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Buffering of transcription rate bymRNAhalf-
life is a conserved feature of Rett syndrome
models

Deivid C. Rodrigues 1,6, Marat Mufteev1,2,6, Kyoko E. Yuki3, Ashrut Narula 2,4,
Wei Wei1, Alina Piekna1, Jiajie Liu1, Peter Pasceri1, Olivia S. Rissland 4,5,
Michael D. Wilson 2,3 & James Ellis 1,2

Transcriptional changes in Rett syndrome (RTT) are assumed to directly cor-
relate with steady-state mRNA levels, but limited evidence in mice suggests
that changes in transcription can be compensated by post-transcriptional
regulation. We measure transcription rate and mRNA half-life changes in RTT
patient neurons using RATEseq, and re-interpret nuclear and whole-cell
RNAseq from Mecp2 mice. Genes are dysregulated by changing transcription
rate or half-life and are buffered when both change. We utilized classifier
models to predict the direction of transcription rate changes and find that
combined frequencies of three dinucleotides are better predictors than CA
and CG. MicroRNA and RNA-binding Protein (RBP) motifs are enriched in
3ʹUTRs of genes with half-life changes. Nuclear RBP motifs are enriched on
buffered genes with increased transcription rate. We identify post-
transcriptional mechanisms in humans and mice that alter half-life or buffer
transcription rate changes when a transcriptional modulator gene is mutated
in a neurodevelopmental disorder.

Rett syndrome (RTT) is a neurodevelopmental disorder in girls caused
by damagingmutations in themethyl CpG-binding protein 2 (MECP2)1.
Most evidence indicates that MECP2 regulates transcription globally
after binding tomethylated (m)CG dinucleotides in immature neurons
andmCA dinucleotides in adult neurons2–8. Specifically, recent models
support a role forMECP2 binding tomCA/mCGs in the gene-body that
can: 1) slow RNA polymerase II elongation5 2) inhibit transcription
initiation by looping interactions between the promoter and high-
density MECP2-bound gene-bodies9 or 3) inhibit transcription initia-
tion bymicrosatellite interruptions of nucleosomebinding that impact
intragenic enhancer activation10.

The number or fraction of mCA/mCG and gene-length have been
primarily used to interpret transcription rate dysregulation in RTT
mouse models5,9. However, the informative power of these DNA

features is limited, and it is still challenging to anticipate a priori which
genes are transcriptionally up- or down-regulated in RTT, raising
questions about whether other sequence features might also partici-
pate in transcription dysregulation mediated by the loss of MECP211.
Recent developments in machine learning techniques have revealed
unsuspected DNA and RNA-sequence features associated with gene
regulatory programs12,13. Employing these techniques in the RTT con-
text could help explain the molecular mechanisms of MECP2 function
and uncover other DNA sequence features important for MECP2
function.

Genome-wide analyses of steady-state mRNA levels and tran-
scription rate changes in RTT models have demonstrated a global
dysregulation of gene expression5,9,14–18. It is uniformly acknowledged
that the magnitude of mRNA steady-state level changes is surprisingly
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small3,4,14,18,19. In 2017, Johnson et al. 17 used GRO-Seq for nascent RNA
and RNA-Seq of chromatin, nuclear, and cytoplasmic subcellular
fractions to reveal the small steady-state alterations in the Mecp2-null
mouse brain is the result of a previously unsuspected post-
transcriptional regulatory mechanism. They proposed that large
transcription rate changes are compensated by reciprocally adjusting
mRNA half-life, and they provided initial support for the role of two
RNA-binding proteins (RBPs). In particular, they examined the
enrichment of 12 RBP binding sites in subsets of mRNAs and identified
HuR-(ELAVL1) cis-acting elements in the 3ʹUTR with extended mRNA
stability, or AGO2 cis-acting elements with reduced stability to impli-
cate the action of unknown micro(mi)RNAs17. Their model of post-
transcriptional regulation is similar to transcription buffering where
RBPs present in the nucleus tag nascent mRNAs and shuttle with them
to the cytoplasm.TheRBPs thenmodify half-life to buffer transcription
rate changes that preserve steady-state levels (reviewedbyHartenian E
et al.20). These results have not been independently tested in mouse
and it is unknownwhether the mechanism is conserved in human RTT
neurons. Therefore, it is important to experimentally measure the
direction and magnitude of half-life changes in human MECP2-null
neurons. Moreover, the post-transcriptional mechanism has not been
studied by systematic enrichment analysis of all known miRNA and
RBP cis-acting elements of the post-transcriptionally regulatedmRNAs.

Here, we simultaneously investigate the potential role of
sequence features mediating transcriptional dysregulation in RTT and
expand on the post-transcriptional findings of Johnson et al. in human
isogenic induced Pluripotent Stem Cell (iPSC)-derived RTT neurons.
We use RNA-approach to equilibrium-sequencing (RATEseq) to mea-
sure transcription rate and half-life changes and employed machine
learning to uncover sequence features underlying these changes in
human and mouse RTT models. In parallel, we compare our human
neuron findings to the high-confidence RNA-seq from subcellular
fractionations of Mecp2 mutant mouse brains9. We find that tran-
scription rate changes in both human and mouse datasets are best
predicted by combinations of three dinucleotide frequencies in gene-
bodies that include the expected CA/CGmotifs, but are most accurate
if they also include other dinucleotides.We discover extensive half-life
changes that identify: 1) a gene set with exclusive mRNA stability
dysregulation (half-life only) and no associated transcription rate
changes; and 2) a larger buffered gene set in which half-life regulation
compensates for transcription rate changes that fully offset or mini-
mize mRNA steady-state changes. We demonstrate a global absolute
downregulation of miRNA levels, that corresponds with a global
absolute half-life increase in RTT neurons. We find individual enriched
miRNA binding-sites in the half-life only gene set but very few in the
buffered gene set. RBP-binding sites were enriched in the 3ʹUTRs of
half-life only genes, and distinct sites were also enriched in buffered
genes with increased transcription rate. Overall, we propose that
transcription rate increases in MECP2 neurons are subject to surveil-
lancebyRBPs thatpost-transcriptionally regulateRNAhalf-life.Wefind
that the buffering of transcription rate changes by half-life changes is a
conserved feature of RTT models which minimize the steady-state
changes in mRNA levels.

Results
Transcription rate changes in RTT neurons do not always alter
mRNA steady states
To simultaneously measure direct changes in transcription rate and
mRNA half-life in RTT neurons, we performed RATEseq on human
cortical neurons derived from WT (NEUWT) and MECP2-Null (NEURTT)
isogenic patient-derived iPSCs21 (Fig. 1a). Conventional RATEseq mea-
surements of absolute half-life rely on the 4sU saturation curve. In
addition, half-life fold-change can be derived by a secondmethod that
calculates a ratio between the steady-state value and the transcription
rate of nascent RNA measured at early time points of 0.5 and 1 hour

(Fig. 1a). We use the term steady-state here in a restricted context to
refer to the equilibrium between transcription rate and half-life in the
whole cells at 24 hours.

