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Abstract. Uganda reported cases of Rift Valley fever virus (RVFV) for the first time in almost 50 years in 2016, follow-
ing an outbreak of Rift Valley fever (RVF) that caused four human infections, two of which resulted in death. Subsequent
outbreak investigation serosurveys found high seroprevalence of IgG antibodies without evidence of acute infection or
IgM antibodies, suggesting the possibility of undetected RVFV circulation prior to the outbreak. After the 2016 outbreak
investigation, a serosurvey was conducted in 2017 among domesticated livestock herds across Uganda. Sampling data
were incorporated into a geostatistical model to estimate RVF seroprevalence among cattle, sheep, and goats. Variables
resulting in the best fit to RVF seroprevalence sampling data included annual variability in monthly precipitation and
enhanced vegetation index, topographic wetness index, log human population density percent increase, and livestock
species. Individual species RVF seroprevalence prediction maps were created for cattle, sheep, and goats, and a com-
posite livestock prediction was created based on the estimated density of each species across the country. Seropreva-
lence was greater in cattle compared with sheep and goats. Predicted seroprevalence was greatest in the central and
northwestern quadrant of the country, surrounding Lake Victoria, and along the Southern Cattle Corridor. We identified
areas that experienced conditions conducive to potential increased RVFV circulation in 2021 in central Uganda. An
improved understanding of the determinants of RVFV circulation and locations with high probability of elevated RVF
seroprevalence can guide prioritization of disease surveillance and risk mitigation efforts.

INTRODUCTION

Rift Valley fever (RVF) is a mosquito-borne zoonotic dis-
ease discovered in the 1930s and is caused by the Rift
Valley fever virus (RVFV), an RNA virus in the family Bunyaviri-
dae, genus Phlebovirus.1 Since its discovery, its geographic
range has expanded throughout the African continent, sur-
rounding islands, and into the Arabian Peninsula, and has the
potential to continue to spread to new continents.2

Rift Valley fever has important implications for animal and
human health, and can have major economic consequences
resulting from the severe disease it can cause among
domesticated ungulate livestock.3 RVFV infection among
livestock occurs via vector-borne transmission from infected
mosquitoes, and livestock outbreaks of RVF have resulted in
mortality rates of 5% to 20% in adults and 80% to 100%
in newborns and developing fetuses.1,4 Human infection
occurs from contact with fluids from an infected animal or
the bite of an infected mosquito, and is usually less severe
than in livestock, such that a significant proportion of asymp-
tomatic or mild infections in humans likely go undetected.5,6

Common symptoms in humans mirror those of influenza or
malaria.7 Severe symptoms such as hepatitis, retinitis, enceph-
alitis, or bleeding in the stool and nose occur in about 10% of
human infections, and approximately 1% of human infections
progress to hemorrhagic disease.1 The case fatality rate
among humans who develop hemorrhagic disease is 50%.8

As evident in its wide geographic range, RVFV can be
maintained in varying ecological contexts and ecosystems.
Large epizootic outbreaks are typically associated with
anomalous precipitation and flooding, often correlating with

El Ni~no Southern Oscillation patterns.9,10 Floodwater Aedes
mosquitoes often drive these outbreaks, as they can transmit
the virus vertically to offspring in their eggs, which can survive
months or years in dry soil until flooding causes dormant eggs
to hatch and transmit the virus by biting susceptible indivi-
duals.11 Outbreaks are then propagated by numerous mos-
quito species, such as those from the Aedes, Culex,Mansonia,
Coquillettidia, and Eretmapodites genera.2,11 Past research
of environmental predictors of RVF epizootics have found
temporal trends in precipitation and vegetation greenness to
be highly predictive of outbreaks.10,12 Other important con-
siderations include temperature, elevation, land gradient, soil
type, land use, proximity to water sources, and susceptible
host density.13–15 Maintenance of RVFV during interepizootic
periods can also occur via vertical transmission in Aedes
mosquitoes under normal amounts of rainfall, causing spo-
radic spillover into livestock and humans. Some evidence
suggests that interepizootic RVFV transmission may also be
associated with proximity to or residence in forested areas,
proximity to water sources, livestock trade, and nomadic
husbandry of ungulate livestock.16

