Skip to main content
. 2023 Feb 18;60(5):1530–1540. doi: 10.1007/s13197-023-05694-3

Table 2.

PLS regression results using RCGA-PLS variable selection method

Parameters LVs RMSEC RC2 RMSECV RP2 RMSEP
20 2 2.8092 0.6194 2.9256 0.706 2.5248
3 2.6389 0.6641 2.7517 0.7492 2.332
4 2.1943 0.7678 2.4655 0.7293 2.4229
5 3.1093 0.5337 3.779 0.4445 3.4706
6 2.3253 0.7392 2.7954 0.6647 2.6965
7 2.0814 0.791 2.6516 0.7548 2.3057
8 2.5253 0.6924 3.1198 0.4727 3.3814
30 2 0.4608 0.9898 0.4763 0.9915 0.4301
3 0.3431 0.9943 0.3687 0.993 0.3907
4 0.1983 0.9981 0.2172 0.9953 0.3205
5 0.1871 0.9983 0.2135 0.9969 0.2607
6 0.1867 0.9983 0.2195 0.9962 0.2865
7 0.1916 0.9982 0.2425 0.9943 0.3526
8 0.1737 0.9985 0.2182 0.9965 0.2773
40 2 0.4685 0.9894 0.4811 0.9892 0.4842
3 0.2874 0.996 0.306 0.9958 0.3035
4 0.4495 0.9903 0.5521 0.9866 0.538
5 0.3887 0.9927 0.4505 0.9817 0.6306
6 0.2804 0.9962 0.3671 0.9923 0.4084
7 0.5432 0.9858 0.713 0.9807 0.6473
8 0.522 0.9869 0.6767 0.9665 0.8529
50 2 0.2408 0.9972 0.2502 0.9972 0.2455
3 0.21 0.9979 0.2221 0.9974 0.2365
4 0.1777 0.9985 0.2036 0.9973 0.2411
5 0.1776 0.9985 0.2047 0.9961 0.2912
6 0.1611 0.9987 0.2026 0.9961 0.2921
7 0.1507 0.9989 0.1919 0.9965 0.2756
8 0.1225 0.9993 0.1653 0.996 0.2961
60 2 0.2191 0.9977 0.2286 0.9977 0.2233
3 0.193 0.9982 0.2069 0.9978 0.2171
4 0.1759 0.9985 0.2023 0.9977 0.2241
5 0.1642 0.9987 0.1993 0.9968 0.263
6 0.1413 0.999 0.172 0.9968 0.2627
7 0.138 0.9991 0.1773 0.9965 0.2737
8 0.1124 0.9994 0.1555 0.9965 0.2764

aThe data size for training and testing were 100 and 60, respectively, partitioning of data is using SPXY, cross-validation was based on kfold = 10, and the preprocessing of the data was SNV + SG1