In brief, iPSCs were differentiated into cortical neurons using a
dual-SMAD protocol (Fig. S1A) and the non-neuronal cells were
depleted based on the presence of specific surface proteins using
MACS22,23. 4sU RNA labeling was performed and samples taken from
0.5 to 24 hours (except for the 1-hour NEURTT samples). Cellular via-
bility was consistently high as expected24 (Fig. S1B, C). The steady-state
was determined using 24-hour input samples that were treated with
4sU but without biotinylation and pulldown. Multiple RNA spike-ins
(Fig. 1a) controlled for 4sU pulldown efficiency, background con-
tamination, equivalent cell numbers, and sequencing quality25, and
indicate the high quality of the RNA samples and sequencing data
(Fig. S1D–J). 3ʹend RNA-seq (QuantSeq) was utilized to quantitatively
map 3ʹUTR isoform diversity to better understand the role of miRNAs
and RBP-binding sites in half-life regulation and buffering of tran-
scription dysregulation. Western blots of separate batches of the cells
confirmed the absence of MECP2 in the NEURTT samples (Fig. 1b).
Efficient differentiation into mixed cortical neurons was confirmed by
analyzing the steady-state mRNA abundance of a panel of neuronal
marker genes (Fig. 1c) and comparing it to previously published tran-
scriptomics of pluripotent stem cell-derived neurons of equivalent age
or neurons collected from human fetal neocortex26–28. We first calcu-
lated the half-life using the 4sU saturation curvemethod25 and deduced
the transcription rate using the 0.5-hour time-point (plus a pseudor-
eplicate from the 1-hour time point for the NEUWT, see methods) by
calculating the number of newly synthesized mRNAs over 30mins.
Importantly, the measurement of transcription rate fold-changes
between NEUWT and NEURTT were highly comparable using only the
0.5-hour replicates or the 0.5 plus 1-hour time-point pseudoreplicates
(Fig. S1K). However, the saturation curve-derived half-life measure-
ments failed formost genes that had low transcription rates (Fig. S1L,M)
and these are genes that may be repressed by MECP2 in neurons. We,
therefore, calculated the relative half-life fold-changes using the ratio
method, and these findings were similar to the saturation curve values
for genes that it haddeterminedwith high confidence (Fig. S1N). Having
shown the improved utility of the ratio method for the genes of most
interest, we proceeded to next examine changes in transcription rate
and how they correlate with changes in the steady-state.

As expected, we found widespread dysregulation of transcription
rate and steady-state in the NEURTT neurons (Figs. 1d–f, S1O, Supple-
mentary Data 1). An independent 5-Ethynyl Uridine (EU) metabolic
incorporation assay followed by qRT-PCR experimentally validated
transcription rate changes of specific genes measured using both 0.5-
hour or 0.5 and 1-hour time-points (Figs. 1g and S1P). Reassuringly, a
comparison of our transcription rate datasets with a MECP2 ChIP-seq
in mouse brain revealed that the genes with the highest changes in TR
were more enriched for MECP2-binding (Fig. S1Q), and most tran-
scriptionally upregulated genes displayed lower basal transcription
rate in the WT controls (Fig. S1R)9. Importantly, we found that
approximately half of the transcription rate dysregulated genes in
NEURTT were not altered at the steady-state mRNA level (Fig. 1h).

Given the relevance of these findings to disease mechanisms, we
validated the discrepancy between transcription rate and steady-state
changes in an orthogonal in vivo RTT system.We re-analyzed the high-
confidence datasets from Boxer et al. 9 that sequenced nuclear and
chromatin-associated mRNA abundance as a proxy for transcriptional
dysregulation and the whole-cell fractions from cortical forebrain
samples of WT, Mecp2 y/-, and point-mutant Mecp2 R306C adult mice
(Fig. 1i). As shownpreviously in the context of in vitro-derived neurons,
sequencing of nuclear RNA fractions is highly correlated to the tran-
scription activity measured using GRO-seq17. Our analysis shows a
similar patternwhere approximately half of the genes transcriptionally
dysregulated in the nucleus are not altered at the whole cell level that

Article https://doi.org/10.1038/s41467-023-37339-6

Nature Communications |         (2023) 14:1896 2



we define as the steady-state (Fig. 1i, j). This is consistent with the
human neuron RATEseq findings that transcription rate dysregulation
in the absence of MECP2 does not automatically result in altered
steady-state mRNA levels, and that unaltered steady-state mRNA level
does not automatically mean there is no change in transcription rate.

The direction of transcription rate changes in RTT neurons is
predicted by gene-body dinucleotide frequencies
The high fraction or number of mCA/mCG in longer genes have been
associated with the small magnitude upregulation of these genes in
Mecp2mousemodels3,7,9. However, consistent with Johnson et al. 17, our
analyses did not show a gene-body length effect in genes dysregulated
at the transcription rate or steady-state (Fig. S2A). The contribution of
other sequence features that predict which genes will be

transcriptionally dysregulated in RTT models has not been system-
atically evaluated in vivo11. To learn sequence features of the differen-
tially expressed genes that are relevant for the direction of
transcriptional shifts in our immature RTT neurons, we trained a clas-
sifiermodel usingourmeasurements of genome-wide transcription rate
changes in NEURTT (Figs. 2a and S2B). As anticipated by the lack of
correlation between gene-body length and transcription rate changes
(Fig. S2A), this model also resulted in random predictions based on
gene-body length (including introns) (Figs. 2b and S2C, D). In contrast,
frequencies of dinucleotides in the gene-body produced high predic-
tion accuracies similarly found when using either the coding sequence
(CDS) or 3ʹUTR (Fig. S2C, D). The prediction accuracies of CA/CG in
gene-bodies were lower than predictions based on any combination of
dinucleotides even when combined with gene-body length. This
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supports a prominent role for additional gene-body dinucleotide
combinations in modulating transcription rates (Figs. 2b and S2C, D).

To test the combined dinucleotide-based predictive model in an
orthogonal in vivo system, we trained a classifier model on the data
from Boxer et al. which also includes cytosine methylation quantifica-
tion (Fig. 1i)9. In the adult mouse brain, our model captured gene-body
length and mCA fraction as predicting whether a gene is tran-
scriptionally up-regulated in the absence of Mecp2 (Fig. S2E, F). How-
ever, these models do not discern whether a gene is transcriptionally
down-regulated, nor discriminate up- versus down-regulated genes
(Fig. S2E, F). In contrast, the gene-body dinucleotide frequencies cap-
tured the direction of most transcriptional dysregulation in the Mecp2
y/- mouse, with lower accuracy predicted by the CDS and UTR sepa-
rately, an effect that was independent of gene-body length (Figs. 2c and

S2G–I). Surprisingly, combining CA/CG frequencies had less predictive
accuracy than combinations of remaining dinucleotides (2-mers) inde-
pendent of their methylation status (Figs. 2c, S2G–I). To investigate
which dinucleotide or combinations thereof were responsible for the
high predictive accuracy of transcription rate changes in RTT neurons,
we repeated the classifier model considering single or multiple dinu-
cleotide combinations. The classifier found that specific combinations
of three dinucleotides reached the predictive accuracy of the fullmodel
for both human and mouse even though the specific combinations of
three dinucleotides were different across species (Fig. 2d, e). Taken
together, the classifier models of fetal stage human neurons and adult
mouse brain indicate that combined frequencies of three dinucleotides
that include non-CA/non-CG dinucleotides contribute to the direction
of transcription rate modulation mediated by MECP2.

Fig. 1 | Changes in transcription rate in RTT neurons do not automatically
result in altered mRNA steady states. a Schematics of experimental outline for
simultaneous quantification of transcription rate, mRNA half-life, and steady-state
mRNA level. An isogenic pair of human WT and MECP2-null iPSC-derived cortical
neurons were pulse-labeled with 4sU, and at designated time-points total RNA was
harvested. 4sU-labeledDrosophilamelanogaster (fly) and unlabeled Saccharomyces
cerevisiae (yeast), and ERCC spike-in RNAs were added as indicated and used as
pull-down efficiency, non-specific binding, library preparation, and sequencing
controls. Steady-state mRNA levels were quantified from an aliquot of the 24 hour
timepoint (non-biotinylated andunprocessed). This experimentwas repeated for a
total of two replicates. b Typical western blot showing the presence of MECP2
protein in two replicates of the NEUWT and absence in NEURTT neurons. Uncropped
western blot provided as a Source Data file. c Heatmap of mRNA abundance of
cortical neuronal patterning and synaptic marker genes. The heatmap compares
the mRNA abundance in the steady-state neuron samples generated in this study
compared to neurons from previously published studies. The mRNA abundance in

