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Systematic comparison of tools used form6A
mapping from nanopore direct RNA
sequencing

Zhen-Dong Zhong1,4, Ying-Yuan Xie1,4, Hong-Xuan Chen1, Ye-Lin Lan1,
Xue-Hong Liu1, Jing-Yun Ji1, Fu Wu1, Lingmei Jin 2, Jiekai Chen 2,
Daniel W. Mak3, Zhang Zhang1 & Guan-Zheng Luo 1

N6-methyladenosine (m6A) has been increasingly recognized as a new and
important regulator of gene expression. To date, transcriptome-wide m6A
detection primarily relies on well-established methods using next-generation
sequencing (NGS) platform. However, direct RNA sequencing (DRS) using the
Oxford Nanopore Technologies (ONT) platform has recently emerged as a
promising alternative method to study m6A. While multiple computational
tools are being developed to facilitate the direct detection of nucleotide
modifications, little is known about the capabilities and limitations of these
tools. Here, we systematically compare ten tools used for mapping m6A from
ONT DRS data. We find that most tools present a trade-off between precision
and recall, and integrating results from multiple tools greatly improve per-
formance. Using a negative control could improve precision by subtracting
certain intrinsic bias. We also observed variation in detection capabilities and
quantitative information among motifs, and identified sequencing depth and
m6A stoichiometry as potential factors affecting performance. Our study
provides insight into the computational tools currently used formappingm6A
based on ONT DRS data and highlights the potential for further improving
these tools, which may serve as the basis for future research.

Over 150 types of RNA modifications have been discovered across all
domains of life1. The most abundant and best-characterized type of
modification found in the eukaryotic mRNA is N6-methyladenosine
(m6A)2,3. The discovery of them6A demethylase fatmass- and obesity-
associated protein (FTO) highlights the reversible and dynamic nature
of this RNAmodification, whichmay serve as a novel regulator in gene
expression4. Subsequent studies have revealed thatm6A ismodulated
by a complex network composed of “writer”, “eraser” and “reader”
proteins3, through which it can co-transcriptionally and post-

transcriptionally influence essential RNA metabolic processes, includ-
ing pre-mRNA splicing and polyadenylation as well as mRNA export,
decay and translation5. Recent functional studies have demonstrated
the essential role of m6A in physiological and pathological processes
in various organisms, further advancing our knowledge and under-
standing of RNA biology6,7.

Owing to the rapid development of m6A detection methods that
have been developed on the next-generation sequencing (NGS) plat-
form, the m6A landscape has since been documented in a number of
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different organisms8. Currently, there are two main NGS-based stra-
tegies that are employed in transcriptome-wide m6A mapping: (i)
antibody-dependent methods, such as MeRIP-seq and miCLIP9,10, and
(ii) antibody-independent methods, such as m6A-REF-seq/MAZTER-
seq11,12 and DART-seq13. The most widely used MeRIP-seq protocol
employs antibodies to enrich RNA fragments containing m6A; how-
ever, this approach suffers from the drawback of high false-positive
rates as a result of non-specific antibody binding14–16 and hence, inac-
curate stoichiometric estimates. Meanwhile, m6A-REF-seq/MAZTER-
seq utilizes an endonuclease that explicitly cleaves unmethylated ACA
motifs but leaves the (m6A)CA intact. This approach precisely identi-
fies m6A sites with single-base resolution and accurately quantifies
methylation rates, yet it is limited to a specific sequence context. For
example, while the endonuclease MazF specifically recognizes ACA
motifs, it only covers approximately 16-25% of m6A sites of the whole
transcriptome11. In DART-seq, the efficiency and specificity of exo-
genously expressed APOBEC1-YTH fusion proteins, which are known
to induce C-to-U deamination at sites adjacent to m6A methylated
sites, have not yet been thoroughly characterized. Most importantly,
all of these NGS-based methods are limited to the detection of
aggregate RNA molecule information and are incapable in accurately
quantifying the stoichiometry at the molecular level. Accordingly, a
novel m6A detection method with both high resolution and quantifi-
cation capability is greatly needed to overcome these limitations.

In the last decade, third-generation sequencing (TGS) technologies
represented by two platforms, namely Pacific Biosciences (PacBio) and
Oxford Nanopore Technologies (ONT), have emerged as promising
alternatives for mapping nucleotide modifications17. PacBio sequencing
identifies DNA modifications using the interpulse duration (IPD), an
approach requiring high sequencing coverage but suffers from low
discriminatory power18. On the other hand, the ONT sequencing plat-
form directly sequences DNA or RNA based on the principle of mon-
itoring shifts in electric current caused by the traversing of a single
molecule across a nanopore embedded within a synthetic polymer

membrane. The effect on the flow of the current through the pore by
modified bases may be distinct from their unmodified counterpart,
thereby allowing for the detection of nucleotidemodifications based on
the identified electric current differentials19,20.

A pioneering study published in 2018 reported for the first time
the direct sequencing of native RNA molecules using the ONT
platform20. Since then, at least ten computational tools have been
developed to map the location of m6A methylation and to determine
its stoichiometry from direct RNA sequencing (DRS) (Supplementary
Fig. 1a and Supplementary Table 1). These tools can generally be divi-
ded into two classes based on the strategies employed to identify
modified nucleotides (Fig. 1a). The first class relies on the detection of
electric current differentials. Briefly, a continuous current is sub-
divided into “events” and then assigned to each nucleotide in a refer-
ence sequence using one of the two widely-used algorithms, namely
Nanopolish-eventalign19 or Tombo-resquiggle21. For each nucleotide,
current features such as the median, mean, standard deviation and
dwell-time (i.e., the timea 5-mer sequence resided in the nanopore) are
extracted and used as inputs for one of three different classification
methods: statistical testing (e.g., used in Tombo21), machine learning
(e.g., used in MINES22, Nanom6A23 and m6Anet24) or clustering (e.g.,
used inNanocompore25 and xPore26) (Fig. 1a). The second class of tools
utilizes base-calling “errors” resulting from the change in current
caused by the presence of RNA modifications. Base-calling “errors”
may represent mismatches, insertions, deletions or variability of base
quality scores. These types of information are collected and classified
using alignment results. To identify modified bases among the
“errors”, Epinano27 uses a pre-trained machine learning model, while
other tools (e.g., DiffErr28, DRUMMER29 and ELIGOS30) perform statis-
tical testing to compare “errors” with an internal model or control
sample. Given the high false-positive rate in defining “errors”, a control
samplewith no (or low levels of) RNAmodification is usually necessary.