Until 2016, Uganda had not reported a case of RVF in
almost 50 years, when an outbreak resulting in four human
infections was identified.17 Serosurveys conducted during
the outbreak investigation revealed IgG antibodies in 12% of
humans and 13% of livestock in the area, whereas only four
individuals were found to have active or recent infection via
polymerase chain reaction and IgM antibody testing, indicat-
ing potentially undetected past exposure to RVFV among
RVF-seropositive humans and livestock prior to the onset of
the outbreak.5 Since 2016, Uganda has continued to identify
sporadic transmission that resembles that of interepizootic per-
iods in RVF-epizootic countries. Most outbreaks have occurred
in the Cattle Corridor, which stretches from the southwest cor-
ner to the northeast corner of the country and is considered
the range of most livestock in the country18 (Figure 1).
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After the detection of RVFV infections in 2016, herds of cat-
tle, sheep, and goats (hereby referred to as livestock) were
surveyed and tested for RVFV IgG antibodies in 2017 in 28
districts in Uganda to evaluate the distribution of RVFV in the
country. These livestock seroprevalence data were incorpo-
rated into a geostatistical model with data on environmental
predictors of RVF to generate maps visualizing predicted
RVF seroprevalence among livestock in 2017 and the proba-
bility that RVF seroprevalence in a given location exceeded
10%; most studies in RVF-endemic countries have shown an
average seroprevalence range of 10% to 20%.19 Model para-
meters were then fit to covariate data for the most recent
year available to identify locations that recently experienced
conditions potentially conducive to RVFV circulation. Regions
with high predicted seroprevalence can be targeted for sur-
veillance and increased community education, and prioritized
for livestock RVF vaccine distribution.

MATERIALS AND METHODS

Livestock sampling data. Cross-sectional sampling of
livestock was conducted between February and August
2017. Blood samples were collected from 3,181 livestock
selected from 75 herds of sheep and goats, and 84 cattle
herds at 112 sites in 28 of 134 districts in Uganda (Figure 1).
Herds selected for sampling were those associated with
subsistence farming, and not livestock associated with com-
mercial trade networks. The number of animals sampled per
species herd ranged from 1 to 60 animals. Sampling tar-
geted the various geographies within the country and border
districts where importation of the virus could occur. Samples
were collected by a team from the Uganda Virus Research
Institute. A comprehensive outline of sampling procedures,
testing, and data are reported by Nyakarahuka et al.20

Environmental and population variables. Suitable envir-
onments for RVFV transmission are made up of complex

FIGURE 1. Observed Rift Valley fever seroprevalence among herds of cattle, sheep, and goats in Uganda in 2017.
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interactions among climatic, geographic, hydrological, and
geological variables in combination with anthropogenic con-
siderations such as human and livestock population density,
urbanization, agriculture, pastoralism, and land-use change.
Geographic data on these variables were obtained on a raster
grid of Uganda, and values were extracted at sampling loca-
tions to determine their association with RVF seroprevalence
in sampled herds. Covariate data were downloaded and ana-
lyzed at a spatial resolution of 1 km2, and data unavailable for
download in this resolution were resampled to match this res-
olution. The presence of IgG antibodies against RVFV is not
time specific, as IgG antibodies can last decades; therefore, it
was not possible in this study to identify the time at which
sampled livestock were exposed to RVFV.21 Because expo-
sure to RVFV can occur at any point in an animal’s life, we
developed our model using historical average covariate values
that livestock could have experienced during their lifetime. We
assumed that the average life span of agricultural livestock in
Uganda was approximately 8years (Food and Agricultural
Organization [FAO] Uganda, personal communication); there-
fore, values of each variable represent annual average values
during the 8years prior to sampling (2009–2016).
Monthly precipitation data were sourced from African Rain-

fall Climatology, with which we created variables representing
annual average of monthly precipitation and the annual coef-
ficient of variation of monthly precipitation (monthly precipita-
tion variability).22 Enhanced vegetation index (EVI) data were
collected from the National Aeronautics and Space Adminis-
tration Moderate Resolution Imaging Spectroradiometer
(MODIS) terra vegetation indices, with which we created vari-
ables representing annual average of monthly EVI, average
annual EVI during the rainy seasons, and average annual vari-
ability of monthly EVI (calculated as the SD of monthly EVI).23