each replicate is measured relative to the sample median. d, e Scatter-plots
depicting genome-wide changes in steady-state and transcription rate. This
experiment was repeated for a total of two independent replicates. f Volcano plot
showing genes with increased or decreased transcription rate in MECP2-null neu-
rons (NEURTT). g Transcription rate fold-changes determined by RATEseq (X-axis,
standard error of the log2 fold-change estimated by DESeq2 from 4 biological
replicates) were validated using an alternative approach. Neurons were incubated
with 5-ethylnyl uridine (EU) and quantified following Click-it reaction and qRT-PCR
(Y-axis, standard error of the log2 fold-change derived from qRT-PCR experiments
using 3 biological replicates, n = 3) of genes selected to cover a large spectrum of
fold-changes including genes with no changes. h overlap of genes altered at tran-
scription rate and/or steady-state in human NEURTT. i Summary of samples from
Boxer et al. re-analyzed in our study. j Overlap of genes with altered mRNA abun-
dances in the nucleus or chromatin (transcription proxy) and whole-cell (steady-
state) in the brains ofMecp2 y/- mouse model. Panels a, d, and i were created with
BioRender.com.
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Half-life fold-changes in RTT neurons directly alter the steady-
state or buffer transcription rate
To measure changes in absolute half-life in hours we estimated the
time required to reach half of the steady-state mRNA abundance from
the 4sU saturation curves (saturation method, Fig. 1a). This absolute
RATEseq half-lifemeasurement revealedwidespread changes inmRNA

stabilities that caused a global absolute increase in themedian half-life
from 2.5 to 3.0hours in NEURTT (and an increase in the mean half-life
from 2.9 hours in NEUWT to 4.6 hours in NEURTT) (Figs. 3a, S1E–H, and
Supplementary Data 2). The global half-life values for neurons corre-
latewellwith publishedmedian half-lives fromother cell types (Fig. 3b,
and Supplementary Data 3). Thesemeasurements were independently
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validated on specific genes using a pulse treatmentwith actinomycinD
to induce transcription inhibition followed by qRT-PCR (Fig. 3c). Other
orthogonal 4sU pulse-chase methods for measuring half-life have high
reproducibility compared to RATEseq29. Using the ratio method to
measure relative half-life fold change, we found approximately 860
(0.5 h plus 1 h time-points) or 957 (0.5 h time-point only) genes (~35%
or 30% of all genes with altered half-life, respectively) with significantly
increased or decreased mRNA half-life but with unchanged transcrip-
tion rate, termed half-life only (HL-only), leading directly to changes in
the steady-state levels (Figs. 3d, e and S3A, B. See also Fig. 1h). The class
of RNAs and their identities were highly comparable when we used
incorporation rate data from either 0.5 h or 0.5 h plus 1 h to calculate
transcription rates (Fig. S3B, C, and Supplementary Data 4) supporting
the robustness of our calculationmethods. These analyses show that a
significant fractionof genes dysregulated at the steady-state level were
exclusively driven by changes in mRNA stability.

We then explored the impact on steady-state mRNA levels when
both half-life and transcription rate were changed. We found that in
these cases, half-life moved in the opposite direction to the tran-
scription rate and decreased the net change in steady-state levels
(Fig. 3e–f). We found that 789 genes exhibited full buffering where the
RNA half-life entirely offset the transcription rate change resulting in
no steady-state change. A further 298 genes showed half-life changes
that partially counteracted the transcription rate changes modulating
steady-state changes. The contribution of half-life to the steady-state
level changes (Fig. S3D) and buffering (Fig. S3E) was independent of
the fold-change or FDR thresholds chosen. None of the measured
changes correlate with gene-body or processed transcript lengths
(Figs. S2A and S3F). Highly similar proportions of buffered and half-life
only genes in NEURTT were observed when calculations used the 0.5 h
time point only on genes whose transcription rates were altered by at
least 4-fold (Fig. S3B). Moreover, genes with high transcription rates
were buffered by changes in half-life, showing that the buffering effect
was not induced by detection noise from low abundance transcripts
(Fig. S3G). The buffering effect was also observed when we used the
saturationmethod (Fig. S3H, I). Altogether, thesedata indicate that the
buffering of transcriptional dysregulation by opposite changes in
mRNAhalf-life is a robust result not sensitive to the calculationmethod
(ratio vs. saturation), signal-to-noise ratios, or the number of time
points. We found ~28% of all genes (n = 444) with altered steady-state
expression to be exclusively dysregulated at the transcription rate
level (TR-only, Fig. 3e), underscoring the role of post-transcriptional
regulation of mRNA stability in directly altering or buffering the RTT
transcriptome.

Proxy values support half-life shifts and transcription buffering
in Mecp2 mouse models
Given the importance of finding global changes in half-life in the
NEURTT neurons and its implications for interpreting steady-state level
dysregulation typically found in RTTmodels, we investigated whether
these results were reproducible in vivo. To determine proxies of half-
life changes in themouse brain in RTTmodels we re-analyzed the data
from Boxer et al. for whole-cell, nuclear, and chromatin-associated
RNAs9. We accomplished this by comparing the abundance of tran-
scribed genes in the nucleus and chromatin fractions as proxies for
transcription rate as previously demonstrated17, to the whole-cell
fraction that includes mRNA undergoing decay in the cytoplasm17 that
we define as the steady-state (see methods). By applying the proxy
value in the ratio method, we calculated relative half-life fold-changes.
From the 5032 genes reported by Boxer et al. to be differentially
regulated inMecp2 y/- mice, we found a similar pattern of widespread
fold-changes in half-life (Fig. 3g, Supplementary Data 5).We also found
similar proportions of HL-only genes (Fig. 3h, i), and the extent of full
or partial buffering in both mouse models (Figs. 3j and S4A. See also
Fig. 1h, j). In linewith our RTThumanneuronfindings, the contribution

of half-life to the steady-state level changes (Fig. S4B) and buffering
(Fig. S4C) was also independent of the fold-change or FDR thresholds
chosen.

Despite the conserved relationship that half-life and transcription
rate or their proxies have on steady-state gene expression in human
and mouse RTTmodels, we found minimal overlap in the identities of
genes dysregulated in each species (Fig. S4D, E). Furthermore,minimal
overlap was also observed between the Mecp2 y/- and Mecp2 R306C
mousemodels as already observedbyBoxer et al. (Fig. S4F, G). Overall,
our results consistently identify steady-state level changes driven by
half-life only without any measurable transcription rate shift in both
human andmouseRTTmodels. Importantly, themajority of all half-life
shifts fully or partially buffer Mecp2-mediated transcription rate dys-
regulation, and only a small number of genes have increased steady-
state changes due to combined half-life and transcription rate changes
in the same direction. Finally, similar to the human findings, we only
find 473 genes (13% of total genes altered at steady-state, which
excludes the full buffered group) with transcription rate only dysre-
gulation as measured in the nuclear fraction. Altogether, our findings
demonstrate a pattern of half-life shifts and transcription buffering
that is conserved in RTT mouse and human models.

Cis-acting elements in the 3ʹUTRs are highly associatedwith half-
life changes
Our findings indicate that RNA half-life is a critical regulatory layer
defining steady-state RNA levels in RTT models. We therefore con-
sidered several potential mechanisms underlying how RNA half-life is
controlled in RTT neurons: 1) alternative polyadenylation; 2) alter-
native-splicing; 3) codon usage integrating translation elongation to
RNA stability; 4) sequence composition of 3ʹUTR and gene-bodies; and
5) enrichment of miRNA binding-sites and RBP cis-acting elements in
the 3ʹUTR between buffered and non-buffered genes. Initially we
investigated the contribution of mRNA isoforms by mapping and
quantification of 3ʹUTR alternative poly-Adenylation events that
showed no difference in the frequency of poly-Adenylation site usage
in NEURTT (Fig. S5A–C). Moreover, measurement of 3ʹUTR (NEUWT vs.
NEURTT) and alternatively-splicedmRNA isoforms (mouse Boxer et al.)
indicated that all mRNA isoforms display the half-life buffering effect
to the same degree (Fig. S5D–F). These analyses argue against changes
in mRNA isoform usage participating in the half-life shifts in RTT
models.