As ONT DRS sequencing captures both isoform and nucleotide
modification information, it hasbeen successfully applied in dissecting
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Fig. 1 | Tools and datasets used for m6A mapping based on the ONT DRS
platform. a Pipeline and strategies employed by various m6A mapping tools.
Information on the requirement for a negative control, minimum coverage and
motif specificity for each tool is shown in brackets. “√” and “x” indicate the
requirement for a negative control, while “-” indicates that a negative control is
optional. “N” indicates a lack ofmotif limitations, while “D” and “R” indicate DRACH
and RRACH, respectively. Note that MINES detects m6A in AGACT and GGACH

motifs. bm6A detection and quantification by LC-MS/MS using WT andMettl3 KO
samples. c Violin plots of ONT data features forWT and KO samples, the upper and
lower limits represent the 75th and 25th percentiles, respectively, while the center
line represents the median; upper and lower whiskers indicate ±1.5× the inter-
quartile range (IQR). The number of reads is indicated in parentheses. dMetagene
distribution plot with motif preferences of m6A peaks identified from the MeRIP-
seq data.
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the role of m6A in shaping transcriptome complexity, such as through
alternative splicing29,31, alternative polyadenylation23, circular RNA
biogenesis32 and other transcriptional events33. Despite a number of
highly sophisticated state-of-the-art computational tools that have
been developed to detect and quantify m6A, a thorough evaluation
and comparison of these tools is currently lacking. To address this gap,
we compared ten computational tools used for m6A mapping from
ONT DRS data and quantitatively evaluated their performance based
on two continuous evaluation metrics (Receiver Operating Char-
acteristic (ROC) and Precision Recall (PR) curves), followed by the
identification of m6A under a cutoff that is associated with the best
F1 score. We found that most tools presented a trade-off between
precision and recall, and their performance largely improved with the
integration of the results from multiple tools. We also assessed the
intrinsic preference for m6A-irrelevant sites and demonstrated that
introduction of a m6A-free negative control improved the perfor-
mances of most tools. In addition, we found that the detection cap-
ability varied among motifs, as current differentials were less easily
detected in certain sequence contexts. For the quantitative tools, a
wide discrepancy was observed among their stoichiometric estimates,
albeit with acceptable results in some of the motifs. We showed that
this comprehensive comparison between themultiple tools serves as a
guide for best practices in m6Amapping and quantification, as well as
conducting of further analysis on the ONT DRS platform.

Results
Datasets used for ONT tool comparisons
In order to compare the computational tools currently available for
m6A detection (Fig. 1a, Supplementary Fig. 1a, and Supplementary
Table 1), we conductedONTDRS formRNA fromwild-type (WT)mouse
embryonic stem cells (mESCs) and corresponding m6A-deficient
samples with the major m6A methyltransferase Mettl3 knockout
(KO). ThemRNAderived fromMettl3KO sampleswere confirmed to be
virtually absent of m6A by liquid chromatography-mass spectrometry
(LC-MS/MS) (Fig. 1b).Weobtained 1.31 and 1.32million reads for theWT
and KO samples, respectively, with similar median read length of 1 kb
(Fig. 1c). The average read quality scores were greater than 10 and the
median identities of aligned readswere 90.7% and92.1% forWTandKO
samples, respectively (Fig. 1c). The average quality and alignment
identity of reads from WT samples were slightly lower than that from
KO samples, suggesting that the presence of m6A may cause electric
current variability, and thus lead to more base-calling “errors”27

(Fig. 1c). We also calculated the coverage of aligned reads to annotated
transcripts and found that a large proportion of reads were almost full-
length in both samples (Supplementary Fig. 1b). Overall, the quality of
the DRS data was sufficient for m6A detection.

To obtain validation datasets, we performed the well-
characterized MeRIP-seq assay on WT and Mettl3 KO samples. Peaks
identified in WT samples were distributed around stop codons with a
consensus sequence RRACH (R = A/G, H =A/T/C), while peaks fromKO
samples were randomly distributed (Supplementary Fig. 1c). Given the
absence of m6A methylation in the KO samples, these m6A-irrelevant
peaks were mainly due to the non-specific antibody binding. After
excluding the m6A-irrelevant peaks, a total of 18,069 high-confidence
m6A peaks were identified (Fig. 1d). The ONT DRS platform detected
903,637 and 895,031 RRACH motifs in WT and KO samples, respec-
tively, and more than 40% (370,000) were supported by at least five
reads (Supplementary Fig. 1d). Them6A sites identified in the samecell
line by three independent NGS-based methods, i.e., m6A-REF-seq12,
miCLIP34 and miCLIP235, were also included as validation sets. To fur-
ther validate our results, two published DRS datasets derived fromWT
and Mettl3 KO mESCs samples were included as replicates30 (Supple-
mentary Table 2). In addition, we also included publishedDRSdatasets
fromWTArabidopsis (Col-0) andmutants defective of VIRILIZER (vir-1)
as validation in distant species28 (Supplementary Table 2).

A comparison between the performance of ten computa-
tional tools
In order to assess the aforementioned ten tools’ capability to identify
m6A sites, we evaluated their performance based on m6A sites iden-
tified using MeRIP-seq, miCLIP and miCLIP2 assays as ground truth
(see Methods). In considering the limitations of each NGS-based
method, we took the m6A sites identified by each NGS-based method
or their intersection and union as validation sets separately. Since
some tools are limited to RRACH motifs, we only retained the sites
found in this specific sequence context (Supplementary Table 3). We
then applied each computational tool to predict m6A and ranked the
sites according to the confidence scores reported by each tool. As
some tools require (DiffErr, DRUMMER, xPore, Nanocompore) or
support (ELIGOS_diff, Epinano_delta, Tombo_com) to use negative
control sample, while others (ELIGOS, Epinano, Tombo, m6Anet,
MINES and Nanom6A) do not, we therefore evaluated their perfor-
mances in two separatemodes which are hereinafter referred to as the
compare-mode and single-mode.