Variability in monthly EVI throughout the year may represent
areas that experience greater variation in precipitation or
areas with a high density of agriculture, as fluctuations in
crop growth and harvest throughout the year cause EVI
values ascertained via satellite remote sensing to be less
consistent than natural vegetation. The MODIS also provides
land cover data with 16 land-type classifications, which were
analyzed in seven categories: forest, MODIS 1 to 5; shrub-
land, MODIS 6 and 7; savannah, MODIS 8 and 9; grassland,
MODIS 10; wetland, MODIS 11; anthropogenic, MODIS 12 to
14; and bare, MODIS 15 and 16.24 Because transmission
may be associated with proximity to a certain land type, we
also analyzed variables representing distance in kilometers
to each land-type category. Soil data representing percent
content of clay, silt, and sand were ascertained from the
World Harmonized Soil Database.25 Data representing cattle,
sheep, and goat density were obtained from the FAO and
analyzed for individual species and cumulatively.26 Given that
most human infections in Uganda since 2016 have occurred
within the Cattle Corridor, we also created a binary variable
denoting whether a sampled herd was inside or outside the
Cattle Corridor. Wild animal density data were not available;
therefore, to represent the possibility of RVFV circulation
among undomesticated ungulates, we calculated and ana-
lyzed a variable representing distance to the nearest wildlife
reserve or sanctuary using data from the Open Sustainability
Institute.27 Hydrological variables were sourced from World-
Pop28 and the Famine Early Warning Systems Network Land
Data Assimilation System,29 and included slope, distance to

the nearest major waterway, distance to inland water sources,
average surface runoff, anomalous surface runoff, and average
precipitation anomalies. Annual human population density
data were also sourced from WorldPop.30 We analyzed a
topographic wetness index (TWI) as a measure of susceptibil-
ity to natural water runoff that is based on elevation and slope
of terrain.31 Previous research suggests that environmental
changes such as deforestation and land-use change can result
in elevated risk for transmission of vector-borne diseases.32

To account for these dynamics, we created variables repre-
senting the average percent change in annual EVI, EVI season-
ality, and log percent increase in human population density
per 1 km2. Changes in EVI and EVI variability were used to
identify potential conversion of forest or natural vegetation
to arable cropland, with the assumption that agricultural land
has greater variability in EVI values than natural vegetation.
Specific data regarding importation of livestock in Uganda or
trade of livestock within the country were not available. How-
ever, past work has identified high-animal-traffic sites across
Uganda, such as livestock markets, illegal border crossings
and trade sites, and migration hubs.33 To account for proximity
to one of these high-animal-traffic sites, we developed a
covariate representing distance to the nearest high-animal-
traffic site. Data for variables selected for inclusion in the final
model were also ascertained for the most recently available
complete year, which in our case was 2021.
Statistical analysis. Preliminary exploration of covariates

associated with RVF seroprevalence was carried out by plot-
ting the relationships between logit seroprevalence of RVF
with each variable of interest using piecewise linear splines
to capture nonlinear relationships. These relationships were
then analyzed using a binomial generalized linear model, and
covariates found to be associated with RVF seroprevalence
(a 5 0.05) were then incorporated into a generalized linear
geostatistical model (GLGM) using model-based geostatis-
tics.34 A cutoff of 0.6 was used when evaluating the correla-
tion between variables to retain in the model. To identify the
presence of model overfitting, we evaluated the parameter
maximum likelihood estimates in a correlation matrix and
used a cutoff value of 0.6 to determine whether linear depen-
dence between any covariates was present. The best-fitting
model was selected by identifying the one that reduced
uncertainty the most in the cumulative output probabilities of
exceeding 10% seroprevalence, as described by Giorgi
et al.35 The GLGM of the probability that a given sampled
animal had positive antibodies for RVF was then implemen-
ted in the following framework:

log p xð Þ= 12p xð Þ½ �f g5b0 1b1:n 1S xið Þ1Ui;

where p(x) denotes the prevalence of RVF in location x, b
represents the effects of the specified covariates at each
prediction location, S(x) represents a spatial random effect
that follows a Gaussian process with mean zero and vari-
ance s2, and a Matern correlation function. Model covariates
were considered statistically significant using a 5 0.05. The
shape parameter of the Matern correlation function was spe-
cified as k 5 1, based on the profile likelihood for the shape
parameter in a logit-transformed linear Gaussian model.
Covariance parameters were identified by fitting a semi-
variogram of model residuals, which represents the decay
in correlation between observations as distance between
them increases. The “nugget effect,” Ui, represents the
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unstructured random variation in the outcome and is in-
cluded to capture the effects of unmeasured explanatory
variables that have little to no spatial structure.
We fit a spatial binomial GLGM using Markov chain maxi-