Next, we created a classifier predictive model to estimate the
effect of codons and sequence composition on the direction of
changes to mRNA half-life (Fig. 4a). Overall 3ʹUTR length and nucleo-
tide frequency had no predictive value for classifying increased or
decreased half-life changes (Fig. 4b). Transcription rate changes were
anti-correlatedwith half-life leading to high predictive accuracy. These
results underscore the unidirectional and reciprocal link between
transcription rate dysregulation and compensatory mRNA stability
control in NEURTT. Dinucleotide frequencies in the 3ʹUTR offered sig-
nificant prediction accuracy on whether the half-life was increased or
decreased. Increasing the size of the tested k-mers from dinucleotides
to 4-mers and 6-mers to encompass potential cis-acting elements
improved the prediction accuracy of half-life (Figs. 4b and S5G),
equivalent to transcription rate alone. A combination of transcription
rate and 6-mers showed no further improvement in accuracy. Cur-
iously, we found that classifier features in the CDS mirror that of the
3ʹUTR models also offering significant prediction accuracies for the
half-life changes (Fig. S5H, I), highlighting a significant sequence
composition correlation between CDSs and 3ʹUTRs (Fig. S5J). In con-
trast, comparison of the prediction models for in-frame codons (3-nt
sequences) indicates that codon optimality has no effect on half-life
changes in NEURTT (Fig. S5I). Importantly, while the predictive accu-
racy of k-mers is lower in mouse, the classifier model predictions are
upheld in theMecp2mousemodel. Thesefindings showa reproducible
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effect of transcription rate onhalf-life, thereby implicating a conserved
buffering mechanism through cis-acting elements impacting half-life
(Figs. 4c, S5K–M).

miRNA and RBP cis-acting elements correlate with half-life
changes in RNA stability exclusive genes
To examine a possible role of miRNAs in mRNA half-life regulation, we
first performed small RNA-seqwith a spike-in strategy to normalize cell
numbers and inform on relative and absolute changes in miRNA
abundance between the isogenic human NEUWT and NEURTT (Fig. 5a).
These results showed that the steady-state levels of miRNAs changed
by as much as 4-fold up or down (Fig. 5b, Supplementary Data 6).
Interestingly, most changes in miRNA steady-state abundance were
captured in the RATEseq data by shifts in the transcription rate of
miRNA genes (Fig. 5c, Supplementary Data 6). These findings indicate
that transcription dysregulation of miRNA genes drives the changes in
miRNA abundance, in addition to miRNA maturation processing as
indicated previously30,31. Moreover, after normalization against a pool
of small spike-in RNAs, the scaled absolute fold-change of most miR-
NAs was decreased in NEURTT (Fig. 5d–g). This global decrease in
miRNA abundance in NEURTT is in line with the global absolute upshift
of median half-life (Fig. 3a).

To investigate the role of these miRNA changes in the regulation
of half-life in NEURTT, we performed motif enrichment analysis of
miRNA-binding sites present in the TargetScan database32. This ana-
lysis identified multiple potential miRNA-binding sites as enriched in
up to 800 genes in the HL-only group of mRNAs whose steady-state
level changes are exclusively directed by half-life changes (Fig. 5h,
Supplementary Data 7). In contrast, we found significantly fewer

miRNA-binding sites sequences enriched in the group of buffered
mRNAs with increased transcription rate and decreased half-life and
many of these show no change in the miRNA abundance (Fig. 5i,
Supplementary Data 7). We did not find miRNA sites enriched in the
opposite group with decreased transcription rate and increased half-
life (Supplementary Data 7). Overall, these data indicate that the
reduced miRNA abundance contributes to the regulation of HL-only
genes in NEURTT. However, very few individual miRNAs correlate with
buffering, although combinatorial effects of multiple miRNAs cannot
be excluded.

We then performed an unbiased search for the enrichment of 174
RBP cis-acting elements, as described in the RNACompete database33,
in the 3ʹUTR of mRNAs with altered half-life in NEURTT. We found
hundreds of enriched RBP targets in the group of HL-only genes
(Fig. 5j, Supplementary Data 7). This result includes the RBP HuR
(ELAVL1) whose different motifs are enriched in 300-900mRNAs with
increased half-life in NEURTT. Our results suggest that 3ʹUTR-directed
miRNA and RBP regulation best explain the HL-only gene set changes.

Only RBP cis-acting elements are enriched in buffered genes
with increased transcription rate and decreased half-life
Having excluded miRNAs as playing a substantial role in mRNA buf-
fering, we explored a role for the 174 RBP cis-acting elements in the
buffered group of mRNAs. We observed that no RBP cis-acting ele-
ments were enriched for genes with decreased transcription rate and
increased half-life (Fig. 6a, right panel), and only a handful were
depleted. This result suggests that RBPs are not involved in regulating
transcripts with decreased transcription rate for half-life stabilization.
In contrast, we found numerous RBP elements that were enriched in

Fig. 4 | Cis-acting elements in the 3ʹUTR are highly associated with half-life
changes. a Random forest classifier for prediction of mRNA sequence features
relevant for half-life fold-change in human NEURTT and in cortical brain samples of
the mouse Mecp2 y/-. Percent accuracy (Y-axis) of half-life fold-change predictions
in human NEURTT (b) from 2 replicates or mouse Mecp2 y/- (c) from 10 replicates
considering different mRNA sequence features. >80% prediction accuracies can be

achieved with the features tested, and indicate that 3ʹUTRs contain sequence ele-
ments relevant forhalf-life changes inbothhumans andmice. L = gene-body length;
nt= nucleotide sequence; 2-mers, 4-mers, and 6-mers= 2, 4, and 6-nucleotide
sequence elements, respectively; TR= transcription rate; All= all features con-
sidered at the same time; + sign denotes combinations of two or more sequence
features. Error bars depict 95%CI. Panelsb and cwere createdwith BioRender.com.
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100-200 buffered genes with increased transcription rate and
decreased half-life (Fig. 6a, left panel and Supplementary Data 7). To
identify RBPs thatplausibly regulate nascentmRNAs,we aggregated all
the buffering enriched RBPs with reported cellular localizations, and
found that 51 were nuclear and/or able to shuttle to the cytoplasm
whereas only 18 were reported to be cytoplasmic only (Fig. 6b). To
examine roles of specific RBPs, we first noted that ELAVL1 elements are

depleted in >150 genes in this set, demonstrating that it is only enri-
ched in the HL-only gene set. In contrast, NOVA2 and ZFP36 were
enriched in more than 200 buffered genes and these RBPs bind pre-
mature mRNA co-transcriptionally34,35. Additionally, PTBP1 and multi-
ple arginine-serine rich (SRSF) splicing factors that have been shown to
participate in transcriptional buffering36 were enriched in >150 genes.
Further support for a directional role by NOVA2 and SRSFs is that they
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were depleted in the buffered genes with decreased transcription rate
and increased half-life (Fig. 6a). Our results reveal specific sets of RBP
motifs associated with half-life regulation of buffered genes with
increased transcription rate in RTT neurons.

Discussion
Our analysis of a dataset of transcription rate and half-life changes in
human neurons and independent re-analyses of mouse RTT models
demonstrate that most transcription rate changes in the absence of
MECP2 are buffered by post-transcriptional regulation of mRNA sta-
bility. We used RATEseq to simultaneously measure transcription rate
and half-life changes in human neuron samples. We complemented
this approach by applying the subcellular fractionation strategy
employed by Johnson et al. to the mouse resource dataset of Boxer
et al. The consistent findings from both methods and model systems
unambiguously show that post-transcriptional regulation is a modifier
of transcription rate dysregulation in RTT, and that it is a conserved
mechanism shared by human and mouse neurons. We provide evi-
dence for changes in steady-state levels driven solely by half-life only
shifts, and large transcription rate shifts that are entirely offset at the
steady-state level by half-life mechanisms that we refer to as buffering.
These observations have major implications for interpreting RNA-Seq
results in RTT and potentially other neurodevelopmental disorders, or
in diseases of other tissues caused by mutations in genes that mod-
ulate transcription like MECP2. The existence of transcriptional buf-
fering mechanisms in mammals raises a cautionary note for
interpreting RNA-Seq steady-state results in the general context of
transcriptional regulation. It also argues in favour of more widely

prioritizing methods that directly measure nascent transcription or
account formRNA stability.Moreover, we extend the limited searchby
Johnson et al. who found two RBP cis-acting elements enriched in
mRNAs with altered half-life by discovering hundreds of RBP cis-acting
elements in the half-life only gene set. We also demonstrate the
enrichment of miRNA-binding sites in the HL-only gene set. The buf-
fered gene set with increased transcription rate likely describes the
genes transcriptionally repressed by MECP237. In this group, we iden-
tified a restricted subset of mostly nuclear or shuttling-capable RBPs
whose cis-acting elements are highly enriched. Our findings thus reveal
numerous candidate RBPs potentially involved in buffering the
increased transcription rate of their mRNA targets. This mechanism
may act as a network to coordinate mRNA degradation in healthy
neurons and to compensate for transcription rate dysregulation inRTT
neurons.