We first quantified their performance using two continuous eva-
luationmetrics, the area under the ROC curve (ROCAUC) and PR curve
(PR AUC). Among the tools using single-mode, m6Anet outperformed
others by achieving a ROC AUC of 0.68-0.94 and PR AUC of 0.20-0.52,
followed by ELIGOS, Epinano and Nanom6A, while Tombo achieved
the lowest ROC AUC and PR AUC (Fig. 2a, b and Supplementary
Fig. 2a). As MINES trained its models on 12 RRACH motifs but filtered
the output m6A sites except that located on four sequences (GGACT,
GGACA, GGACC, AGACT), wemodified its code to output all sites. Even
though MINES achieved the second lowest ROC AUC, the PR AUC was
relatively high (Fig. 2a, b and Supplementary Fig. 2a). Notably, all tools
performed much better on four motifs (GGACT, GGACA, GGACC,
AGACT), though their ranking remained unchanged (Supplementary
Fig. 3). In the compare-mode, xPore achieved the best ROC AUC of
0.75-0.91 and PR AUC of 0.27-0.67, which were slightly higher than
those of Epinano_delta. Three error-based tools, ELIGOS_diff, DRUM-
MER and DiffErr, achieved almost the same performance, which may
be due to the similar principle they follow (Fig. 2c, d and Supple-
mentary Fig. 2b). When using different validation sets, the ranking of
each tool remained consistent, indicating that the relative perfor-
mance of the tools is not affected by the choice of validation set
(Fig. 2a–d and Supplementary Fig. 2a, b). In addition, overall ranking
was not changed though the ROC and PR AUC of all tools improved by
taking the maximum of the predicted probability within each peak
from MeRIP-seq results (see Methods) (Supplementary Fig. 2c).

We next assessed the precision of the top 20,000 m6A sites pre-
dicted by each tool. Among the tools in single-mode,m6Anet constantly
showed the highest precision, with 90% of the top 2000 sites or 80% of
the top 5000 sites being supported by at least one NGS-based method
(Fig. 2e, f and Supplementary Fig. 2d, e). In the compare-mode, xPore
achieved the best precision for top 4000m6A sites, but its performance
decreased sharply with the inclusion of additional sites. In contrast,
Epinano_delta constantly showed the best precision for top 4000 to
20,000 m6A sites (Fig. 2g, h and Supplementary Fig. 2f, g). When ana-
lyzing the relative location of top m6A sites, we found that those with
higher precision showed greater enrichment around stop codons, a
characteristic distribution of m6A (Fig. 2i, j). This was consistent with
previous findings in mammalian species9,10. The presence of the GGACU
consensus sequence was more pronounced in m6A sites identified by
toolswith higher precision, also supporting previous observations about
the distribution of m6A (Fig. 2i, j).

To further confirm the evaluation of each tool, we repeated the
aforementioned process on a published ONT DRS dataset that was
derived from WT and Mettl3 KO mESCs samples30. We found that all
single-mode tools achieved nearly identical performance to their
performance using our data; tools in the compare-mode, on the other
hand, generally performed worse, though their ranking remained
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unchanged (Supplementary Fig. 4a–d). Notably, the published mESCs
was found to be an incomplete Mettl3 KO cell line with an estimated
~40% of m6A still present30,36. This implies that a perfect negative
control absent of any m6A would be crucial for these compare-mode
tools. Likewise, these tools showed superior m6A detection capability
in the aforementioned motifs (GGACT, GGACA, GGACC, AGACT)
(Supplementary Fig. 4c, d).

As some tools were constructed and tested on training data from
mammalian species, they may have different performance in non-
mammalian species in which the sequence preference and stoichio-
metry of m6A may vary. To further compare these tools in non-
mammalian species, we evaluated their performance using published
DRS data from the Arabidopsis28. As expected, the performance of
machine-learning based tools was compromised when applied to the
Arabidopsis dataset, particularly m6Anet and MINES which were

trained on DRS data from human samples using miCLIP as the ground
truth (Supplementary Fig. 5). We reasoned that these two tools are not
trained extensively on AAACH motifs, which are the predominantly
occurring m6A context in Arabidopsis rather than AGACT and GGACH
motifs in human or mouse (Supplementary Table 4). On the other
hand, most error-based tools performed better in Arabidopsis (Sup-
plementary Fig. 5), likely benefiting from a higher coverage (Supple-
mentary Table 3). Accordingly, given that the size of Arabidopsis
genome is only 1/20 compared to that of the mouse genome, a higher
coverage was achieved with similar sequencing reads (Supplementary
Table 3), leading to more base-calling “errors” occurred in the pre-
sence ofm6A and increasing the statistical power of error-based tools.
However, asmore than 10%ofm6Awere retained in vir-1 samples28, the
performance of the compare-mode did not significantly improve
(Supplementary Fig. 5). Similarly, the performance of the tools
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Fig. 2 | Performance evaluation of ten tools for m6A detection capability.
a Receiver operating characteristic (ROC) curve (top) and Precision Recall (PR)
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detected by single-mode tools using the miCLIP data as ground truth. f Percentage

form6A sites supportedby various number ofNGS-basedmethods. Top 2000m6A
sites detected by single-mode tools are counted. g Precision curve for top 20,000
m6A sites detected by compare-mode tools using themiCLIP data as ground truth.
h Percentage for m6A sites supported by various number of NGS-based methods.
Top 2000 m6A sites detected by compare-mode tools are counted. i Metagene
plots (left) of the transcriptome-wide m6A distribution for top 2000 m6A sites
detected by single-mode tools. The sequence motifs of these sites plotted by
Seqlogo are shown on the right. j Metagene plots (left) of the transcriptome-wide
m6A distribution for top 2000 m6A sites detected by compare-mode tools. The
sequence motifs of these sites plotted by Seqlogo are shown on the right.
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improved in four motifs (GGACT, GGACA, GGACC, AGACT), particu-
larly for m6Anet and MINES (Supplementary Fig. 6). We observed
exactly the same results from other replicate dataset from Arabidopsis
(Supplementary Fig. 7).

In summary, we found that the performance of computational
tools for detecting m6A sites varied significantly. Among those that
only used a wild-type (WT) sample, m6Anet performed the best. In
contrast, tools that used both WT and m6A-deficient (KO) samples
exhibited a comparable performance, with the exception of xPore and
Nanocompore, which omitted a number of m6A sites to be tested but
had higher precision within the top sites. Tombo, ELIGOS and Epinano
all had improved performance when using their compare-mode with a
nearly m6A-free sample as negative control. In addition, machine-
learning based tools may be affected by species-specific differences in
m6A distribution and stoichiometry.