mum likelihood using 200,000 simulations within the Pre-
vMap package36 in R version 1.3.1075 (R Foundation for
Statistical Computing, Vienna, Austria). Prediction of RVF
seroprevalence was carried out on a 1-km2 resolution grid of
Uganda.
Prevalence predictions were based on covariate values in

each prediction location and the correlation structure from
the fitted model. Model-based geostatistics uses the spatial
autocorrelation of sampled locations from the empirical semi-
variogram to weight the influence that nearby sampled loca-
tions have on the predicted values in given locations.37 During
implementation, if a sampled location has an observed sero-
prevalence of RVF that is greater than expected given the
model, a spatial smoothing term, S(x), serves to increase the
predicted values in nearby surrounding locations, and vice
versa where the observed RVF seroprevalence is less than
would be expected given the model and neighboring values. If
a location lies beyond the distance at which observations are
correlated (per the semi-variogram), then the prevalence is
predicted as the expected value based on the covariates with-
out weights according to surrounding sampling points.
Spatial prediction. The model was fit to the covariate

values in each prediction location and was used to generate
maps of the predicted RVF seroprevalence and the probabil-
ity that RVF seroprevalence in a given location exceeded
10% for the sampling year (2017). Prediction maps were
generated for cattle, and separately for sheep and goats, as
seroprevalence was greater among cattle compared with
sheep and goats. A single composite prediction map of the
weighted average of the cattle predictions and the sheep
and goat predictions was also created, where weights were
based on density of each animal species according to esti-
mates from the FAO. Although the presence of IgG antibo-
dies cannot identify the time at which an infection occurred,
the covariate data we used to estimate seroprevalence is
available in near real time and could potentially be used to
estimate transmission risk, assuming the predictors we use
to model seroprevalence are also predictors of RVF inci-
dence. Therefore, we fit our model to the annual average of
monthly covariate values for the year 2021. Predictions for
all livestock were again combined based on the weighted
average of the species density in each given prediction loca-
tion, and the difference between predictions in 2017 and in
2021 was calculated to identify locations that experienced
conditions in 2021 consistent with elevated RVF seropreva-
lence as a proxy for potential risk of transmission. Maps
were generated using QGIS version 3.1.38

Model validation. We used Monte Carlo iterations to simu-
late 1,000 semi-variograms given the fitted model to determine
the validity and fit of the spatial correlation structure to the
data. A 95% interval defining the variability of the model simu-
lations was used to evaluate whether the model fit the data
accurately. The null hypothesis was that the specified model
was a good fit to the data. After the simulation, the fitted semi-
variogram based on the observed data fell within the 95%
interval of variograms estimated from the simulated data, and
it was determined that the specified correlation structure fit the
data adequately to proceed with prediction.37

RESULTS

Livestock seroprevalence and model selection. Among
livestock sampled, cattle represented 54% (n 5 1,732),
goats represented 34% (n 5 1,091), and sheep represented
11% (n 5 358). Overall seroprevalence among cattle, goats,
and sheep was 10.7%, 2.6%, and 2%, respectively. Because
seroprevalence and management of sheep and goats were
similar, sheep and goats were combined for analysis and
comparison against cattle. Among cattle herds sampled,
RVFV antibodies were present in 56% (47 of 85), and sero-
prevalence ranged from 0% to 50%. Among sheep and goat
herds sampled, RVFV antibodies were only detected in 18%
of herds (19 of 106), and seroprevalence ranged from 0% to
33% (Figure 1). Covariates that had the strongest relationship
with RVF seroprevalence that were used in the final model
included average annual variability of monthly precipitation,
average annual variability of monthly EVI, TWI, log percent
increase in human population density, and livestock species.
2017 Seroprevalence model and prediction maps.