It is important to note that, while we found transcriptional buf-
fering conserved between the human and mouse RTT models, the
identity of genes dysregulated at both transcription and mRNA stabi-
lity between species was considerably different. It is conceivable that
the differences in gene identities between ours (human) and the Boxer
et al. (mouse) datasets originate from the analysis of different cell
types (in vitro-derived human neurons vs. mouse whole brains), or
from the maturation stage differences between the studies. A high
degreeof variability between thedysregulated genes in theRTTmouse
models has also been observed previously38. While the nature of this
variability is, at this point, obscure, comparative studies have shown
agreement on a core set of dysregulated genes38. Nonetheless, this
indicates a high level of flexibility of the buffering mechanism.

Fig. 5 | miRNA and RBP cis-acting elements correlate with half-life changes in
RNA stability exclusive genes. a Small RNA-seq to quantify absolute changes in
human miRNA abundances. Total RNA was extracted from the same number of
NEUWT and NEURTT neurons, to which we added the same mass of a small RNA
spike-in mixture. This spike-in mixture contains small RNA molecules covering a
wide range of sequence composition and molar concentrations. This experiment
was repeated for a total of two independent replicates (n = 2). b Changes inmiRNA
abundances in the NEURTT. X-axis= basal abundance of each mature miRNA
detected in the NEUWT, Y-axis= fold-change in the NEURTT. Blue dots, neuronal-
specific miRNAs accumulate at abundances higher than the mean in both NEUWT

and NEURTT. Red dots, abundance of each small RNA spike-in added on a per-cell
basis and used for librarypreparation control and absolute quantificationofmiRNA
abundance. c Pearson’s correlation of the transcription rate fold-changes between
steady-state mature miRNA levels and primary miRNA (pri-miRNA) in NEUWT and
NEURTT showing a significant correlation between both (r =0.47, p val 4.3−7), indi-
catingmany changes inmaturemiRNA steady-state levels are caused by changes in

their transcription rate. Error bars= 95%CI of the linearmodel.dDESeq2-calculated
miRNA level fold-change before and after spike-in normalization (e). The absolute
abundance of miRNAs in NEURTT is reduced for most miRNAs. Up and low hinges=
25th and 75th percentiles. Up and low whiskers= 1.5 *IQR (inter-quartile range) above
and below the corresponding hinges. Notches= 1.58 *IQR/sqrt(n) matching 95% CI
for median comparison. f–g The precision of fold-change measurement is quanti-
fied as a ratio of log2(fold-change) and its standard error. Comparison with endo-
genous miRNAs and number of detected counts (f) or comparison between small
RNA spike-in across molar concentrations and G +C content (g). miRNA-binding
sites enriched in half-life only (h) or in combination with transcription rate up and
half-life down (i). Y-axis= the number of genes containing miRNA-binding sites
found, and X-axis= enrichment levels. Color represents the miRNA steady-state
fold-change in the NEURTT measured in b. j 7-mers known to be targeted by RBPs
enriched in the HL-only group based on the RNAcompete database33. TR =
transcription rate, HL= half-life. Panels a and b were created with BioRender.com.
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Fig. 6 | RBP cis-acting elements are enriched in buffered genes with increased
TR and decreasedhalf-life. a 7-mers known to be targeted by RBPs enriched in the
group of buffered mRNAs. A different set of RBP cis-acting elements was found

enriched compared to the HL-only group (Fig. 5j). b Cellular distribution of the
RBPs enriched in mRNAs with increased transcription rate and decreased half-life
showing that these are predominantly nuclear.
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Our computational methods were focused on defining cis-acting
elements that are relevant for transcription rate or half-life regulation.
At the DNA level, our classifier model discovered that the direction of
transcription rate shifts in human and mouse RTT models are best
predicted by combinations of three dinucleotides that include one or
both of the canonical MECP2-binding sites CA and CG, together with
other dinucleotides such as AT. The MECP2 AT-hook domain con-
tributes to low-affinity transient interactions with AT-rich DNA that
influence the dynamics of MECP2 binding to local high affinity
methylated DNA sites39. Tellingly, the classifier predictions are low
when modelling only CA/CG dinucleotide frequencies without
accounting for low-affinity sites. These unbiased findings from
machine learning algorithms indicate that the gene-body frequencies
of other dinucleotides like AT are important and are a conserved
mechanism defining the direction of transcription rate changes in RTT
neuronal models. We speculate they may act by transient recruitment
of MECP2 influencing its local binding dynamics to nearby methylated
DNA. We confirmed a role of gene-body length in transcription rate
regulation but only in the adult mouse neuron resource of Boxer et al.
However, neither our classifier model on the human neuron RATEseq
dataset nor the adult mouse dataset from Johnson et al. support this
observation. It is possible that gene-body length contributes less to
transcription rate regulation in fetal stage neurons derived from iPSC
inwhichonlymCGmodifications are expected to bepresent7,40, or that
it requires the power of ten replicate samples used in the Boxer et al.
resource to be detected.

With regards to half-life only regulation, to define which miRNA-
binding sites to investigate we first used our human neuron miRNA
dataset to identify themiRNAs that are altered inNEURTT. These results
confirm the reported miRNA changes in RTTmousemodels, although
the RATEseq dataset shows that intergenic pri-miRNA transcription
rate is altered in RTT adding another dimension to the known miRNA
processing alterations in mouse30 and human neurons31. Through the
use of spike-in scaling in the miRNA dataset, we deduced a global
absolute downregulation of miRNAs in NEURTT that account for the
global absolute increase inmRNAhalf-life of ~0.5 hours. Superimposed
on the increased global half-life effect were individual HL-only genes
which our classifier models revealed strong enrichment of miRNA-
binding sites consistent with their known role in mRNA instability.
ManyRBP cis-acting elements including ELAVL1 (HuR)were enriched in
the HL-only gene set. While Johnson et al. reported HuR and AGO2 cis-
acting element enrichments in buffered gene sets in the mouse using
the subcellular fractionation approach, our RATEseq results and
unbiased search of RBP cis-acting elements point to a role for miRNAs
and ELAVL1 in mRNA stability in human neurons rather than in the
buffering mechanism itself.

While we eliminated several possible buffering mechanisms, one
limitation is that we were unable to test a potential role of mRNA
methylation modifications or poly(A)-tail length regulation on the
targeted mRNAs with altered transcription rate41. We speculate that
thesemechanisms could also participate in the bufferingmechanisms,
particularly in the gene set with decreased transcription rate and
increasedhalf-life thatwe foundwasnot associatedwith enrichmentof
either miRNA-binding sites or RBP cis-acting elements. The simplest
mechanism for buffered genes with increased transcription rate is that
the RBPs bind nascentmRNA in the nucleus and are transported to the
cytoplasmwhere they tag the transcript for stabilization.We speculate
that the nuclear RBPs are limiting in neurons, and if transcription rate
increases then the proportion of tagged mRNA falls, leading to rela-
tively more degradation in the cytoplasm and decreased half-life. A
more complex variation on this model is that the concentration of
some RBPs themselves may also change in RTT, and this may increase
or decrease their ability to stabilize their target mRNAs. To distinguish
these models, it will be necessary to determine which RBPs are chan-
ged at the protein level in RTTusing proteomicsof neuronal nuclei and

then individually testing their impact through gain- or loss-of-function
assays on the mRNA targets.

Equivalent loss-of-function experiments have already been
described in humans with neurodevelopmental disorders caused by
mutations in RBP genes such as NOVA235. The impact of these RBPs on
buffering could be established using existing or new iPSC or mouse
models. In fact, global transcription rate and RBP concentrations will
inevitably be altered during the course of neurodevelopment, sug-
gesting that it would be valuable to define the buffered gene sets in
iPSC and their progeny Neural Progenitor Cells (NPC) relative to the
final neurons described here. We and others18,23 have previously
reported translational regulation changes in RTT neurons in both
ribosomal loading and protein stability implemented through altera-
tions of E3-ubiquitin ligase protein levels. These findings emphasize
that buffering in RTT and potentially other disorders likely operates at
both the mRNA and protein levels.

