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Abstract
Knowledge regarding the neural origins of distinct upper extremity impairments 
may guide the choice of interventions to target neural structures responsible for 
specific impairments. This cross- sectional pilot study investigated whether differ-
ent brain networks explain distinct aspects of hand grip performance in stroke sur-
vivors. In 22 chronic stroke survivors, hand grip performance was characterized 
as grip strength, reaction, relaxation times, and control of grip force magnitude 
and direction. In addition, their brain structural connectomes were constructed 
from diffusion tensor MRI. Prominent networks were identified based on a two- 
step factor analysis using the number of streamlines among brain regions relevant 
to sensorimotor function. We used regression models to estimate the predictive 
value of sensorimotor network connectivity for hand grip performance measures 
while controlling for stroke lesion volumes. Each hand grip performance measure 
correlated with the connectivity of distinct brain sensorimotor networks. These 
results suggest that different brain networks may be responsible for different as-
pects of hand grip performance, which leads to varying clinical presentations of 
upper extremity impairment following stroke. Understanding the brain network 
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1  |  INTRODUCTION

Substantial heterogeneity exists among individuals in the 
presentation of motor impairment following a stroke. In 
the upper extremity, some stroke survivors experience more 
impairment in force production, while for others dexterous 
object manipulation may be the main challenge. This het-
erogeneity is due to variability in underlying neural impair-
ment (Takeuchi & Izumi, 2013). Knowledge regarding the 
neural origins of distinct upper extremity impairments may 
guide the choice of rehabilitation interventions to target the 
neural structures responsible for the specific impairment.

For example, a study by Xu et al.  (2017) showed that 
the overall upper limb function measured by the Fugl- 
Meyer Assessment of Motor Recovery After Stroke— 
Upper Extremity (FMUE) was related to both grip strength 
and finger individuation. However, finger individuation 
strongly correlated with the cortical hand area lesion vol-
ume while grip strength did not. Similarly, hand dexterity 
has been attributed to corticospinal integrity, while syn-
ergy expression and muscle tone have been attributed to 
the reticulospinal pathway (McPherson et al., 2018). These 
studies suggest that the overall clinical function can be ex-
plained by detailed profiles of motor impairment, which 
are associated with distinct neural mechanisms allowing 
heterogeneity to be directly addressed.

However, current evidence is limited in terms of char-
acterizing a detailed profile of motor impairment during 
grasping tasks and their individual neural correlates. As 
the next step, this pilot study represents a proof- of- concept 
demonstration of characterizing various aspects of hand 
grip performance and their neural correlates. We hypothe-
sized that different aspects of hand grip performance (e.g., 
grip strength versus grip force direction; Seo et al., 2015) 
will be associated with distinct brain networks.

2  |  METHODS

2.1 | Participants

Twenty- two hemiparetic stroke survivors participated in 
this cross- sectional pilot study. All participants were at least 
6 months poststroke, with a mean time since the stroke of 

5.3 ± 4.9 years (mean ± standard deviation, SD). The ma-
jority had an ischemic stroke while five participants had 
a hemorrhagic stroke. Participants were 61.6 ± 12.6 years 
old and were 14 males and 8 females. They had on average 
moderate upper limb impairment (FMUE = 43.9 ± 11.9). 
None had severe limb pain (visual analog scale ≥5) or se-
vere sensory loss (National Institutes of Health Stroke 
Scale Sensory score = 2). All participants provided in-
formed consent to the study protocol approved by the local 
Institutional Review Board. The procedures followed were 
in accordance with the ethical standards of the responsible 
institutional committee on human experimentation and 
with the Helsinki Declaration of 1975, as revised in 2008.

2.2 | Hand grip performance measures

Grip strength is one of the most common measures of 
poststroke impairment and correlates with motor function 
(Stock et al.,  2019). Reaction and relaxation times have 
been shown to be slowed poststroke and attributed to dif-
ferent neural mechanisms (Kamper et al., 2022; Motawar 
et al.,  2012, 2016; Persson et al.,  2020; Seo et al.,  2009, 
2011). In addition, proper control of grip force magnitude 
(Quaney et al., 2005) and direction (Seo et al., 2010, 2015) 
is essential to efficiently handle objects for task require-
ments and has been shown to be impaired and associated 
with upper limb function poststroke. These measures can 
be obtained simultaneously during a person's grip.