Intrinsic bias of ONT tools in m6A detection
To determine the optimal cut-off value for each tool, we calculated the
F1 scores under continuous cut-offs and selected the value that cor-
responded to the summed maximum F1 score when applied to the
validation sets from miCLIP and miCLIP2 (Supplementary Fig. 8 and
Supplementary Table 5). We detected 6410 to 35,475 m6A sites from
WT samples and compared them to the validation sets from miCLIP
and miCLIP2 (Fig. 3a, b and Supplementary Fig. 9a, b). Among the
single-mode tools, Tombo, Nanom6A, ELIGOS and Epinano detected
more m6A sites with higher recall rates, but at the cost of lower pre-
cision (Fig. 3a). While m6Anet andMINES omitted many of the sites to
be tested and lost recall rates due to the high coverage requirement or
motifs limitation, they achieved the highest F1 score thanks to their
high precision (Fig. 3a). Among the tools in the compare-mode, two
tools based on clustering principle achieved the highest precision;
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however, it was challenging to balance precision and recall rate for
other tools, likely due to the failureof clustering (seeMethods; Fig. 3b).
DiffErr, DRUMMER and ELIGOS_diff achieved almost the same per-
formances (Fig. 3b). Similar results were found when using the vali-
dation set frommiCLIP2 (Supplementary Fig. 9a, b).We also calculated
precision, recall and F1 score with higher coverage requirement.
Increasing the coverage from5 to 20 resulted in a better F1 score for all
tools, with most of them achieving a better precision and some
achieving a better recall. However, increasing the coverage from 20 to
50 did not result in better performance for most tools (and even
slightly worse for some). Notably, the ranking of tools was nearly the
same regardless of different coverage requirements (Supplementary
Fig. 9). The performance of Tombo, ELIGOS and Epinano was better in
compare-mode than in single-mode, particularly in terms of precision
(Fig. 3a, b). This suggests that theremight be an intrinsicpreference for
certain sites that is unrelated to m6A and can be avoided when using
the compare-mode.

As the Mettl3 KO cell we used were verified to be free of m6A
(Fig. 1b), we expected no (or few)m6A sites would be detected using the
single-mode tools. Strikingly, a substantial number of m6A sites (from
983 to 30,207) were identified in the KO sample by most tools, with
Tombo even detecting a similar number of m6A sites in KO and WT
samples (Fig. 3c). This suggests a systematic overestimation of m6A
abundance by the tools. Sites detected in the KO sample did not show
clear enrichment around the stop codons when compared to the
background (Supplementary Fig. 9c), thus implying a prevalence of false
positives in the results.We found that the recurrence ofm6A sites inWT
samples was significantly higher in KO samples than in random datasets
(seeMethods; Fig. 3c). For instance, 52.79% and 28.68% of the m6A sites
detected in the WT samples were also detected in the KO samples by
Tombo and Nanom6A, respectively, while only 9.21% and 4.52% of sites
could be found in the random datasets (Fig. 3c), thus suggesting a
potential bias towards certain m6A-irrelevant sites. We inspected these
sites that were detected in both WT and KO samples and found that
single-nucleotide polymorphisms (SNPs) and insertions/deletions
(indels) near RRACHmotifs could contribute to this bias, particularly for
ELIGOS, which detects m6A by comparing “errors” to the background
model and treat SNPs/indels as “errors” during m6A detection (Sup-
plementary Fig. 9d, e). In addition, homopolymer near the RRACHmotif
was also one of the causes of the bias (Supplementary Fig. 9d, e), as they
may lead to deletion “errors” signal and inaccurate events assignment.
Despite these observations, a proportion of sites detected in both WT
and KO samples could not be explained.

We next employed the KO samples as a negative control to test
whether it could help to identify false positives and thereby refine the list
of reported m6A sites. After subtracting the sites detected in the nega-
tive control, we found that the precision ofmost tools in the single-mode
were significantly improved, especially for TomboandNanom6A (Fig. 3d
and Supplementary Fig. 9h). Despite decreased recall rates, the F1 scores
of these tools were improved (Fig. 3d and Supplementary Fig. 9f, h). In
contrast, calibratingm6A sites using sites in randomdatasetsmentioned
above did not improve the precision, but decreased the recall rates
(Fig. 3e and Supplementary Fig. 9g, i). ELIGOS and Epinano performed
better when using the compare-mode than directly subtracting the sites
in negative control sample (Supplementary Fig. 9j, k). Overall, the
intrinsic bias of each tool may lead to pervasive false positives and using
a negative control can improve their performance.

Detection capabilities varied among motifs
Most tools train separate machine learning models or build unique
referencemodels to detectm6A siteswith different sequence contexts
(or motifs). Notably, m6A sites in AGACT/GGACH motifs tend to have
better evaluation metrics (Supplementary Fig. 3). We hypothesized
that detection capabilities may vary among motifs. We found that the
recall rates for certain motifs, such as GGACT, GGACA, GGACC and

AGACT, were significantly higher than that of other motifs. On the
other hand, some motifs such as AAACC, AAACA and GAACA showed
extremely low recall rates (Fig. 4a). In addition to the highest recall
rates observed in the four motifs (GGACT, GGACA, GGACC and
AGACT), they also consistently showed the highest precision (Fig. 4b),
suggesting much better detection capabilities of most tools for these
motifs. This finding was consistent for both current-based and error-
based tools (Supplementary Table 6), implying a difficulty in differ-
entiating or detecting m6A sites within some 5-mer motifs. Similar
results were observedwhen using themiCLIP2 result as a validation set
(Supplementary Fig. 10a, b and Supplementary Table 6).

Given these findings, we suspected that electric current differ-
entials between themodified andunmodified basesmaybemodest for
some motifs, resulting in difficulties of distinguishing m6A from the
Adenosine base (A). To test this hypothesis, we inspected 239 GGACA
and 59 GAACA sites identified by m6A-REF-seq that were almost fully
methylated in WT samples but non-methylated in KO samples
(methylation rate of WT - KO>0.8). Next, we analyzed ONT reads
covering these m6A sites (for both WT and KO samples) to examine
discrepancies in currents and base-calling “errors” profiles. Notably,
current intensity differed greatly between modified and unmodified
GGACA motifs but not GAACA motifs (Fig. 4c). In addition, modified
reads with GGACA motif resulted in more base-calling “errors” com-
pared to unmodified reads, especially for deletions andmismatches; in
contrast, modified reads with GAACAmotif showed little effect on the
frequency of base-calling “errors” (Fig. 4d, e and Supplementary
Fig. 10c). Nevertheless, the qualities of modified reads with either
GGACA or GAACA motif were significantly lower than that of unmo-
dified reads (Supplementary Fig. 10c). We concluded that current
differentials between m6A and A were relatively small at some
sequence contexts, leading to poor performance of most tools
encountering such motifs.