Methods
iPSC cultures and neuronal differentiation
iPSC lines #37 (WT) and #20 (isogenic MECP2-null) from a female
patient were previously described21. Both cell lines were generated and
cultured under the approval of the SickKids Research Ethics Board and
the Canadian Institutes of Health Research Stem Cell Oversight Com-
mittee. iPSC lines were cultured in 5% CO2 on BD hESC-qualified
matrigel (BD) in mTeSR medium (STEMCELL Technologies). Cultures
were passaged using ReLeSR (STEMCELL Technologies) following the
manufacture’s instruction every 6-7 days. For neuronal induction,
iPSCs were aggregated as Embryoid Bodies (EBs) in low-attachment
dishes in N2media containing laminin (1ml/ml) with 10mM SB431542,
2mMDSM, and 1x penicillin-streptomycin changed daily. After 7 days,
EBswereplatedonpoly-L-ornithine + laminin-coateddishes andgrown
in N2 media + laminin (1ml/ml). After 7 days, neural rosettes were
manually picked and transferred to poly-L-ornithine + laminin-coated
wells. After 7 days, neural rosetteswerepicked a second time, digested
with Accutase and plated on poly-L-ornithine + laminin-coated wells.
Resulting NPCs were grown as a monolayer and split every 5-7 days in
NPCmedia containingDMEM/F12, N2, B27, 1x non-essential amino acid
(NEAA), 2mg/ml Heparin, 1mg/ml laminin. To generate neurons, NPCs
were plated on poly-L-ornithine + laminin-coated plates at a density of
106 cells per 10 cm dish and cultured for 3 weeks in neural differ-
entiation medium (Neurobasal, N2, B27, 1mg/ml laminin, 1x penicillin-
streptomycin, 10 ng/ml BDNF, 10 ng/ml GDNF, 200mM ascorbic acid,
and 10mM cAMP).

Neuronal enrichment using MACS
Neuronal cultures were enriched for all experiments to exclude con-
taminating glia and NPCs present after differentiation. Enrichment of
3-week old neuronal cultures wasmade as described earlier23,42. 3-week
old heterogeneous neuronal cultures were enriched by a negative
selection strategy using antibodies against surface markers CD44
(Biotin Mouse Anti-Human CD44, 1:1000 dilution, BD Biosciences,
Clone G44-26; Cat# 555477) and CD184 (Biotin Mouse Anti-Human
CD184, 1:1000 dilution, BD Biosciences, Clone 12G5; Cat# 555973)
recognizing NPCs, glial progenitors and astrocytes43 using magnetic-
activated cell sorting (MACS® - Miltenyi Biotec). After enrichment,
neuronswere re-seeded ontoMatrigel-coated 6-well plates, cultured in
neural differentiation medium, and allowed to recover for one extra
week, for a total of 4 weeks neuronal differentiation.

Western blots
Cells were washed in ice-cold PBS and total protein extracted in
radioimmune precipitation assay (RIPA) buffer (25mM Tris-HCl,
pH7.6, 150mM NaCl, 1% Nonidet P-40, 1% sodium deoxycholate, and
0.1% SDS). Equivalent protein mass was loaded on SDS-PAGE and
transferred to Hybond ECL (GE HealthCare) nitrocellulose membrane.
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Antibodies MECP2 (Rabbit Anti-MECP2, 1:1000 dilution, Millipore,
Cat# 07-013; RRID:AB_2144004), and Beta Actin (Mouse Anti-bActin,
1:5000 dilution, Sigma-Aldrich, Cat# A5441; RRID:AB_476744) were
used. Near-Infra Red-conjugated secondary antibodies (IRDye 800CW
Donkey anti-Mouse IgG, Cat# 926-32212, and IRDye 680RD Donkey
anti-Rabbit IgG, Cat# 926-68073, 1:25000 dilution for both, LI-COR)
were used andmembranes scannedusing LI-COROdysseyCLx scanner
according to manufacturer’s instructions. Acquired images were ana-
lyzed using ImageStudio v5.2.5.

4sU metabolic labeling of Neurons and RNA extractions
When enriched neuronal cultures reached 4-week of differentiation,
media was replaced with neuronal differentiation media supple-
mented with 100 μM 4sU (Sigma-Aldrich) reconstituted in DMSO.
Neurons were harvested at 0.5, 1, 4, 8, and 24 h after the addition of
4sU (except for the MECP2-null line where the time-point 1 h was
omitted from both replicates due to low differentiation yields).
Metabolic labeling was designed such that all time points were
collected together. After incorporation, cells were quickly washed
twice with ice-cold 1× PBS Total RNA and scraped into ice-cold 1.5 ml
Eppendorf tubes. Cells were collected by spinning at 1000 g for
5min at 4 °C and cell pellets were resuspended in 1 mL of Trizol
(Thermo Fisher Scientific). Total RNA was extracted according to
manufacturer instructions. The steady-state sample was prepared
from a 5 μg aliquot of the 24 h time-point added with 0.5 μg of both
4sU labeled and unlabeled spike-in RNAs. Neuronal viability in the
presence of 100 μM 4sU was monitored up to 24 h of treatment on
parallel cultures by using Trypan blue staining and live/dead cell
counting.

Biotinylation and pull down of 4sU-labeled RNAs
50 µg of total neuronal RNA was mixed with 5 µg unlabeled yeast RNA
and 5 µg 4sU-labeled S2 fly RNA in a total volume of 120 µL. 1mg/mL
HPDP-biotin (ThermoFisher Scientific) was reconstituted in dimethyl-
formamide by shaking at 37 °C for 30min at 300 RPM. 120 µL of 2.5×
citrate buffer (25mM citrate, pH 4.5, 2.5mL EDTA) and 60 µL of 1mg/
mL HPDP-biotin were added to the premixed RNA sample for each
time point. The solution was incubated at 37 °C for 2 h at 300 RPM on
an Eppendorf ThermoMixer F1.5 in the dark. Samples were extracted
twice with acid phenol, pH 4.5, and once with chloroform. RNA was
precipitated with 18 µL 5M NaCl, 750 µL 100% ethanol, and 2 µL Gly-
coBlue (Invitrogen) overnight at−20 °C. Precipitated RNAwas pelleted
for 30min at 21,000 g at 4 °C. The RNA pellet was resuspended in
200 µL of 1× wash buffer (10mM Tris-HCl, pH 7.4, 50mM NaCl, 1mM
EDTA). Biotinylated RNA was purified using the µMACS Streptavidin
microbeads system (Miltenyi Biotec). 50 µL Miltenyi beads per sample
were pre-blocked with 48 µL 1× wash buffer and 2 µL yeast tRNA
(Invitrogen), rotating for 20min at room temperature. µMACS micro-
columns were washed 1× with 100 µL nucleic acid equilibration buffer
(Miltenyi Biotec), followed by 5× washes with 100 µL 1× wash buffer.
Beads were applied to microcolumns in 100 µL aliquots and again
washed 5× with 100 µL 1× wash buffer. Beads were demagnetized and
eluted off the columnwith 2× 100 µL 1×washbuffer, and columnswere
placed back on themagnetic stand. A total of 200 µL beads wasmixed
with each sample of biotinylated RNA and rotated at room tempera-
ture for 20min. Samples were applied to the microcolumns in 100 µL
aliquots,washed 3×with 400 µLwashAbuffer (10mMTris-HCl, pH7.4,
6M urea, 10mM EDTA) prewarmed to 65 °C, and washed 3× with
400 µL wash B buffer (10mMTris-HCl, pH 7.4, 1MNaCl, 10mMEDTA).
RNA was eluted with 5× 100 µL of 1× wash buffer supplemented with
0.1M DTT, and flow-through was collected in a tube. Purified RNA was
precipitated with 30 µL 5M NaCl, 2 µL GlycoBlue, and 1mL 100%
ethanol, incubated at −20 °Covernight. Samples were spun at 21,000 g
at 4 °C for 30min and resuspended in 20 µL water. RNA quality was
assessed by running 3 µL of samples on a 1.5% agarose gel.

