
R2 = 1 −

∑N
i=1

�
Pi−Gi

�2

∑N
i=1

�
Pi−G

�2

Fig. 8. Visualization of the counting results in the MTC dataset. The first column is the 4 test images, the second column is the ground-truth density maps, the third column is 
the estimated density maps, and the fourth column is the PAMs.

https://doi.org/10.34133/plantphenomics.0020


Bai et al. 2023 | https://doi.org/10.34133/plantphenomics.0020 12

box labeling will be very time-consuming and labor-intensive, 
and it is not feasible. In contrast, the point labeling method is 
relatively simple, and it is easier to achieve a large number of 
labeling of the plants. In our method, on the basis of the rea-
sonable assumption that rice plants are evenly distributed in 
each URC image, we utilize the distance between manual point 
annotations to generate pseudo-sizes as a supervision during 
network training. Thus, we achieve location and size estimation 
of rice plants with the manual point annotations and point-level 
supervisory. As seen from the fifth column of Fig. 7, with the 
designed PLD and PSE modules, RiceNet not only outputs the 
number of plants but also gives the location (red points) and 
size (white boxes) information of the rice plants. These location 
and size information are of great significance for subsequent 
crop phenotype researches and refined field managements. 
Since MTC and WED datasets are not satisfied with uniform 
distribution assumption, their location and size information 
cannot be calculated by the current version of RiceNet.

Further discussions
In this section, we will further discuss the suggestions in the 
application of our rice plant counting, locating, and sizing net-
work, the current shortcomings, and the future improvement 
directions. According to our three years (from 2018 to 2020) 
of experience in UAV image collection in paddy field and the 

after research of deep learning network design, we bring the 
following suggestions in the application of our RiceNet:

1. � It is suggested not to collect UAV images on rainy days. 
Rainwater will not only cause damage to drone motors 
and gimbal camera but also cause image quality degra-
dation and make the plant images to blur.

2. � It is best to collect UAV images below the fifth-level wind 
speed. Excessive wind speed in field can enlarge the jitter 
of the drone resulting in an inaccurate camera autofocus. 
Moreover, it will change the shape of rice leaves and 
plants in rice image, giving rise to the decrease in net-
work performance.

3. � It is recommended to collect drone images in about 4 
hours after sunrise, so as to avoid most fog time in the 
morning and the rice leaf curls caused by the high 
temperature at noon.

4. � In our research, observers need to come the paddy field 
and perform drone control in each image collection mis-
sion. With the development of drone 5G technology, 
future 5G + UAVs can achieve remote flight control. In 
the future, the adoption of this type of UAVs can greatly 
reduce the difficulty of UAV image collection.

5. � Following the usual field management methods, we used 
an appropriate amount of herbicide in the rice field. The 

Fig. 9. Visualization of the counting results in the WED dataset. The first column is the 4 test images, the second column is the ground-truth density maps, the third column 
is the estimated density maps, and the fourth column is the PAMs.
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appearance of some weeds (such as Barnyard grass, 
Scirpus juncoides, etc.) is very similar to the rice plants 
in paddy field. Without using herbicide, our network 
may degrade the counting performance because of the 
emergence of weeds.

6. � It is recommended to use camera overhead imaging. 
Oblique imaging will cause occlusion between adjacent 
rice plants in the obtained image. Moreover, oblique 
imaging will add challenges to the estimation of plant 
location and size.

Next, we listed the shortcomings in our current RiceNet count-
ing method and the possible research directions in the future:

1. � During the periods of rice irrigation, sun reflection on the 
water may cause an overexposure region in the obtained 
image, as shown the last row of Fig. 7. The color infor-
mation of the pixels in these overexposure region will be 
severely or completely lost. In future research, the design 
of new networks that can be more robust to sun reflection 
in the field will be an important research direction.

2. � In RiceNet, multiscale feature fusion, plant attention mecha-
nism, and positive–negative loss are adopted to suppress 
false positives from the image background. However, 
false positives still cannot be completely eliminated in the 
experiment. Therefore, the suppression of false positives 
from the background is still worth further research.

Fig. 10. Coefficients of determination of the RiceNet on different datasets. (A), (B) and (C) are RiceNet counting results on URC, MTC and WED, respectively.
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3. � In this paper, the network performance of rice plant 
locating and sizing is qualitatively checked and evalu-
ated with human eyes, since the URC dataset adopted 
plant point labeling instead of bounding box labeling. In 
future research, finding how to quantitatively evaluate 
the network performance of plant locating and sizing 
will be another important research direction.

4. � In our project, we only need to focus on improving the 
accuracy of rice plant counting. All calculations were 
completed on a GPU-accelerated server after each UAV 
image collection mission (once every three days). Thus, 
we do not need to consider about of calculation complex-
ity and running time. In future research, the design of 
lightweight networks that can run on the field robots 
or other embedded platforms in real time may also be 
a good research direction.

Conclusion
This paper proposes a new rice plant counting, locating, and 
sizing approach with UAV imagery in paddy field. RiceNet 
includes one multiscale front-end feature extractor and 3 feature 
decoder modules (DME, PSE, and PLD). Plant attention mech-
anism and positive–negative loss are presented and utilized in 
the DME to improve the network’s ability to distinguish back-
grounds to generate high-quality density maps. On the basis 
of the designed PLD and PSE modules, RiceNet not only can 
output the count number of rice plants but also can realize the 

plant location and size estimation with the manual point anno-
tations. To verify our method, we present a new URC dataset, 
which consists of 355 images and 257,793 manual point anno-
tations. In the experiment, the MAE and RMSE of RiceNet on 
the URC dataset are 8.6 and 11.2, respectively, which signifi-
cantly outperforms states-of-the-art methods. Furthermore, we 
did counting experiments on two other famous crop counting 
datasets, and our method outperforms other methods by a large 
margin. In ablation experiments, we demonstrated the effec-
tiveness of the added positive–negative loss and analyzed the 
influence of the sigma parameter on the counting performance. 
From the experiments, the proposed RiceNet can realize accu-
rate, contactless, and efficient counting of rice plants in paddy 
field with UAV imagery. Moreover, RiceNet can provide higher-
level semantic information (plant location and size). Access to 
those information can contribute to other crop phenotyping 
researches and help advance the development of automated 
fertilizer applicators, sprayers, etc. Last, we discussed the sug-
gestions in the application of RiceNet, the current shortcomings 
of RiceNet, and the possible research directions in the future.
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