Covariate maps show that the average annual variability of
monthly precipitation was strongest in northeastern Uganda
and more stable in the western half of the country, especially
between Lake Albert and Lake Victoria in central Uganda.
Average annual variability of monthly EVI values was gener-
ally greater in northern Uganda, indicating more stable vege-
tation greenness in the southern half. Spatial trends of
the TWI occurred in a vein-like structure throughout the
country, being highest in locations where water accumu-
lates, such as near rivers and wetlands. Log percent
increase in human population density was greatest in north-
western Uganda, but also in scattered regions throughout
the country (Supplemental Figure 1). Analysis of individual
covariates in a binomial generalized linear model showed
positive linear relationships between logit-RVF seropreva-
lence and EVI variability, TWI, and log percent increase in
human population density, whereas there was a negative
relationship between logit-RVF seroprevalence and precipi-
tation variability (Supplemental Figure 1).
Incorporating covariates into a multivariate binomial GLGM,

a significant positive association between logit-RVF seroprev-
alence and EVI variability (P 5 0.03; 95% CI, 1.98–35.55) was
seen, suggesting that livestock RVF seroprevalence tended to
be greater in areas that had more variability in vegetation
greenness. A significant association was also found with TWI
(P 5 0.02; 95% CI, 0.02–0.27), where RVF seroprevalence
was greater in areas susceptible to water runoff and pooling.
Livestock RVF seroprevalence tended to decrease in areas
with greater precipitation variability (P 5 0.27; 95% CI, –0.07
to 0.02) and increase in areas with log percent change in
human population density (P 5 0.14; 95% CI, –0.12 to 0.87).
Adjusting for environmental variables, seroprevalence among
cattle remained significantly greater compared with sheep
and goats (P, 0.001; 95% CI, 1.31–2.14).
Maps of predicted RVF seroprevalence show notably

greater predictions of seroprevalence among cattle com-
pared with sheep and goats (Figure 2). Predicted seropreva-
lence among cattle ranged from 0% to 69%, whereas
predicted seroprevalence among sheep and goats ranged
from 0% to 31%. The greatest predicted seroprevalence was
in northwestern and central Uganda, spreading north from
Lake Albert to the border of South Sudan. Seroprevalence
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was also predicted to be relatively high north of Lake Victoria
near the border of Kenya and stretching from the southern
border near Rwanda toward Lake Albert along the southern
portion of the Cattle Corridor. Elevated predictions of RVF
seroprevalence follow a vein-like structure throughout the
country consistent with the spatial trend of TWI. The areas
with the lowest predicted seroprevalence were in the north-
eastern quadrant of the country and along the southwestern
border of the Democratic Republic of the Congo, where the
predicted seroprevalence was generally less than 5%. Data
from the FAO on estimated population density of cattle,
sheep, and goats show similar spatial distributions across
species, although estimated density of sheep and goats
was greater than cattle in the southern half of the country
(Figure 3). The map of the population weighted average of
predictions for cattle, sheep, and goats weighted-average
seroprevalence predictions shows the same spatial trend in
predictions as seen in the individual species maps, with
the focal point of greatest seroprevalence predictions being

in central Uganda between Lake Albert and Lake Kyoga
(Figure 3).
Maps visualizing the estimated probability that RVF sero-

prevalence exceeds 10% are presented in Figure 2. Red and
orange cells represent areas where there is high probability
that RVF seroprevalence exceeds 10%, whereas dark- and
light-green cells represent areas where this probability is
low. Light-gray cells represent areas of uncertainty, where
there is insufficient information to determine with confidence
whether the RVF seroprevalence is greater or less than 10%.
For cattle, the probability that RVF seroprevalence exceeded
10% was greatest in western and northwestern Uganda
along Lake Albert and in central Uganda. Localized locations
that also had high exceedance probability were located
on the southern border near Rwanda and Tanzania, and
along the northern border of South Sudan. For sheep and
goats, the probability that RVF seroprevalence exceeded 10%
was low across the country, with only small areas of uncertainty
that followed a spatial trend consistent with the TWI variable.