Transcription rate measurement using EU
Transcription rate measurements were validated by an alternative
method using the metabolic incorporation of 5-ethynyl uridine (5-EU)
followed by quantifying mRNA levels by qRT-PCR. NEUWT and NEURTT

were incubated with 0.5mM 5-EU (ThermoFisher) for 30min. Total
RNAwas extracted and processed using Click-iT Nascent RNA Capture
Kit (ThermoFisher) according to the manufacturer’s instructions. The
captured RNAs were used as a template for cDNA synthesis, followed
by qRT-PCR to quantify mRNA level (for the primer list, please see
supplementary information file). Genes were chosen to cover a wide
range of transcription rate changes determined by RATE-seq.

Half-life measurements using transcription inhibition
Half-life measurements were validated by an alternative method using
transcription inhibition followed by quantifying mRNA levels by qRT-
PCR. 10μg/mL actinomycin D (Sigma-Aldrich) was added to NEUWT

and NEURTT. RNAs were isolated at 1 h, 3 h, and 6 h time points using
the RNeasy Plus kit (QIAGEN). The RNAs were used as a template for
cDNA synthesis followed by qRT-PCR to quantify mRNA levels (for the
primer list, please see supplementary information file). Genes were
chosen to cover a wide range of half-life changes as determined by
RATE-seq. Fold-changes for all time points were calculated relative to
the 0-hour time point. Then, data was fit with lm function from R
(formula = log(Fold-change, 2) ~ Time + 0). The coefficient of “Time”
termmeasures degradation rate β. And a half-life is derived as ln(2)/β .
Finally, the confidence intervals are estimatedwith the confint function
(stats package).

cDNA synthesis and qRT-PCR
cDNAs were synthesized using SuperScript III reverse transcriptase
(ThermoFisher) with random hexamer primers according to the
manufacturer’s instructions. For qRT-PCR, we used SYBR Select PCR
MasterMix (ThermoFisher). Fold-changes were calculated by theΔΔCt
methods using Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
and 18 S as housekeeping genes, averaged between technical and
subsequently biological replicates to achieve an average fold differ-
ence (for the primer list, please see supplementary information file).

miRNA extraction and spike-in strategy
To calculate relative and absolute differences in themiRNApopulation
in NEUWT and NEURTT, small RNAs were extracted from two replicates
of both lines using the same number of cells followed by the addition
of a set of spike-in RNAs. Small RNAs were extracted from 500,000
neurons of each line using the SPLIT RNA extraction Kit (Lexogen)
according to themanufacturer’s instructions. A set of 52 RNA spike-ins
(QIAseq miRNA Library QC Spike-Ins – Qiagen) that spanned a wide
range of concentrations were added to the recovered RNAs according
to the manufacturer’s instructions. Sequencing libraries were made
using the Small RNA library preparation kit NEBNext (NEB) according
to the manufacturer’s instructions. Sequencing was performed on the
Illumina HiSeq 2500 using the Rapid Run mode. Datasets can be
accessed from GEO using the access number GSE191168.

Library preparation and RNA-sequencing
RNA-seq libraries were prepared for each time-point and steady-state
sample using the QuantSeq 3’ mRNA-Seq Library Prep Kit FWD for
Illumina (Lexogen) automated on the NGS WorkStation (Agilent) at
The Centre for Applied Genomics (TCAG) according to the manu-
facturer’s instructions. PCR cycle numbers were determined using the
PCR Add-on Kit for Illumina (Lexogen). All steady-state samples were
processed with 250ng of total RNA input. To minimize variability
between time-points within a batch, RNA samples were processedwith
the same total RNA input with aminimumof 100ng of total RNA used.
Each sample was spiked-in with ERCC RNA Spike-In Control Mix 1
(Ambion) according to the manufacturer’s instructions prior to the
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start of library preparation. Library quality and quantity were mea-
sured at TCAG prior to sequencing with Bioanalyzer (Agilent) and
KAPA qPCR (Roche). Sequencing was also performed at TCAG on the
Illumina HiSeq 2500 with single-end 100bp read length yielding 40 to
50 million reads. Datasets can be accessed from GEO using the access
number GSE191168.

Processing of raw sequencing reads
Processing starts with trimming of reads in 4 steps using cutadapt
version 1.1044. First, we removed adapters exactly at the 3‘-end of the
reads (-a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAX -O 4 -e 0.1
--minimum-length 25). Second, we removed internal or long stretches
of adapter (-a AGATCGGAAGAGCACACGTCTGAACTCCAGTCA -O 30
-e 0.18 --minimum-length 25). Third, we trimmed low-quality bases at
the 3‘-end of the reads (-q 20 -O 4). Finally, we removed poly-A tail at
the 3‘-endof the reads (-aAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAX
-O 4 -e 0 –minimum-length 25).

Generation of custom hybrid genome index and reads align-
ment with STAR
We generated a custom genome index to accommodate the quantifi-
cation of yeast, fly, and ERCC spike-in RNA. Annotations (gencode
version 29, flybase version all-r6.22, saccharomyces_cerevisiae.gff
from yeastgenome.org, custom for ERCC) and genomes (hg38, dm6,
sacCer3, ERCC from ThermoFisher) for all species and ERCC were
combined and then processed with STAR version 2.6.0c (--sjdbO-
verhang 100). Finally, reads are aligned to hybrid genome with STAR
version 2.6.0c (default settings)45.

Quantification of RNA abundance
Poly-A sites were obtained from PolyA_DB version 3 and converted to
hg38 coordinates with liftOver (UCSC)46,47. Reads with MAPQ< 2 are
filtered out. Finally, usage of poly-A sites was defined as a sum of reads
whose3‘-ends are fallingwithin 20 bpupstreamand 10 bpdownstream
of the poly-A sites. The sum was counted with a custom Python script
using pybedtools, pysam, pypiper48–50. Annotation of pri-miRNA tran-
scripts structures was downloaded from Mendel lab51. Each transcript
was matched to miRNA gene based on overlaps with GENCODE
annotated pre-miRNA coordinates52. Then, pri-miRNA poly-A sites
overlapping mRNA or lncRNA poly-A sites from PolyA_DB were
removed. Finally, usage of pri-miRNA poly-A sites was quantified with
featureCounts (strandSpecific=1, read2pos = 3 from Rsubread
package)53. The abundance of mature miRNAs was quantified with
mirdeep2 pipeline54. Reads were preprocessed and collapsed with
mapper.pl script (-e -h -j -k AGATCGGAAGAGCACA -l 18 -m -v) and
quantified with quantifier.pl script, using hairpin and mature sequen-
ces obtained from miRbase55.

Heatmap comparison of neurons
Counts of each replicate are normalized relative to the median of the
sample and log-transformed. Transformed values are visualized for the
NPC and Glia markers in addition to a list of neuron-specific genes
obtained from Zaslavsky et al. 56.

Normalization of human read counts with fly spike-ins
First, reads are assigned as originating from either human, fly, yeast or
ERCC, based on alignment to hybrid genome. Then, human rawcounts
are divided by the sum of all fly spike-in raw counts. Since both human
and fly RNAs are 4sU-labeled, this normalization to fly spike-ins
reconstructs the fraction of 4sU-labeled human RNA at each
time point.

Spike-in RNA usage clarification
Fly spike-ins were used to normalize human counts for all time points
(0.5-hour to 24-hour) to assist with transcription rate and absolute

half-life calculations. Yeast spike-ins areonly used as quality control for
contamination in the pull-downs aspresented in Fig. S1. ERCC spike-ins
are only used to control for sequencing quality as presented in Fig. S1.
First, it directly estimates sequencing error magnitude, excluding
biological variation. Second, it shows the capacity of 3‘-end QuantSeq
to reconstruct molar concentrations. Note that the steady-state sam-
ple is not normalized with spike-ins and is separate from the 24-hour
time point sample.