Performance of m6A quantification
Among the ten computational tools evaluated, three of the current-
based tools (Tombo/Tombo_com, Nanom6A and xPore) are able to
quantify methylation rates. Tombo/Tombo_com and Nanom6A detect
m6A signal of single reads and thus allow for quantification of m6A at
each genomic location covered bymultiple reads, while xPore estimates
the methylation rate by modeling a mixture of two Gaussian distribu-
tions corresponding to unmodified andmodified reads. To evaluate the
ability of each tool to quantify m6A sites, we compared their results to
those obtained from NGS-based methods. We first calculated the
enrichment score of each site using MeRIP-seq data, then divided the
sites into seven categories according to their enrichment scores. When
comparing the methylation rates for sites belonging to different cate-
gories, we found that sites with high enrichment scores also showed
higher methylation rates (Fig. 5a). For all three tools, methylation rates
were positively correlatedwith the enrichment score, and xPore showed
the highest correlation (Fig. 5a). To further assess their performance
quantitatively, we utilized the validation set from m6A-REF-seq results
containing quantitative information for individual m6A sites in four
motifs. These three tools showed largely different correlations with the
validation set, among which Tombo and xPore achieved the lowest and
the highest correlations, respectively (Pearson’ r=0.21 for Tombo and
Pearson’ r=0.57 for xPore) (Fig. 5b). Correspondingly, the results of
different tools were poorly correlated, with the lowest correlation
between Tombo and Nanom6A (Pearson’ r=0.27), and the highest
correlation between Nanom6A and xPore (Pearson’ r=0.65) (Fig. 5b). In
addition, Tombo_com always showed a higher correlation with other
methods than Tombo.

Given that previous reports on variable detection capabilities
among different motifs, we investigated whether the performance of
m6A quantification also varied among different sequence contexts.
Despite the low overall consistency among the three tested tools, we

Article https://doi.org/10.1038/s41467-023-37596-5

Nature Communications |         (2023) 14:1906 6



found that they consistently showed higher correlations in specific
motifs (Fig. 5c and Supplementary Fig. 11a–f). For instance, when
comparing Tombo and Nanom6A, Pearson correlation coefficients for
m6A sites within the GGACT and AGACT motifs increased to 0.7, a
value significantly higher than that for all sites (0.27) (Fig. 5c). Similar
results were observed for the other five pairs of comparisons (Sup-
plementary Fig. 11a–e). Furthermore, increasing the coverage did not
improve the quantification performance (Fig. 5d and Supplementary
Fig. 11g).

Detection capability is influenced by sequence coverage and
m6A stoichiometry
In order to test whether the detection capability is affected by
sequencing coverage, we compared the recall and precision across
different coverage intervals for each tool. Three error-based tools
(ELIGOS/ELIGOS_diff, DRUMMER and DiffErr) and Nanocompore were
susceptible to low coverage, with their recall rates increasing drama-
tically as coverage increased (Fig. 6a), which explains the superior
performance of these tools in Arabidopsiswith high sequencing depth

(Supplementary Fig. 5). xPore and Tombo_com showed slightly lower
recall rates at higher coverage interval, while other tools remained
stable (Fig. 6a). In terms of precision, Tombo_com and Epinano_delta
benefited most from the high coverage as did the performance of
Epinano, Nanom6A andMINES, whereas other tools were less affected
by the coverage (Fig. 6b). These results were consistent when using
data from miCLIP2 as a positive control (Supplementary Fig. 12 and
Supplementary Table 7). In general, the detection capabilities of dif-
ferent tools varied in their response to coverage (Fig. 6c and Supple-
mentary Table 7).

As most m6A sites were partially methylated, we wondered whe-
ther the algorithms employed by different tools were also effective in
detectingm6A siteswith lowmethylation level. To test this, we divided
m6A sites that were detected by m6A-REF-seq into five categories
according to the methylation rate and compared the recall rate
between different categories for each tool. As expected, it is difficult
for all the tools to detect sites with lowm6A levels (0-0.2); in contrast,
the recall rate is largely improved for the sites with high m6A levels
(0.8–1) (Fig. 6d and Supplementary Table 8). To further investigate all
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RRACHmotifs, we divided the m6A sites detected by miCLIP/miCLIP2
into six categories according to the site enrichment scorequantifiedby
MeRIP-seq. Similar results were observed for most tools, with
some exception when using data from the miCLIP as positive control
(Fig. 6e, f and Supplementary Table 8). In conclusion, m6A sites with
higher methylation rates were easier to detect than those with lower
methylation rates.

Integrated analyses of multiple tools
As presented in the above, it can be difficult to balance precision and
recall rates for most individual tools, even under their optimal cut-off
settings. For example, Epinano_delta achieved the highest recall rate
(0.37) but with a very low precision (0.22), whereas m6Anet achieved
the best precision (0.42) at the cost of a low recall rate (0.19)

(Fig. 3a, b). To test whether a combination of multiple tools can
improve performance, we intersected the top 5000 m6A sites repor-
ted by the different tools. Though the results of ELIGIS_diff, DRUMMER
and DiffErr overlapped well with each other (0.6–0.8), wherein the
overlap ratio was less than 0.5 for most pairs of other tools (Fig. 7a). A
low overlap ratio may indicate many false-positives as reported by
most tools; alternatively, different tools may capture different sets of
authenticm6A sites and the integration of these results could improve
the prediction performance. After merging the results reported by ten
tools, we identified a total of 112,885 m6A sites. However, 54.98%
(62,060) of the m6A sites were supported by only one tool, and only
6.66% (7523) of m6A sites were supported by more than half of the
tools (Fig. 7b). Strikingly, only 251 (0.22%) of the m6A sites were
identified by all of the tools (Fig. 7b).We then compared the precision,
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recall and F1 scores of the integrated predictions to that of the same
number of topm6A sites from each individual tool and found that the
integrated predictions achieved a better performance in terms of
precision, recall rate and F1 score (Fig. 7c). Moreover, using m6A sites
supported by more than 4 or 5 tools achieved the highest F1 score
(Fig. 7c), thus highlighting the effectiveness of integrating the pre-
dictions from multiple tools.