FIGURE 2. Predicted Rift Valley fever virus (RVFV) seroprevalence across species. Predictions of RVFV among cattle (A) and sheep and goats
(B), and probability that seroprevalence exceeds 10% for cattle (C) and sheep and goats (D) in the sampling year 2017.
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Comparing observed herd seroprevalence to the model-
predicted seroprevalence in the same locations, we see that
predicted seroprevalence was less in many instances, being
smoothed by the model after accounting for environmental
conditions, the spatial structure of surrounding sampling
sites, and the SD associated with fewer observations (Sup-
plemental Figure 2). This is typical behavior for spatial mod-
els of disease prevalence. Areas with small sample sizes
yield unstable local estimates and the models borrow more
information from neighboring sites to stabilize estimates.
Most herds with an observed RVF seroprevalence of zero
were also those with few animals sampled, and the model-
predicted seroprevalence was greater than observed in
those locations because the model borrows information
from neighboring (and often nonzero) values.
2021 Prediction. Comparing the average monthly covariate

values for the year 2021 to average values from 2009 to 2016
(Supplemental Figure 3), monthly precipitation variability in
2021 was greater in central Uganda and west of Lake Victoria.
Monthly EVI variability in 2021 was generally less throughout
the country, with the greatest values still occurring in northern
Uganda. Human population density data were not available for
2021; therefore, we used the most recently available data,
which was data for 2020. Human population density in 2020
increased most in northwestern Uganda and near the eastern

border with Kenya. The TWI is a constant value derived from
elevation and did not change between the two periods.
The prediction map resulting from fitting the model to the

most recently available covariate data shows that the great-
est predictions occurred in the central region (Figure 4). The
difference in predicted seroprevalence between the 2017
and 2021 predictions show increased predictions in central
Uganda and in small patches running through the southern
portion of the Cattle Corridor (Figures 1 and 3). Decreases in
suitable conditions for transmission may have occurred in
northwestern Uganda in 2021.

DISCUSSION

Our analysis identifies environmental variables associated
with livestock RVF seropositivity in Uganda, provides esti-
mates of RVF seroprevalence throughout the country, and
identifies areas that recently experienced conditions associ-
ated with RVFV circulation. Studies of RVF in endemic coun-
tries have found a seroprevalence of 10% to 20%, and
our results suggest a high probability of RVFV circulation
($ 10%) in several regions of Uganda, and lower probability
in others.19 Overall, predicted RVF seroprevalence was
greater among cattle than goats and sheep. The greatest
predicted seroprevalence was in the northwestern quadrant

FIGURE 3. Combined cattle, sheep, and goat density-weighted average prediction map of Rift Valley Fever virus (RVFV) seroprevalence.
Weighted average of cattle, sheep, and goat RVFV seroprevalence predictions (A), and the estimated density of cattle (B) and sheep and goats
(C) at a spatial resolution of 103 10 km from the Food and Agricultural Organization (FAO) that was used for weighting.26
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of the country, with the focal point being in central Uganda
between Lake Albert and Lake Kyoga. Other areas of moder-
ate to high predicted seroprevalence were scattered through-
out northeastern Uganda, along the southern Cattle Corridor,
and north of Lake Victoria. Several areas where sampling
was not done were identified as locations with a high proba-
bility of elevated RVF seroprevalence, given the environmen-
tal predictors represented in this model and the geographic
proximity of sampling locations with elevated seroprevalence.
This information can be used to direct future livestock sam-
pling efforts to validate the predictions from this model and, if
accurate, can help prioritize surveillance and future mitigation
efforts such as livestock vaccine administration campaigns,
targeted health-care provider education for earlier identifica-
tion of cases, and public outreach and education on risk fac-
tors for RVF transmission. Directing such efforts to specific
geographic locations combined with information ascertained
from each covariate included in this model can potentially
lead to increased ability to reduce future morbidity and mor-
tality among humans and livestock from RVF.
The region in central and northwestern Uganda, where

observed and predicted RVF seroprevalence was greater, is
the site of two national parks (Murchison Falls National Park
and Paraa National Park) and two wildlife and game reserves
(Aswa-Lolim Game Reserve and Ajai Wildlife Reserve). This
region does not fall within the Cattle Corridor and was not
previously considered a “high-risk” area for RVF outbreaks,
and since the reemergence of RVF in Uganda in 2016, acute
human or livestock infections have not been identified in
this region. Given the relatively lower density of livestock and
the lack of identified RVFV infections in this northwestern