Participants were seated in front of a computer screen 
with the forearm rested on a table and the thumb and index 
finger on force sensors (Mini40, ATI Industrial Automation 
Inc, NC). Participants were instructed to grip the sensors 
with two parallel grip surfaces with their maximum force 
three times to obtain an average grip strength. In addition, 
participants were instructed to grip and relax 2 s later fol-
lowing visual cues on the computer screen generated by a 
custom LabVIEW program (National Instruments, Austin, 
TX). Participants gripped for a 4 N target force without vi-
sual feedback three times, after practicing with visual feed-
back. Three repetitions of each condition were performed 
the grip task with the nonparetic hand first, followed by 
the paretic hand. A custom LabVIEW program recorded 
the 3- axis force data at 500 Hz.

correlates for different hand grip performances may facilitate the development of 
personalized rehabilitation interventions to directly target the responsible brain 
network for specific impairments in individual patients, thus improving outcomes.
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Individual grip performance measures were obtained 
using a custom program in MATLAB (MathWorks, Natick, 
MA). The force data were visually inspected for quality as-
surance. Strength was determined as the peak force ob-
served during the maximum grip (Figure  1a). Reaction 
time was determined as the time duration from the grip 
cue to grip initiation defined as when grip force increased 
more than the baseline grip force by 3 SD (Hur et al., 2014; 
Seo et al., 2009). Relaxation time was determined as the 
time duration from the rest cue to grip termination de-
fined as when grip force returned to the baseline force 
level within 3 SD (Seo et al., 2009). Force magnitude con-
trol was quantified as the absolute difference between the 
target force and mean grip force during grip (Figure 1b; 
Anderson et al., 2018; Quaney et al., 2005). Force direction 
control was quantified as the mean angular deviation of 
digit force from the direction normal to the grip surface 
during grip (Figure 1c; Seo et al., 2010, 2015). Repetitions 
were averaged. A ratio of the paretic value to the sum for 
both hands was computed to normalize the data and use 
in the statistical analysis.

2.3 | Brain networks

While stroke damages specific regions, the functional 
consequences extend to brain networks disrupted by the 
lesions (Koch et al., 2021). Therefore, we used the connec-
tome approach to quantify residual neural networks out-
side of the stroke lesion. All participants underwent MRI 
using a 3T Siemens Prisma scanner (Siemens Healthcare, 
Erlangen, Germany). A T1- weighted magnetization- 
prepared rapid acquisition gradient- echo sequence 
(Brant- Zawadzki et al.,  1992) (TR:1900 ms, TE:2.26 ms, 
T1:900 ms, isotropic voxel size 1 mm × 1 mm × 1 mm), T2- 
weighted FLAIR (TR: 9000 ms, TE:93 ms, T1: 2500 ms, 
voxel size: 0.9 mm × 0.9 mm × 0.9 mm), and diffusion ten-
sor image (DTI) (TR: 6400 ms, TE: 96 ms, isotropic voxel 
size: 2.7 mm × 2.7 mm × 2.7 mm) were obtained.

Each participant's structural connectome was recon-
structed using the previously published streamline ap-
proach (Bonilha, Nesland, Rorden, Fillmore, et al., 2014; 
Bonilha, Nesland, Rorden, & Fridriksson, 2014; Srivastava 
et al.,  2022). First, brain lesions were manually traced 
on the T2 weighted FLAIR using MRIcron (Rorden & 
Brett, 2000). Additional regions of interest were manually 
traced for the corticoreticular pathway (CRP) in the retic-
ular tract of medulla and midbrain; and for the corticospi-
nal tract (CST) in the pyramid of the medulla and cerebral 
peduncle of the midbrain in DTI (Srivastava et al., 2022). 
The T2 was co- registered with T1. The lesions were 
resliced using the transforms into the native T1 space, 
smoothed, and binarized. Uneven edges were eliminated 

using a 3- mm full width at half- maximum Gaussian ker-
nel. A threshold of 0 was used for binarizing the lesion 
maps. A chimeric T1 was created by replacing lesioned 
areas with the mirrored image of the intact hemisphere 
(Bonilha, Nesland, Rorden, Fillmore, et al., 2014). The T1 
was normalized onto the standard space with an enan-
tiomorphic normalization approach (Nachev et al., 2008) 
in SPM12 (University College London, London, UK). An 
overlay of the lesion locations of participants in the stan-
dard space is shown in Figure 2. The T1 was segmented 
into probabilistic maps of white and gray matter using 

F I G U R E  1  Illustration of the hand grip performance measures: 
grip strength (a), reaction time, relaxation time, and force 
magnitude control (b), and force direction control (c).
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the unified segmentation normalization (Ashburner & 
Friston, 2005) in SPM12 with stroke lesion excluded. Gray 
matter was divided into the Atlas of Intrinsic Connectivity 
of Homotopic Areas (AICHA) (Joliot et al., 2015) and non-
linearly registered to the DTI space. The manually traced 
CRP and CST regions were merged with AICHA. The dif-
fusion image was undistorted using Eddy (Andersson & 
Sotiropoulos,  2016). Pairwise probabilistic fiber tracking 
was performed using FMRIB Diffusion Toolbox prob-
trackX (Behrens et al., 2007) and its accelerated BEDPOST 
(Hernández et al., 2013) to obtain the number of stream-
lines connecting each pair of regions. The weighted con-
nectivity pair between each pair of brain regions was 
obtained by averaging the probabilistic streamlines in 
both directions. The number of streamlines was corrected 
to account for unequal distances between regions and the 
size of gray matter regions using the distance between 
each region pairs, and the size of both regions of each re-
gion pairs (Bonilha et al., 2015; Bonilha, Nesland, Rorden, 
& Fridriksson, 2014; Gross, 2008).