Considering that TGS-based methods or NGS-based methods for
m6A profiling may have their own superiorities and limitations, we
compared the m6A sites detected by TGS (obtained by merging the
m6A sites from ten ONT tools) to those detected by NGS (obtained by
merging the m6A sites from miCLIP and miCLIP2). Even though the
number of m6A sites from all ONT tools totaled 112,885, only 51.20%
(19,239/37,577) of these sites that were detected by the NGS methods
could be recalled (Fig. 7d). We further investigated the m6A sites
detected by the NGSmethods but were not recalled by any of the ONT
tools and found that 15.51% were located in intergenic regions and
40.51% were covered by less than five ONT reads (Fig. 7d). After
removing the intergenic and low-coverage sites, we re-analyzed the
non-recall rates for sites with various sequence motifs, and found that
m6A siteswithin theGGACTmotifs exhibited a recall rate ofmore than
0.9 while AAACC and AAACA motifs exhibited recall rates of 0.3
(Fig. 7e). Sinceonly a small proportion (19,239/112,885) ofmerged sites
were supported by NGS methods, we investigated the characteristics
of the remaining sites. These sites showed a clearer enrichment around
the stop codonswhen supported bymoreONT tools (Fig. 7f), while the
overlap ratio of them6A sites thatweredetected inmESCs KO samples
decreased (Supplementary Fig. 13f). This implies that the NGSmethod
failed to detect some of authenticm6A sites that were captured by the
ONT tools.

Discussion
With the development of NGS-based m6A detection methods, our
understanding of the biological role of m6A has advanced con-
siderably. However, such methods have inherent limitations.
Recently, ONT DRS has emerged as a promising alternative method
of detecting RNA modifications. To date, approximately ten com-
putational tools have been developed. With the goal of comprehen-
sively evaluating the performance of these tools, we conducted a
comparative analysis of each tool’s detection capabilities, thereby
providing a guide for future studies using ONT DRS. Our analysis
revealed a variable performance when evaluated using the ROC and
PR curves as continuous metrics, with which m6Anet and Epinano_-
delta performed the best in the single-mode tools and compare-
mode tools, respectively. Moreover, a similar ranking was observed
when using different validation datasets or the union and intersec-
tion sets. We then applied these tools to the detected m6A sites
under a cut-off which correlated to the highest F1 score and found
that it was still challenging to balance precision and recall rates for
some tools. For example, m6Anet, xPore andNanocompore achieved
the highest precision at the cost of lowest recall, while Tombo and
Tombo_com achieved the opposite. Nevertheless, integrated pre-
dictions from all tools achieved better performance than individual
tools, especially when using m6A sites which were supported by
multiple tools (>4). As for quantitation, methylation rates reported
by Tombo/Tombo_com, Nanom6A and xPore showed positive cor-
relation to the enrichment score determined by MeRIP-seq, but were
poorly agreed across ONT tools or with the methylation rates quan-
tified by m6A-REF-seq. Taken together, there is still room for
improvement in the algorithms for the identification and quantifi-
cation of RNA modifications from ONT DRS datasets.
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There are two main challenges that need to be addressed. The
first challenge relates to the variance in electric current intensity
observed during repeated sequencing of the same 5-mer motif,
which is determined by the capability of ONT platform. Given that
the presence of m6A corresponds to small differences in current
intensity, large amounts of background variation could render A
and m6A indistinguishable37. The second challenge relates to the
data used to train machine learning models38. One common
method to generate positive samples involves in vitro transcription
with dm6ATP instead of dATP; however, the distribution of m6A on
this artificial RNA may differ greatly from that found on a natural
RNA. In addition, models trained on the DRS data containing
organism-specific site information would have an inherent
sequence bias. We believe synthetic positive samples with m6A
sites located in predetermined locations with various motifs would
be more appropriate39.

We observed varying degrees of intrinsic bias towards some
specific sites in various tools. Benefited from the use of nearly m6A-
free negative control, compared-mode tools generally performed
better than single-mode tools. Analogously, introducing a negative
control (mESC Mettl3 KO samples) as an extra calibrator effectively
improved the precision of single-mode tools, although negative con-
trol sample with residual m6A confounded the analysis. However, it is
relatively complicated to knockoutMettl3 in most cell types36,40,41 with
some m6A sites having been shown to be Mettl3-independent42,
thereby making it virtually impossible to generate an ideal negative
control from a natural sample. Recently, we used a transcriptome-wide
modification-free RNA library synthesized through in vitro transcrip-
tion (IVT) to systematically calibrate epitranscriptomic maps profiled
by NGS based methods16. In the detection of RNA modifications via
ONT DRS, this IVT RNA library holds great promise to serve as a gold
standard negative control in the future.
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Unexpectedly, all tools displayed very divergent recall rates and
precision in different motifs. After excluding poorly sequenced reads
and intronic or intergenic m6A sites, approximately 70% of the m6A
sites detected by miCLIP/miCLIP2 were recalled from the merged m6A
sites. High recall rates of up to90%were seen inGGACTmotifs, whereas
lower rates of 20% were observed in AAACC motifs. Minor current dif-
ferentials between modified and unmodified A’s in some motifs may
induce false-negative results. To overcome this bottleneck, chemical
decorations would assist in making m6A more distinguishable from
unmodified A when traversing the nanopore. Similar methods have
been developed to detect inosine using the nanopore sequencing43.

Here we represent the first comprehensive comparison of com-
putational tools focused on detecting m6A in the ONT DRS dataset.
Rational oligo models and well-established BS-seq data have already
been applied to the benchmarking of 5mC detection by nanopore
sequencing44,45. However, there is no gold-standard method for m6A
detection with both single-base resolution and stoichiometric infor-
mation on the NGS platform. Therefore, we conducted MeRIP-seq on
the same samples used in the ONT sequencing and employed pub-
lished m6A sets as identified by miCLIP, miCLIP2 and m6A-REF-seq.
Though the value of evaluation metrics (ROC AUC, PR AUC, precision,
recall, F1 score) given in this study may not reflect the performance of
these tools completely and may be underestimated due to the low
sequencing depth of DRS data, the comparison between tools would
be informative. Moreover, most of our findings still hold when using
different validation sets. In addition, we further observed that a pro-
portion of m6A sites which were consistently captured by ONT tools
were likely to be authentic, but were not detected by previous NGS-
based methods. In conclusion, we provide a comprehensive compar-
ison of computational tools commonly used in m6A mapping
depending on theONTDRSplatform. Comparative information on the
detection capability, intrinsic bias and motif preferences between the
different tools provide valuable insights for the development of new
detection strategies and algorithms in future.