region, high RVF seroprevalence in these herds may suggest
that the maintenance of RVFV in this environment does not
depend solely on a transmission cycle between mosquitoes
and livestock, but likely also is in some way dependent on the
high density of wild game, which typically remain asymptom-
atic upon infection.39 Given that this region also increased in
human population density, two possible explanations for ele-
vated RVF seroprevalence in livestock could be the importa-
tion of the virus from other RVF-endemic places, or exposure
of immunologically naive livestock to RVFV upon introduction
into an ecosystem in which RVFV is sustained primarily among
mosquitoes and wild game. Further research should evaluate
trade networks and seroprevalence of imported livestock in
northwestern Uganda to determine where these animals are
being exposed to RVFV. Additional analysis should seek to
understand the combined role that domesticated livestock
and wild game play in RVFV transmission dynamics. Such
information could be used to determine the potential effective-
ness of interventions such as vector control or vaccination
efforts in specific locations.
We found that livestock RVFV seropositivity in Uganda was

associated positively with variability in monthly EVI and asso-
ciated negatively with variability in precipitation (Table 1, Sup-
plemental Figure 1).10,12 One possible explanation for an
inverse association with precipitation variability could be that
excessive annual variability in monthly precipitation results in
either desiccation of mosquito eggs or flushing of larva with
too much surface water runoff. The transmission ecology of
RVF in Uganda may be different from RVF-endemic countries
such as neighboring Tanzania and Kenya, which experience
periods of drought followed by precipitation and flooding.

FIGURE 4. Potential shift in suitable transmission conditions in 2021. The top row represents fitted model parameters from the base model of 2017
seroprevalence to covariate values for the year 2021. These predictions represent potentially suitable conditions for Rift Valley fever (RVF) transmis-
sion among cattle (A) and sheep and goats (B) under the assumption that RVF incidence among livestock is driven by the same factors associated
with RVF seroprevalence among livestock, which is what was modeled here. The bottom row represents the difference between the 2017 prediction
of RVF seroprevalence (based on annual average of monthly values from 2009–2016) and the 2021 prediction (based on annual average of monthly
values for 2021) for cattle (C) and sheep and goats (D). Red indicates greater predicted values in 2021, suggesting a potentially increased risk of RVF
transmission resulting from suitable environmental conditions throughout the year.

TELFORD AND OTHERS718



Uganda is a country that has a relatively stable climate and
receives regular rainfall, and therefore may not be favorable to
an RVFV transmission cycle driven by large-scale epizootics.
Rather, more consistent monthly precipitation in Uganda may
lead to continuous hatching of infected Aedes eggs, but rarely
on a large scale, and could explain the infrequent, albeit
consistent, RVFV transmission. In contrast to precipitation vari-
ability, EVI variability was associated positively with RVF sero-
prevalence, which may result from changes in croplands,
which are more variable in “greenness” throughout the year.
Increase in human population density was also associated

positively with RVF seroprevalence. A national livestock cen-
sus conducted in Uganda in 2008 reported that 25% of
households owned cattle, 40% owned goats, and 9% owned
sheep.40 Therefore, as human population densities increase, it
can be assumed that livestock populations also increase,
potentially increasing animal trade and importation of previ-
ously infected livestock. However, the owners of only 7% of
livestock in our study reported previous herd movement, sug-
gesting that most seropositive livestock were likely exposed in
the region in which they were sampled. Aside from increases
in susceptible humans and susceptible livestock that humans
bring with them, population density change can lead to various
environmental changes that lead to enhanced habitat suitabil-
ity for mosquitoes and elevated risk of RVF outbreaks. Land
change resulting from human population growth and the intro-
duction of irrigated agriculture can be beneficial for RVFV cir-
culation because the flooding of fields can cause dormant,
infected Aedes eggs to hatch, and creates large areas of stag-
nant water that secondary vectors can use to reproduce.41

Land conversion and deforestation resulting from human pop-
ulation growth can also disrupt soil absorption and drainage
networks, potentially resulting in flooding.42 Although EVI var-
iability and increase in human population density could
potentially represent similar anthropogenic changes to the
environment that lead to increased RVFV circulation, these
variables had a weak correlation, suggesting their encom-
passment of unique contributions to the dynamics of RVF
transmission. Future research should seek to identify the
underlying causes of EVI variability in areas of greater RVF
seroprevalence in Uganda and its relationship with increases
in human population density and mosquito reproduction.
Because our model predicted seroprevalence over space and

not specific transmission events, we intend the 2021 prediction
map in Figure 4 to be a “risk estimation” that identifies locations
that recently experienced optimal environmental conditions for