The streamlined data among a reduced set of 20 brain 
regions from the AICHA atlas relevant to motor function 
were extracted. The cortical regions for the current analy-
sis include the bilateral precentral, Rolandic, postcentral, 
and supplemental motor area (SMA) for their relevance in 
motor execution, sensory processing (Borich et al., 2015), 
and movement preparation/coordination (Welniarz 
et al.,  2019). Subcortically, basal ganglia (putamen, cau-
date, pallidum) and thalamus were included for their 
relevance for motor performance and skill acquisition 
(Cataldi et al., 2021). These areas were included bilaterally, 
considering compensation by the contralesional hemi-
sphere or interhemispheric inhibition (Ward et al., 2003). 
Additionally, CRP and CST were included for their rele-
vance to muscle tone (Jang & Lee,  2019) and dexterous 
motor function, respectively (Zaaimi et al., 2012).

2.4 | Statistical analysis

These streamlined data were analyzed with a two- step 
factor analysis. Separately for each brain region, we 

performed a factor analysis of the streamlines between 
region i and the rest of the regions to produce factors for 
region i. The resulting factors were used for a second- factor 
analysis to obtain final factors representing prominent 
brain networks.

Regression analyses were performed between each 
brain network as an independent variable and each grip 
performance as a dependent variable. To account for the 
confounding influence of the lesion volume, the percent 
lesion volume in each brain network was used as a co-
variate in each regression. None of the variance inflation 
factors of these regressions presented multicollinearity. 
Linear regression was used because there was no evidence 
of nonlinearity. Statistical analysis was carried out in IBM 
SPSS Statistics 27.

3  |  RESULTS

Participants' mean ± SD hand grip performance measures 
were as follows: grip strength 0.39 ± 0.20, reaction time 
0.52 ± 0.11, relaxation time 0.54 ± 0.16, force magnitude 
control 0.50 ± 0.35 and force direction control 0.54 ± 0.11. 
They are expressed in the ratio of the paretic hand value 
to the sum for both hands. The factor analysis identified 
seven brain networks.

Each of the five hand grip performance measures was 
best predicted by a different brain network (Table 1). Each 
network is described in Figure  3 with top 6 streamlines 
contributing to that network with the weight of at least 
0.4. Grip strength was best explained by the brain network 
including streamlines between bilateral SMA and caudate 
and ipsilesional postcentral area (Figure  3a, R = 0.37). 
Reaction time was best explained by the network com-
posed of interhemispheric streamlines among contrale-
sional Rolandic and postcentral areas, ipsilesional SMA, 
and subcortical areas (Figure  3b, R = −0.39). Relaxation 
time was best explained by the network centered around 
the medulla CST, midbrain CRP, ipsilesional thalamus, 
contralesional Rolandic, and subcortical areas (Figure 3c, 
R = −0.36). Force magnitude control was best explained 
by the network consisting of ipsilesional SMA and 

F I G U R E  2  Lesion locations of participants: The affected hemisphere is shown on the left and the unaffected hemisphere on the right. 
The color indicates how many participants had a lesion at a spot.
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medulla and midbrain CST (Figure  3d, R = 0.32). Force 
direction control was best explained by the network cen-
tered around ipsilesional SMA, contralesional thalamus, 
and bilateral Rolandic, pallidum, and putamen (Figure 3e, 
R = −0.39). Findings were consistent with versus without 
the lesion volume accounted for. None of the regressions 
reached significance at 5% level. Correlation plots of the 
relationship between brain networks and hand grip per-
formance are presented in Figure 4.

4  |  DISCUSSION

This is the first study to examine streamline- based brain 
networks for various aspects of hand grip performance. 
Previous connectome research relied on a single motor 
function score (Xu et al., 2017). By contrast, the present 
study assessed multiple aspects of hand motor impair-
ment and found that distinct networks are responsible for 
different aspects of hand motor performance. Thus, the 
present study characterizes heterogeneity in the presenta-
tion of upper extremity impairment with distinct neural 
network features. Exploring differing networks for differ-
ent aspects of function in individuals with differing neuro-
logical insults may provide an interesting basis for future 
research investigating the neural correlates of ability.