RNA dynamics in 4sU incorporation experiment
Let Y(t) be human normalized counts at time t, YSS be human nor-
malized counts at steady-state, α transcription rate, and β RNA
degradation rate. Then, Y(t) changes over time t as follows:

dY tð Þ
dt

=α � βY tð Þ: ð1Þ

At steady� state
dY
dt

=0
� �

:

α =βYss: ð2Þ

Then, 4sU incorporation kinetics is a solution to above equation,
when Y(t)=0 at time t = 0:

Y tð Þ=Yss 1� e�βt
� �

: ð3Þ

In general, cell division dilutes 4sU labeled transcripts. This effect
can be accounted for by using β+ βgrowth instead of just β. However,
βgrowth contribution is absent for our experiment since neurons are
post-mitotic. Then, at early time points (t ! 0):

dY tð Þ
dt

∣
t!0

=βYss: ð4Þ

Note that βYss is equal to transcription rate α. This means that
slope of Y tð Þ around t = 0measures transcription rate. This property is
used in the analysis described below.

Transcription rate and half-life measurements
The transcription rate was estimated from 0.5-hour and 1-hour time
points for WT neurons and only from 0.5-hour time point for RTT
neurons. This estimate assumes that RNA degradation is negligible for
most genes at time points before 1 hour (see Supplementary Data 1 for
previously publishedmRNAhalf-lifemeasurements using different cell
models and techniques). First, human normalized counts at 1-hour
time point are divided by 2 to create a new approximate replicate at
0.5-hour time point. Division by 2 is done to account for a twice longer
period of transcription in a 1-hour time point sample. To clarify, the
addition of an approximate replicate was motivated by the reduction
in the standard error of log2FC estimatedwithDESeq2. To compare the
transcription rate between cell types usingDESeq2, human normalized
counts are further quantile normalized between replicates of the same
cell type with normalize.quantiles (preprocessCore package)57,58. Half-
life was estimated in 2 separate ways: fit of the 4sU saturation curve
and the ratio of steady-state to transcription rate. For the 4sU satura-
tion curve method, the half-life is estimated in a 2-step procedure.
First, normalized counts are fit with nls (nonlinear least squares from
stats package) to approximate the true number of counts Y at each
timepoint. Then, in a second pass, normalized counts are fit again with
nls, but nowcorrecting for the increase in varianceusingweights set as
1/Y. Confidence intervals are estimated with confint function (stats
package). For the ratio method, the half-life is estimated with DESeq2
using raw human counts from 0.5-hour, 1-hour and steady-state
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samples (design = ~ assay). The assay is a 2-level factor one for tran-
scription rate and one for steady-state. 0.5-hour and 1-hour samples
correspond to the transcription rate.

A caveat of using a pseudo-replicate
In brief, the transcription rate measurement aims to quantify a fold-
change between genotypes from the replicates. A true replicate
incorporates all sources of variation, including pipetting or plate
handling. All time points of our RATEseq experiment are grown on the
samemulti-well plate. Thus, 0.5 h & 1 h samples account only for inter-
well but not for inter-plate variation. Such a replicate is a pseudo-
replicate. The inclusion of a pseudo-replicate may artificially reduce
variance and introduce bias.

The shift in average mRNA half-life between genotypes
To describe the global absolute mRNA half-life shift, we filtered out
unreliable genes from the saturation curve method. First, both gene
transcription rate and steady-state should be above the bottom 10%
quantile. Second, the ratio of 50% confidence interval and estimate of
the half-life should be below 0.75. Then, themean andmedian half-life
was calculated from the filtered set of genes.

Processing of mouse datasets
Mouse data for whole-cell, nuclear and chromatin RNA-seq was
downloaded fromGSE128178.MouseMecp2ChIP-seqwas downloaded
from GSE139509. Differential expression analysis for nuclear and
chromatin RNA-seq was downloaded from the supplementary mate-
rials of the Boxer et al. study9. The abundance of 3ʹUTR isoforms for all
samples is estimated using the QAPA standard pipeline59. Half-life was
estimated as a ratio between whole-cell counts and nuclear or chro-
matin counts using the interaction termapproach inDESeq2 (design = ~
celltype + batch + assay + celltype:assay). Assay factor encodes whole-
cell vs nuclear or chromatin samples. Coefficient of the celltype:assay
term is used to measure the log2 fold-change in half-life between cell
types. Before the DESeq2 run, we filter out genes with a sum of counts
in replicates less than 20 in a pair of compared cell types.

Random forest prediction of up and down-regulated genes in
transcription rates and mRNA half-life
Fold-changes in human half-life in log scale log2FCHL between cell
types A and B were estimated as follows:

log2FCHL = log2HLB � log2HLA: ð5Þ

ZFC = ∣log2FCHL∣=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lfcSE2B + lfcSE

2
A

q

There, log2HLA and lfcSEA were average and standard error of the
half-life in cell type A, estimated by DESeq2 as a ratio from steady-state
and transcription rate replicates. Z-score of a fold-change ZFC was used
as a measure of accuracy.

Features of the classifier are frequencies of k-mers in 3ʹUTR,
coding sequence or gene-body, calculated using oligonucleotide-
Frequency (Biostrings package)60. In addition, themethylation status of
CA and CG in the gene-body was added for mouse analysis from
GSE139509. Predicted variable denotes genes that are either up or
down-regulated in transcription rate or half-life. Thresholds for the
human data were:
1. TRup: log2FCTR > 1&padj <0:1
2. TRdown: log2FCTR<� 1&padj <0:1
3. HLup: log2FCHL > 1&ZFC >medianðZFCÞ
4. HLdown: log2FCHL<� 1 &ZFC >medianðZFCÞ

The half-life for the mouse was either from nuclear or chromatin.
Thresholds for the mouse data were:

1. TRup: log2FCTR >0:1& FDR<0:1
2. TRdown: log2FCTR<� 0:1 & FDR<0:1
3. TRnot: ∣log2FCTR∣<0:1 or FDR>0:1
4. HLup: log2FCHL > 1&pvalue < quantileðpvalue, 0:2Þ
5. HLdown: log2FCHL<� 1 &pvalue <quantileðpvalue, 0:2Þ

Data was split into 75% and 25% for training and test sets. The
classifier is trained using randomForest (randomForest package)61.
Precision-recall and receiver operator characteristic curves were
obtained with evalmod (precrec package)62.

Transite analysis of miRNAs and RBPs
Genes were split into up- or down-regulated according to their tran-
scription rate and half-life fold-change. Then, we performed multiple
comparisons of 3ʹUTR sequences between groups of genes using
run_kmer_tsma (transite package)63. Groups of compared genes:
1. Foreground: TRdown and HLup Background: TRdown

2. Foreground: TRup and HLdown Background: TRup

3. Foreground: TRnot and HLdown Background: TRnot

These comparisons were performed for all transite RNA binding
protein motifs and for TargetScan seed sequences32. TargetScan ana-
lysis includes 439 human miRNA-seed sequences with family con-
servation scores of 0,1,2 that were selected from miR_Family_Info.txt
(TargetScan website). Definitions of up- and down-regulated genes:
1. TRup: log2FCTR >0:5&padj<0:1
2. TRdown: log2FCTR<� 0:5&padj <0:1
3. TRnot: ∣log2FCTR∣<0:5 or padj >0:1
4. HLup: log2FCHL > 1&ZFC >medianðZFCÞ
5. HLdown: log2FCHL<� 1 &ZFC >medianðZFCÞ

The results of transite analysis were further processed with a
custom script for multiple hypothesis correction. Motifs with a low
number of sites detected in both background and foreground were
removed from the analysis. A separate threshold for the number of
siteswas chosen for each transite analysis. A thresholdwas determined
from a requirement for p-values distribution to be unimodal and
enriching at p =0. The distribution of p-values with unfiltered sites is
bimodal with peaks at both p = 0 and p = 1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
author upon reasonable request. The original sequencing data gener-
ated in the course of this study can be accessed from GEO using the
access number GSE191168. The mouse data reanalyzed in this study
can be downloaded from GSE128178 (whole-cell, nuclear and chro-
matin RNA-seq) andGSE139509 forMECP2ChIP-seq. The external data
used on the heatmap comparison of neurons can be downloaded from
GSE38805 (neocortex) and GSE86985 (iPSC-derived dual-SMAD neu-
rons) andGSE112732 (iPSC-derived dual-SMADNGN2 neurons). Source
data are provided with this paper.

Code availability
The computational code used in thismanuscript is available atGithub–

https://github.com/JellisLab/stabilome-rett 64 under https://doi.org/10.
5281/zenodo.7537735.
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