viral circulation, rather than a true prediction of seroprevalence
or forecast of disease incidence in 2021. A true prediction of
seroprevalence for 2021 would be better suited to incorporate
average covariate values from 2014 to 2021, whereas a true
forecast of incidence would necessitate a model trained on inci-
dence data. In our case, data on RVF incidence since 2016
in Uganda are still too sparse to train a forecast model accu-
rately for RVF incidence; therefore, this attempt to use annual
averages of predictors of livestock seropositivity as a proxy for
incidence data should be used with caution. We found that suit-
able conditions for RVF in 2021 increased in central and south-
ern Uganda, and decreased in northwestern Uganda.
Our analysis is subject to several limitations. First, importation

and density of livestock were not accounted for directly
because our variables representing livestock density and prox-
imity to high-animal-traffic sites were found to have little to no
association with RVF seroprevalence in the model selection
process. Likewise, no association was found between RVF
seroprevalence and whether a herd was sampled inside or out-
side the Cattle Corridor. Therefore, although livestock are at
greatest risk of RVF, livestock density and importation were not
used directly to predict RVF seroprevalence across the country.
Livestock density may be accounted for indirectly within the
variables representing increases in human population density
and EVI variability, as urbanization and agriculture may be
associated with livestock presence, pastoralism, and trade.
Second, seroprevalence surveys are unable to account for the
strong temporal trends associated with RVF outbreaks. We
evaluated variables such as average EVI during the rainy sea-
sons, average surface runoff and precipitation anomalies, and
variability of precipitation and EVI, and found that variables
measuring this variability have the strongest association with
our sampling data. To correlate specific weather events with
RVF seroprevalence, secondary testing could be used to mea-
sure changes in RVF seroprevalence in relation to weather
events between sampling periods. All covariates were available
through 2021, with the exception of change in human popula-
tion density, which was available through 2020. Therefore, our
predictions of seroprevalence were made using the most
recently available human population density data, which may
not represent the population dynamics in 2021. In addition to
the previously discussed limitations of estimating potential risk
of transmission in 2021, we also assume that the covariates
explain all of the temporal variation in RVF transmission, and
what is unexplained by the covariates represents only spatial
residual correlation and not spatiotemporal residual correlation.

TABLE 1
Generalized linear geostatistical model parameter estimates for predictors of RVF seroprevalence

Parameter Coefficient Standard error 2.5% CI 98% CI P value

Intercept 27.89 1.73 211.28 24.50 , 0.001
Annual variability of monthly precipitation 20.03 0.02 20.07 0.02 0.27
Annual variability of monthly EVI 18.77 8.56 1.98 35.55 0.03
TWI 0.15 0.06 0.02 0.27 0.02
Log human population density % increase 0.37 0.25 20.12 0.87 0.14
Livestock species (reference: sheep/goats)
Cattle 1.72 0.21 1.31 2.14 , 0.001

log(s2)* 0.14 0.38 20.60 0.87 –

log(f)† 21.16 0.52 22.17 20.15 –

log(t2)‡ 0.06 0.78 21.46 1.57 –

EVI5 enhanced vegetation index; RVF5 Rift Valley fever; TWI5 topographic wetness index.
* Variance of the Gaussian process.
†Scale of the spatial correlation.
‡Variance of the nugget effect.
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This assumption cannot be tested, given that longitudinal data
are not available at this time, and future research should aim to
gather adequate data to develop a model that accounts for
space and time.

CONCLUSION

Our analysis estimated RVF seroprevalence in Uganda in
2017 by fitting a geostatistical model to livestock sampling
data and environmental predictors. The greatest predicted
seroprevalence was in the central and northwestern quad-
rant of the country, surrounding Lake Victoria, and along the
southern half of the Ugandan Cattle Corridor. The lowest
predicted seroprevalence was in the northeastern corner of
the country, which encompasses the northern portion of the
Cattle Corridor. The variables found to be the best predictors
in a model of RVF seroprevalence included annual variability
of monthly precipitation and EVI, TWI, log percent increase
in human population density, and livestock species. A pre-
diction map for 2021 was generated using the most recently
available environmental data to estimate geographic loca-
tions that may have recently experienced increased risk for
RVF transmission, finding that the predictions increased in
parts of central and southwestern Uganda. These results
can be used to guide the prioritization of surveillance and
risk mitigation efforts such as RVF vaccine distribution, and
community and health-care provider education regarding
RVFV transmission prevention and case identification.
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