In addition, this study examined brain networks for re-
laxation time and force direction control for the first time. 
Further, new networks found in the present study include 
interhemispheric connections for reaction time, brainstem 
pathways for relaxation time, and SMA/thalamus- centered 
network for force direction control. These connections 
may represent interhemispheric inhibition necessary for 
task performance (Seo,  2013), corticospinal involvement 
for terminating muscle activity (Seo et al., 2009), and in-
ternal model for grip force control (White et al.,  2013). 
For grip strength, force magnitude control, and reaction 
time, the networks included brain regions previously im-
plicated from voxel- based lesion symptom mapping (Liu 
et al., 2018; Weitnauer et al., 2021) and fMRI BOLD brain 
activity (Ward et al., 2003). They were basal ganglia, thala-
mus, and SMA. The basal ganglia have been shown to play 
a key role in grip force modulation (Pradhan et al., 2015). 
Internal regulation of the force increases the metabolic 
demands on the basal ganglia, especially on the pallidum. 
The caudate is responsible for the selection of the grip 
force that will be employed (Pradhan et al.,  2015). The 
thalamus is important for the organization of movement 
and as a sensory hub of the brain (Hwang et al.,  2017). 
Its projections relay nearly all afferent information to the 
cortex and mediate cortical communications (Hwang 
et al., 2017; Nikulin et al., 2008). Its anticipatory activity 
before the movement has been shown to correlate with T
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shorter reaction times of upper extremity movements 
(Nikulin et al., 2008). The SMA is responsible for the inter-
nal model of force magnitude control (White et al., 2013). 
It receives the sensory information needed to predict the 
grip force needed for the task (White et al., 2013). Thus, 
the involvement of the SMA might be related to feedback 
motor control for desired force output.

This study has a significant implication for rehabilita-
tion. First, the finding highlights the need to characterize 
various aspects of motor function to capture the heteroge-
neity in impairment following stroke and apply the most 
effective intervention for individual patients. Second, it pro-
vides an improved understanding of (Badran et al., 2020; Li 
et al., 2017; Palmer et al., 2018) brain networks associated 
with specific impairment. Third, this improved under-
standing might facilitate the development of personalized 
rehabilitation interventions such as brain stimulation 
(Badran et al., 2020; Li et al., 2017; Palmer et al., 2018) to di-
rectly target the brain network responsible for the specific 

impairment and enhance clinical outcomes in individual 
patients. Thus, this work extends the previous work of 
using brain networks for prognosis (Feng et al., 2015; Koch 
et al., 2021) by promoting the development of personalized 
rehabilitation treatment for individuals.

Results presented were based on a pilot study with a 
small sample size of 22. This exploratory study was per-
formed primarily to evaluate the potential that brain 
networks for distinct motor performance aspects may be 
identified. The results of this study encourage future stud-
ies with a larger sample size for the definitive identifica-
tion of the networks for varying demographic and clinical 
characteristics. Inclusion of neurotypical persons may 
also be considered to span a larger variability in structural 
networks. Future work should include connectome- based 
lesion mapping (Weitnauer et al., 2021) to construct deci-
sion trees or target neuromodulation with larger datasets.

In conclusion, this pilot study provides insight that dis-
tinct brain networks may contribute to various aspects of 

F I G U R E  3  Brain networks related to 
hand grip performance measures: Lateral 
and top view of the five distinct brain 
networks that correlated best with each of 
the five grip performances: (a) maximum 
grip force, (b) reaction time, (c) relaxation 
time, (d) force magnitude control, and 
(e) force direction. In the top view, the 
lesioned hemisphere is shown on the left 
and the nonlesioned hemisphere on the 
right.
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hand functional impairment following stroke. The results 
implicated brain regions that have previously been associ-
ated with common hand function measures, in addition 

to revealing potential new networks. Pending larger stud-
ies for the definitive identification of networks and causal 
efficacy, this research may facilitate the development of 
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F I G U R E  4  Correlation plots between each hand grip performance measure and brain network, not controlled for lesion volume.
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personalized, network- level intervention to improve func-
tion in stroke survivors.
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NEW AND NOTEWORTHY
Interhemispheric connections, brainstem pathways, and 
SMA/thalamus- centered network were implicated for 
reaction time, relaxation time, and force direction con-
trol, respectively, in chronic stroke survivors. Different 
brain networks may be responsible for different aspects of 
hand grip performance and thus varying clinical presen-
tations of upper extremity impairment following stroke. 
Understanding the brain network correlates for heteroge-
neous motor impairments may facilitate the development 
of personalized rehabilitation interventions.
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