Methods
Sample collection
The WT and Mettl3 KO mESCs were validated in a previous study46.
Briefly, exons 5–7 of Mettl3 were replaced with puromycin and hygro-
mycin resistance genes using CRISPR–Cas9 system. After selecting with
1μg/ml puromycin (Gibco, A1113802) and 200μg/ml hygromycin B
(Sigma, V900372) for oneweek, diallelic KO colonies were cultured and
verified by western blotting (see results in Liu et al.46). After extracting
total RNA from the samples using TRIzol (Thermo Fisher Scientific,
15596026), mRNA was isolated via a Dynabeads mRNA Purification Kit
(Thermo Fisher Scientific, 61006) with genomic DNA removal using
TuRBO DNase kit (Thermo Fisher, AM2238).

Nanopore direct RNA sequencing and data preprocessing
Nanopore direct RNA sequencing was conducted following instructions
provided by Oxford Nanopore Technologies (Oxford, UK) using DRS
kits (SQK-RNA002) and MinION flowcells (FLO-MIN106D, R9.4.1 pore).
After live basecalling using Guppy (v4.0.11) in MinKNOW, reads that
passed the quality threshold (7) were then subjected to post-run
basecalling with the latest version of Guppy (v5.0.7) under default
parameters. A reference transcriptome file was generated from the
mouse genome reference and corresponding annotation (GENCO-
DE.VM18) using convert2bed (v2.4.38) and bedtools (v2.26.0). The
resulting FASTQ files were aligned to the mouse reference tran-
scriptome usingMinimap2 (v2.17) with parameter settings “-axmap-ont
--MD”. Samtools (v1.6) was used to filter secondary and supplementary
alignments and convert aligned reads to the bam format. Public data-
sets were preprocessed in the same way except that Arabidopsis sam-
ples were aligned to the reference transcriptome generated from
TAIR10 reference genome with Araport11 reference annotation.

NGS-based validation sets
The raw MeRIP-seq data was downloaded from Zhang et al.16

(GSE151028). After quality control, clean reads were aligned to the
mouse genome reference file (GRCm38/mm10) with HISAT2 (v2.1.0)
for peak calling using MACS2 (v2.1.2) (callpeak --keep-dup all -g mm
--nomodel --extsize 200 -q 0.0001 --fe-cut-off 2). High confidence
peaks were obtained by first merging peaks from two WT replicates
and then subtractingpeaks identified in bothKO replicates.Only peaks
containing RRACH motif were retained since most ONT tools were
limited to this motif. Sites detected by ONT tools would be considered
as true positives when they were found to be located in the peaks from
MeRIP-seq. When using public miCLIP34, miCLIP235 and m6A-REF-seq12

datasets, m6A sites only in the RRACH motifs were kept. m6A profiles
derived from miCLIP and miCLIP2 results were two main validation
sets for all analysis. MeRIP-seq results were also used to compare tools
with continuous evaluation metrics. When using MeRIP-seq data as
evaluation set, we roughly considered all sites falling in the peaks as
true positives. m6A-REF-seq results provided reference modification
rate in the quantificationpart. As for the validation sets forArabidopsis,
we also filtered sites not containing RRACH motifs from the public
MeRIP-seq47 and miCLIP28 datasets.

m6A detection with multiple tools
We ran the tools with parameter settings described as follows, and the
detailed command and code are available at https://github.com/
zhongzhd/ont_m6a_detection48.

Tombo (v1.5.1) needs to re-squiggle reads to assign raw current
signals to each base before further processing can be carried out.
Tombo now provides two methods for m6A detection: (1) a de novo
non-canonical base method with the command “detect_modifications
de_novo” (represented by Tombo); and (2) a canonical sample com-
parison method with the command “detect_modifications mod-
el_sample_compare” (represented by Tombo_com). The first approach
was used for routine analysis of single samples, while the second
approach was used to combine analyses for negative control samples.
Several statistics were obtained from Tombo, including the coverage
and estimated fraction-modified values, and the latter were treated as
scores for ranking.

MINES uses coverage and fraction-modified values calculated by
Tombo as input to its random forest models (only for AGACT and
GGACH motifs) and only reports significant sites. Therefore, we
modified the code to output the modification probability of all sites in
all RRACH motifs. The modification probabilities of sites were treated
as scores for ranking. The modified version is available at https://
github.com/zhongzhd/ont_m6a_detection48.

Nanom6A (v2.0) extracts the median, mean, standard deviation
and dwell time from normalized raw signals for each read after re-
squiggling with Tombo. The above features are then used as input for
its XGBoost model which assigns a modification probability for each
read. Reads with a modification probability >0.5 were considered
modified, and the modified fraction of sites were treated as scores for
ranking.

m6Anet (v1.0) requires the results generated from running the
eventalign module in Nanopolish (0.13.2), which assigns raw current
signal to each base (like Tombo). The results are used as input to the
m6Anet’s neural-network based Multiple Instance Learning model
which produces probability-modified values per site. The probability-
modified values corresponding to each site were treated as scores for
ranking.

Nanocompore (v1.0.0) collapses the results from the Nanopolish
eventalign module to generate a file containing the median intensity
and dwell time; it also makes pairwise comparisons to the collapsed
results from a control sample. The Gaussian mixture model (GMM)
logit p values from statistical test results of sites were treated as scores
for ranking. Note that this tool outputsmany sites with “nan” value due
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to failure in clustering, so sites with the “nan” values were assigned a p
value of 1.

xPore (v2.0) also uses the results from the Nanopolish eventalign
module for all samples to make a configuration file, and applies the
multi-sample two-Gaussian mixture model to obtain the estimated
modification rate for each sample, a test statistic (z score) and p value
on differential modification rates for each pairwise condition. The z
scores fromstatistical test resultswere treated as scores for ranking (as
recommended by the authors). Similar to Nanocompore, this tool
omitted many sites in its result due to failure in clustering, so we
assigned a z score of 0 to these sites. Sites with modified distributions
of current assigned in the opposite direction, were assigned a z score
of 0 according to xPore’s methods. In addition, sites with higher
methylation rate in KO than WT were also assigned a z score of 0.

DiffErr (v0.2) uses alignment files with a control as input. The
−log10 p values from statistical test results of sites were treated as
scores for ranking, and sites filtered internally or with odds ratio (log)
≤0 were assigned a −log10 p value of 0.

DRUMMER also uses alignment files for the sample and a control
as input. The p values (odds ratio) from statistical test results of sites
were treated as scores for ranking, and sites filtered internally or with
odds ratio ≤1 were assigned a p value of 1.

ELIGOS (v2.0.1) offers twomethods for the detection ofmodified
nucleotides: (1) the identification of RNAmodifications compared to a
rBEM5 + 2model using “rna_mod” (representedby ELIGOS); and (2) the
identification of RNA modifications compared to control conditions
using “pair_diff_mod” (represented by ELIGOS_diff). The first method
was used for routine analyses of single samples, while the second was
implemented for combined analyses including negative control sam-
ples. The p values (odds ratio) from statistical test results of sites were
treated as scores for ranking, and sites filtered internally or with odds
ratio ≤1 were assigned a p value of 1.

