Table 2.
PLS regression results using RCGA-PLS variable selection method
| Parameters | LVs | RMSEC | RC2 | RMSECV | RP2 | RMSEP |
|---|---|---|---|---|---|---|
| 20 | 2 | 2.8092 | 0.6194 | 2.9256 | 0.706 | 2.5248 |
| 3 | 2.6389 | 0.6641 | 2.7517 | 0.7492 | 2.332 | |
| 4 | 2.1943 | 0.7678 | 2.4655 | 0.7293 | 2.4229 | |
| 5 | 3.1093 | 0.5337 | 3.779 | 0.4445 | 3.4706 | |
| 6 | 2.3253 | 0.7392 | 2.7954 | 0.6647 | 2.6965 | |
| 7 | 2.0814 | 0.791 | 2.6516 | 0.7548 | 2.3057 | |
| 8 | 2.5253 | 0.6924 | 3.1198 | 0.4727 | 3.3814 | |
| 30 | 2 | 0.4608 | 0.9898 | 0.4763 | 0.9915 | 0.4301 |
| 3 | 0.3431 | 0.9943 | 0.3687 | 0.993 | 0.3907 | |
| 4 | 0.1983 | 0.9981 | 0.2172 | 0.9953 | 0.3205 | |
| 5 | 0.1871 | 0.9983 | 0.2135 | 0.9969 | 0.2607 | |
| 6 | 0.1867 | 0.9983 | 0.2195 | 0.9962 | 0.2865 | |
| 7 | 0.1916 | 0.9982 | 0.2425 | 0.9943 | 0.3526 | |
| 8 | 0.1737 | 0.9985 | 0.2182 | 0.9965 | 0.2773 | |
| 40 | 2 | 0.4685 | 0.9894 | 0.4811 | 0.9892 | 0.4842 |
| 3 | 0.2874 | 0.996 | 0.306 | 0.9958 | 0.3035 | |
| 4 | 0.4495 | 0.9903 | 0.5521 | 0.9866 | 0.538 | |
| 5 | 0.3887 | 0.9927 | 0.4505 | 0.9817 | 0.6306 | |
| 6 | 0.2804 | 0.9962 | 0.3671 | 0.9923 | 0.4084 | |
| 7 | 0.5432 | 0.9858 | 0.713 | 0.9807 | 0.6473 | |
| 8 | 0.522 | 0.9869 | 0.6767 | 0.9665 | 0.8529 | |
| 50 | 2 | 0.2408 | 0.9972 | 0.2502 | 0.9972 | 0.2455 |
| 3 | 0.21 | 0.9979 | 0.2221 | 0.9974 | 0.2365 | |
| 4 | 0.1777 | 0.9985 | 0.2036 | 0.9973 | 0.2411 | |
| 5 | 0.1776 | 0.9985 | 0.2047 | 0.9961 | 0.2912 | |
| 6 | 0.1611 | 0.9987 | 0.2026 | 0.9961 | 0.2921 | |
| 7 | 0.1507 | 0.9989 | 0.1919 | 0.9965 | 0.2756 | |
| 8 | 0.1225 | 0.9993 | 0.1653 | 0.996 | 0.2961 | |
| 60 | 2 | 0.2191 | 0.9977 | 0.2286 | 0.9977 | 0.2233 |
| 3 | 0.193 | 0.9982 | 0.2069 | 0.9978 | 0.2171 | |
| 4 | 0.1759 | 0.9985 | 0.2023 | 0.9977 | 0.2241 | |
| 5 | 0.1642 | 0.9987 | 0.1993 | 0.9968 | 0.263 | |
| 6 | 0.1413 | 0.999 | 0.172 | 0.9968 | 0.2627 | |
| 7 | 0.138 | 0.9991 | 0.1773 | 0.9965 | 0.2737 | |
| 8 | 0.1124 | 0.9994 | 0.1555 | 0.9965 | 0.2764 |
aThe data size for training and testing were 100 and 60, respectively, partitioning of data is using SPXY, cross-validation was based on kfold = 10, and the preprocessing of the data was SNV + SG1