Epinano (v1.2.0) offers two kinds of Support Vector Machine
models for m6A detection. These models have different features: (1)
the mean quality, and mismatch, insertion and deletion frequency of
each base (represented by Epinano); and (2) the difference in mean
quality, and in the mismatch, insertion and deletion frequency
between the sample and a control for each base (represented by Epi-
nano_delta). The first method was used by default and the second
when comparing to a negative control. The probability-modified from
predicted results were treated as scores for ranking.

Tools comparison using ROC and PR curves
Sites in RRACH motif with more than 5 reads (except for m6Anet that
required at least 20 reads) were tested by each tool and ranked
according to the significant score as described above. We then con-
verted the transcriptome coordinates to the genomic coordinates to
match with the validation sets. Sites derived from multiple tran-
scriptomic coordinates but aligned to the same genomic coordinate
were merged as follows: for Tombo/Tombo_com, MINES, Nanom6A,
m6Anet and Epinano/Epinano_delta, the scores (fraction-modified/
probability-modified) were weighted averaging according coverage;
for Nanocompore, xPore, DiffErr, DRUMMER and ELIGOS, the best
scores (p value/z score) were selected as representative. To objectively
compare the tools, we only kept the sites that were covered by all
methods and with a coverage ≥20 in the final dataset for evaluation
using the ROC and PR curve. MeRIP-seq, miCLIP and miCLIP2 results
mentioned above were applied as ground truth, and we also used the
validation sets in the form of union and intersection of all the NGS-
based methods. As for Arabidopsis, MeRIPseq and miCLIP results and
their union and intersection were used as the validation sets.

m6A determination with optimal cut-off
To determine the optimal cut-off form6Adetection, we varied the cut-
offs and calculated F1 scores of sites in the RRACHmotif covered by at

least 5 reads using the MeRIP-seq, miCLIP and miCLIP2 results as
validation sets separately (note that m6Anet requires at least 20 reads
and MINES only output results in 4 motifs).

F1 score=
2 ×precision × recall
precision+ recall

As the distribution of F1 scores were inconsistent between the
validation set from MeRIP-seq and miCLIP/miCLIP2, we selected the
cut-off corresponded to themaximumF1 scorewhen adding up that of
miCLIP and miCLIP2 for following m6A detection process. Validation
sets of miCLIP and miCLIP2 were used for the following precision and
recall calculation. Note that in evaluating the performance of these
m6A detection tools, we only considered sites detected by NGS
methods (MeRIP-seq, miCLIP and miCLIP2) that were covered by
minimal DRS reads (5, 20, 50 DRS reads requirement). When setting
the requirement at 5 DRS reads, we also took into consideration sites
omitted by m6Anet (<20 reads) and MINES (not in four specific motif)
and treated themwith the lowest score for recall calculation.m6A sites
detected under 5 DRS reads requirement were used for further
analysis.

Intrinsic bias assessment
Sites in the RRACHmotif withminimum 5 reads (the pool) inMettl3 KO
samples were tested by each tool and determined as m6A using the
optimal cut-off described above. We then randomly sampled an iden-
tical number of sites (== the number of m6A sites detected in KO
samples) from the pool as the random dataset for each tool. To test
whether these tools prefer some irrelevantm6A sites (intrinsic bias), we
compared two intersection “WT&KO” (m6A sites detected in WT and
KO samples) and “WT&Random” (m6A sites detected in WT samples
and existed in random dataset). If there were certain intrinsic bias, the
WT&KO intersection should be greater thanWT&Random intersection;
we applied one-side Hypergeometric tests to calculate the significance.
Todetermine for the cause of the intrinsic bias, the input data ofMeRIP-
seq were used to call SNPs/indels compared to mm10 reference using
bcftools with the key parameter “QUAL> 100”, and SNPs/indels were
kept when supported by more than 2 of 4 samples (WT and KO with
replicates). In addition, the flanking sequence (upstream and down-
stream 10bp) of all candidate sites were extracted and inspected for
homopolymer. We then compared the ratio of sites near SNPs/indels
(within 5 bp) or homopolymer between the “WT&KO” intersection and
sites in the RRACH motif with more than 5 reads (background) and
applied one-sided Binomial tests to calculate significance.

Comparisons of current intensities and base-calling “errors”
between modified and unmodified 5-mer
Nanopolish eventalign was used to assign raw current to each base in
the reference genome. The results of sam2tsv pileup (v0558422) were
used to calculate the frequency of mismatch, deletion and insertion
and base quality. Highly-methylated m6A sites in GGACA and GAACA
motifs with a methylation rate differences >0.8 between WT and KO
samples as determined by m6A-REF-seq, were selected. The current
intensities and base-calling “errors” of these sites extracted from WT
samples were treated as current intensities and base-calling “errors” of
modified 5-mer, while these extracted from KO samples were treated
as current intensities and base-calling “errors” of unmodified 5-mer.
We compared the current intensities and base-calling “errors” between
modified and unmodified 5-mer for both GGACA and GAACA motifs.

m6A quantification
Tombo/Tombo_com and Nanom6A detect m6A at read level and
support methylation rates calculation. Sites in the RRACH motif with
more than 5 reads were calculated. xPore outputs methylation rates
directly in its result and tests the difference of methylation rates
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between WT and KO samples, so we used the methylation rates of WT
samples for all sites in the RRACHmotif withmore than 5 reads except
for sites which failed to cluster. Methylation rates from the m6A-REF-
seq results were used for comparison. We also calculated the enrich-
ment score for these sites using the MeRIP-seq data (IP FPKM/Input
FPKM) with featureCounts (v2.0.1) for comparison.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated for this paper have beendeposited in theNCBIGene
Expression Omnibus (GEO) database under accession number
GSE195618. Published DRS datasets derived from WT and Mettl3 KO
mESC samples are obtained from the work of Jenjaroenpun et al.30 and
are available through NCBI Sequence Read Archive (SRA) database
under accession number SRP166020. Published Arabidopsis DRS
datasets along with their KO variants are form Parker et al.28 and are
available through European Nucleotide Archive (ENA) database under
accession number PRJEB32782.

Code availability
The analysis pipeline and all custom scripts used for this paper are
available at https://github.com/zhongzhd/ont_m6a_detection48.
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